1
|
Zhang J, Xia S, Wang Y, Wu J, Wu Y. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction. iScience 2024; 27:110005. [PMID: 38846002 PMCID: PMC11154216 DOI: 10.1016/j.isci.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Electrocatalysts undergo structural evolution under operating electrochemical CO2 reduction reaction (CO2RR) conditions. This dynamic reconstruction correlates with variations in CO2RR activity, selectivity, and stability, posing challenges in catalyst design for electrochemical CO2RR. Despite increased research on the reconstruction behavior of CO2RR electrocatalysts, a comprehensive understanding of their dynamic structural evolution under reaction conditions is lacking. This review summarizes recent developments in the dynamic reconstruction of catalysts during the CO2RR process, covering fundamental principles, modulation strategies, and in situ/operando characterizations. It aims to enhance understanding of electrocatalyst dynamic reconstruction, offering guidelines for the rational design of CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Jianfang Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuai Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230009, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Liu S, Li Y, Wang D, Xi S, Xu H, Wang Y, Li X, Zang W, Liu W, Su M, Yan K, Nielander AC, Wong AB, Lu J, Jaramillo TF, Wang L, Canepa P, He Q. Alkali cation-induced cathodic corrosion in Cu electrocatalysts. Nat Commun 2024; 15:5080. [PMID: 38871724 PMCID: PMC11176167 DOI: 10.1038/s41467-024-49492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The reconstruction of Cu catalysts during electrochemical reduction of CO2 is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO2 reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 VRHE when using 0.1 M KHCO3). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO2 reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Yuheng Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Singapore.
| | - Haoming Xu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Yulin Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
| | - Xinzhe Li
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Wenjie Zang
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Weidong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Mengyao Su
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
| | - Katherine Yan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew B Wong
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 12 Science Drive 3, Singapore, 117543, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| | - Pieremanuele Canepa
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore.
| |
Collapse
|
3
|
Yang M, Pártay LB, Wexler RB. Surface phase diagrams from nested sampling. Phys Chem Chem Phys 2024; 26:13862-13874. [PMID: 38659377 DOI: 10.1039/d4cp00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Studies in atomic-scale modeling of surface phase equilibria often focus on temperatures near zero Kelvin due to the challenges in calculating the free energy of surfaces at finite temperatures. The Bayesian-inference-based nested sampling (NS) algorithm allows for modeling phase equilibria at arbitrary temperatures by directly and efficiently calculating the partition function, whose relationship with free energy is well known. This work extends NS to calculate adsorbate phase diagrams, incorporating all relevant configurational contributions to the free energy. We apply NS to the adsorption of Lennard-Jones (LJ) gas particles on low-index and vicinal LJ solid surfaces and construct the canonical partition function from these recorded energies to calculate ensemble averages of thermodynamic properties, such as the constant-volume heat capacity and order parameters that characterize the structure of adsorbate phases. Key results include determining the nature of phase transitions of adsorbed LJ particles on flat and stepped LJ surfaces, which typically feature an enthalpy-driven condensation at higher temperatures and an entropy-driven reordering process at lower temperatures, and the effect of surface geometry on the presence of triple points in the phase diagrams. Overall, we demonstrate the ability and potential of NS for surface modeling.
Collapse
Affiliation(s)
- Mingrui Yang
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Livia B Pártay
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Robert B Wexler
- Department of Chemistry and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
4
|
Chen C, Jin H, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Local reaction environment in electrocatalysis. Chem Soc Rev 2024; 53:2022-2055. [PMID: 38204405 DOI: 10.1039/d3cs00669g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huanyu Jin
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaogang Sun
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
5
|
Jeong Y, Kim Y, Kim YJ, Park JY. In Situ Probing of CO 2 Reduction on Cu-Phthalocyanine-Derived Cu x O Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304735. [PMID: 38030415 PMCID: PMC10811478 DOI: 10.1002/advs.202304735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Indexed: 12/01/2023]
Abstract
An in situ measurement of a CO2 reduction reaction (CO2 RR) in Cu-phthalocyanine (CuPC) molecules adsorbed on an Au(111) surface is performed using electrochemical scanning tunneling microscopy. One intriguing phenomenon monitored in situ during CO2 RR is that a well-ordered CuPC adlayer is formed into an unsuspected nanocluster via molecular restructuring. At an electrode potential of -0.7 V versus Ag/AgCl, the Au surface is covered mainly with the clusters, showing restructuring-induced CO2 RR catalytic activity. Using a measurement of X-ray photoelectron spectroscopy, it is revealed that the nanocluster represents a Cu complex with its formation mechanism. This work provides an in situ observation of the restructuring of the electrocatalyst to understand the surface-reactive correlations and suggests the CO2 RR catalyst works at a relatively low potential using the CuPC-derived Cu nanoclusters as active species.
Collapse
Affiliation(s)
- Yongchan Jeong
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
| | - Yongman Kim
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Young Jae Kim
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
6
|
Gong Y, He T. Gaining Deep Understanding of Electrochemical CO 2 RR with In Situ/Operando Techniques. SMALL METHODS 2023; 7:e2300702. [PMID: 37608449 DOI: 10.1002/smtd.202300702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Electrocatalysis for CO2 conversion has been extensively studied to mitigate the energy shortage and environmental issues, which are gaining ever-increasing attention. However, the complicated CO2 reduction process and the dynamic evolution occurring on electrocatalyst surface make it hard to understand the catalytic mechanism. The development of advanced in situ/operando techniques intelligently coupled with electrochemical cells sheds light on the related study via capturing surface atomic rearrangement, tracing chemical state change of catalysts, monitoring the behavior of intermediates and products, and depicting microenvironment near the electrode surface. In this review, fundamentals of the state-of-the-art in situ/operando techniques are clarified first. Case studies on the in situ/operando techniques performed to probe the CO2 reduction reaction processes are then discussed in detail. Finally, conclusions and outlook on this field are presented.
Collapse
Affiliation(s)
- Yue Gong
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao He
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Hieu HN, Nguyen VN, Nguyen VM, Phan TH. 3D-ordered porous CdS/AgI/ZnO nanostructures for high-performance photoelectrochemical water splitting. NANOTECHNOLOGY 2023; 34:465401. [PMID: 37551562 DOI: 10.1088/1361-6528/acedb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
3D-ordered porous CdS/AgI/ZnO nanostructures were designed to perform as high-performance photoelectrodes for photoelectrochemical (PEC) water-splitting applications. They rely on the advantages of an extremely large active surface area, high absorption capacity in the visible-light region, fast carrier separation and transportation caused by the intrinsic ladder-like band arrangement. These nanostructures were fabricated by employing a three-stage experiment in a sequence of hard mold-assisted electrochemical deposition, wet chemical method and deposition-precipitation. First, 3D-ordered ZnO nanostructures were electrochemically deposited using a polystyrene film as the sacrificed template. AgI nanoparticles were then decorated on the interfacial ZnO nanostructures by deposition-precipitation. Finally, these binary AgI/ZnO nanoporous networks were thoroughly wet-chemically coated with a CdS film to form a so-called 'ternary interfacial CdS/AgI/ZnO nanostructures'. The PEC water-splitting properties of the fabricated 3D nanostructures were systematically studied and compared. As a result, the highest efficiency of the fabricated 3D-ordered porous CdS/AgI/ZnO measured under the irradiation of solar simulation is about 5.2%, which is relatively 1.5, 3.5 and 11.3 times greater than that of the corresponding CdS/ZnO (3,4%), AgI/ZnO (1.5%) and pristine porous ZnO (0.46%) photoelectrodes, respectively. The significant improvement in the PEC activity is attributed to the enhanced charge separation and transport of ternary photoelectrodes caused by an unconventional ladder-like band arrangement formed between interfacial CdS-AgI-ZnO. Our study provides a promising strategy for developing such ternary photoelectrode generation that possesses higher stability and efficiency towards water-splitting processes.
Collapse
Affiliation(s)
- Hoang Nhat Hieu
- Department of Physics and Materials Science, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
| | - Van Nghia Nguyen
- Department of Physics and Materials Science, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
| | - Vuong Minh Nguyen
- Department of Physics and Materials Science, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
| | - Thanh Hai Phan
- Department of Physics and Materials Science, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam
| |
Collapse
|
9
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
10
|
Feng P, Zhang D, Zhang P, Wang Y, Gan Y. Nanoscale characterization of the heterogeneous interfacial oxidation layer of graphene/Cu based on a SEM electron beam induced reduction effect. Phys Chem Chem Phys 2023; 25:8816-8825. [PMID: 36916298 DOI: 10.1039/d2cp05809j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Characterization of the interfacial oxidation layer of graphene/metal is a challenging task using conventional spectroscopy techniques because interfacial oxidation is heterogeneous at the nanoscale underneath the graphene. Here we developed a feasible method for nanoscale characterization of the interfacial oxidation layer of graphene/Cu (Gr/Cu) based on scanning electron microscopy (SEM) electron beam irradiation (EBI) induced reduction of interfacial oxides (SEM EBI-RIO method) at room temperature. The change in the thickness and coverage of the interfacial Cu oxide layer induced by EBI is responsible for the observed contrast reversal or change in SEM images of a targeted area with a width down to 200 nm in the EBI time scale of seconds to minutes. This method offers the capability of mapping heterogeneous interfacial oxidation of Gr/Cu with sub-100 nm spatial resolution and determining the range of thickness (1-5 nm) of the interfacial oxide layer. The SEM EBI-RIO method will be a powerful method to complement X-ray photoelectron spectroscopy (XPS), Raman microscopy, and high resolution transmission electron microscopy (HRTEM) for characterization of the interfacial oxidation layer of 2D materials and devices.
Collapse
Affiliation(s)
- Panpan Feng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dan Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Peng Zhang
- Manufacturing Engineering for Aviation and Aerospace, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - You Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
- Materials Physics and Chemistry Department, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yang Gan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
11
|
Arulmozhi N, Hanselman S, Tudor V, Chen X, van Velden D, Schneider GF, Calle-Vallejo F, Koper MTM. Energetics and Kinetics of Hydrogen Electrosorption on a Graphene-Covered Pt(111) Electrode. JACS AU 2023; 3:526-535. [PMID: 36873699 PMCID: PMC9976337 DOI: 10.1021/jacsau.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
The Angstrom-scale space between graphene and its substrate provides an attractive playground for scientific exploration and can lead to breakthrough applications. Here, we report the energetics and kinetics of hydrogen electrosorption on a graphene-covered Pt(111) electrode using electrochemical experiments, in situ spectroscopy, and density functional theory calculations. The graphene overlayer influences the hydrogen adsorption on Pt(111) by shielding the ions from the interface and weakening the Pt-H bond energy. Analysis of the proton permeation resistance with controlled graphene defect density proves that the domain boundary defects and point defects are the pathways for proton permeation in the graphene layer, in agreement with density functional theory (DFT) calculations of the lowest energy proton permeation pathways. Although graphene blocks the interaction of anions with the Pt(111) surfaces, anions do adsorb near the defects: the rate constant for hydrogen permeation is sensitively dependent on anion identity and concentration.
Collapse
Affiliation(s)
- Nakkiran Arulmozhi
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Selwyn Hanselman
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Viorica Tudor
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Xiaoting Chen
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - David van Velden
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Grégory F. Schneider
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Federico Calle-Vallejo
- Department
of Materials Science and Chemical Physics & Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Av. Tolosa 72, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
12
|
In situ/operando characterization techniques for electrochemical CO2 reduction. Sci China Chem 2023. [DOI: 10.1007/s11426-021-1463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
He S, Wu M, Li S, Jiang Z, Hong H, Cloutier SG, Yang H, Omanovic S, Sun S, Zhang G. Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248644. [PMID: 36557778 PMCID: PMC9782663 DOI: 10.3390/molecules27248644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
High-performance electrocatalysts are critical to support emerging electrochemical energy storage and conversion technologies. Graphite-derived materials, including fullerenes, carbon nanotubes, and graphene, have been recognized as promising electrocatalysts and electrocatalyst supports for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR). Effective modification/functionalization of graphite-derived materials can promote higher electrocatalytic activity, stability, and durability. In this review, the mechanisms and evaluation parameters for the above-outlined electrochemical reactions are introduced first. Then, we emphasize the preparation methods for graphite-derived materials and modification strategies. We further highlight the importance of the structural changes of modified graphite-derived materials on electrocatalytic activity and stability. Finally, future directions and perspectives towards new and better graphite-derived materials are presented.
Collapse
Affiliation(s)
- Shuaijie He
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Wu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, QC J3X 1P7, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Song Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhiyi Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hanlie Hong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Sylvain G. Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, QC J3X 1P7, Canada
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| |
Collapse
|
14
|
Li H, Liang Y, Ju W, Schneider O, Stimming U. In Situ Monitoring of the Surface Evolution of a Silver Electrode from Polycrystalline to Well-Defined Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14981-14987. [PMID: 36395357 DOI: 10.1021/acs.langmuir.2c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Capturing the surface-structural dynamics of metal electrocatalysts under certain electrochemical environments is intriguingly desired for understanding the behavior of various metal-based electrocatalysts. However, in situ monitoring of the evolution of a polycrystalline metal surface at the interface of electrode-electrolyte solutions at negative/positive potentials with high-resolution scanning tunneling microscopy (STM) is seldom. Here, we use electrochemical STM (EC-STM) for in situ monitoring of the surface evolution process of a silver electrode in both an aqueous sodium hydroxide solution and an ionic liquid of 1-methyl-1-octylpyrrolidinium bis(trifluoromethylsulfonyl) amide driven by negative potentials. We found silver underwent a surface change from a polycrystalline structure to a well-defined surface arrangement in both electrolytes. In NaOH aqueous solution, the silver surface transferred in several minutes at a turning-point potential where hydrogen adsorbed and formed mainly (111) and (100) pits. Controversially, the surface evolution in the ionic liquid was much slower than that in the aqueous solution, and cation adsorption was observed in a wide potential range. The surface evolution of silver is proposed to be linked to the surface adsorbates as well as the formation of their complexes with undercoordinated silver atoms. The results also show that cathodic annealing of polycrystalline silver is a cheap, easy, and reliable way to obtain quasi-ordered crystal surfaces.
Collapse
Affiliation(s)
- Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Oliver Schneider
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Ulrich Stimming
- Department of Physics E19, Technische Universität München, James-Franck-Str.1, Garching b. München 85748, Germany
| |
Collapse
|
15
|
Wang W, Duan J, Liu Y, Zhai T. Structural Reconstruction of Catalysts in Electroreduction Reaction: Identifying, Understanding, and Manipulating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110699. [PMID: 35460124 DOI: 10.1002/adma.202110699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Electroreduction transformation of small molecules (CO2 , N2 , and H2 O) into chemical feedstocks offers a promising approach to eliminate carbon emissions and harness renewable energy. Most cathodic catalysts often undergo structural transformation under operating electroreduction conditions. These structural reconstructions are reflected in changes in their catalytic activity. In-depth understanding of the change of active sites and influence parameters of reconstruction behaviors is an essential precondition for the design of highly efficient catalysts. Despite the previous achievements, comprehensive insight toward the structural evolution mechanism in cathodic catalysts, compared to anode ones, under reaction conditions is still lacking. Herein, an overview of structural reconstruction for cathodic catalysts in terms of fundamental mechanisms, reconstruction process, advanced characterizations, and influencing parameters is provided. On this basis, the typical strategies for manipulating the structural reconfiguration of catalysts are also explicitly discussed from the catalyst structure and working environment. By delivering the mechanism, strategies, insights, and techniques, this review will provide a comprehensive understanding of the structural reconstruction of cathodic catalysts in electroreduction reactions and future guidelines for their rational development.
Collapse
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
16
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Deng B, Zhao X, Li Y, Huang M, Zhang S, Dong F. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Liang Y, Lihter M, Lingenfelder M. Spin‐Control in Electrocatalysis for Clean Energy. Isr J Chem 2022. [DOI: 10.1002/ijch.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Martina Lihter
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
19
|
Zheng W, Lee LYS. Observing Electrocatalytic Processes via In Situ Electrochemical Scanning Tunneling Microscopy: Latest Advances. Chem Asian J 2022; 17:e202200384. [PMID: 35621190 DOI: 10.1002/asia.202200384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Indexed: 11/08/2022]
Abstract
Electrocatalysis is the foundation of many techniques that are currently used to address both environmental and energy problems. Therefore, understanding electrocatalytic processes is essential to guide the rational design of electrocatalysts. Scanning tunneling microscopy (STM), which was developed in the 1980s, remains one of the few techniques that allow surface imaging at the atomic level, making it incredibly useful in electrocatalytic research. In this review, we introduced the basic concept and latest applications of the STM technique for in situ studies of electrocatalytic processes, particularly its capability in analyzing species adsorption/desorption, surface reconstruction, active site identification, and electrocatalyst dissolution, as well as its advantages and limitations.
Collapse
Affiliation(s)
- Weiran Zheng
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, HONG KONG
| | - Lawrence Yoon Suk Lee
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, ., Hung Hom, HONG KONG
| |
Collapse
|
20
|
Louisia S, Kim D, Li Y, Gao M, Yu S, Roh I, Yang P. The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO 2. Proc Natl Acad Sci U S A 2022; 119:e2201922119. [PMID: 35486696 PMCID: PMC9171356 DOI: 10.1073/pnas.2201922119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
SignificanceThe electroconversion of CO2 to value-added products is a promising path to sustainable fuels and chemicals. However, the microenvironment that is created during CO2 electroreduction near the surface of heterogeneous Cu electrocatalysts remains unknown. Its understanding can lead to the development of ways to improve activity and selectivity toward multicarbon products. This work introduces a method called on-stream substitution of reactant isotope that provides quantitative information of the CO intermediate species present on Cu surfaces during electrolysis. An intermediary CO reservoir that contains more CO molecules than typically expected in a surface adsorbed configuration was identified. Its size was shown to be a factor closely associated with the formation of multicarbon products.
Collapse
Affiliation(s)
- Sheena Louisia
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Dohyung Kim
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Yifan Li
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Sunmoon Yu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Kavli Energy NanoScience Institute, Berkeley, CA 94720
| |
Collapse
|
21
|
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling Operando Electrochemical CO 2 Reduction. Chem Rev 2022; 122:11085-11130. [PMID: 35476402 DOI: 10.1021/acs.chemrev.1c00690] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.
Collapse
Affiliation(s)
- Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ranga Rohit Seemakurthi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
22
|
Raaijman S, Arulmozhi N, Koper MTM. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48730-48744. [PMID: 34612038 PMCID: PMC8532114 DOI: 10.1021/acsami.1c13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 05/28/2023]
Abstract
Though copper is a capable electrocatalyst for the CO2 reduction reaction (CO2RR), it rapidly deactivates to produce mostly hydrogen. A current hypothesis as to why this occurs is that potential-induced morphological restructuring takes place, leading to a redistribution of the facets at the interface resulting in a shift in the catalytic activity to favor the hydrogen evolution reaction over CO2RR. Here, we investigate the veracity of this hypothesis by studying the changes in the voltammetry of various copper surfaces, specifically the three principal orientations and a polycrystalline surface, after being subjected to strongly cathodic conditions. The basal planes were chosen as model catalysts, while polycrystalline copper was included as a means of investigating the overall behavior of defect-rich facets with many low coordination steps and kink sites. We found that all surfaces exhibited (perhaps surprisingly) high stability when subjected to strongly cathodic potentials in a concentrated alkaline electrolyte (10 M NaOH). Proof for morphological stability under CO2RR-representative conditions (60 min at -0.75 V in 0.5 M KHCO3) was obtained from identical location scanning electron microscopy, where the mesoscopic morphology for a nanoparticle-covered copper surface was found unchanged to within the instrument accuracy. Observed changes in voltammetry under such conditions, we found, were not indicative of a redistribution of surface sites but of electrode fouling. Besides impurities, we show that (brief) exposure to oxygen or oxidizing conditions (i.e., 1 min) leads to copper exhibiting changing morphology upon cathodic treatment which, we posit, is ultimately the reason why many groups report the evolution of copper morphology during CO2RR: accidental oxidation/reduction cycles.
Collapse
|
23
|
Cao X, Tan D, Wulan B, Hui KS, Hui KN, Zhang J. In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2021; 5:e2100700. [PMID: 34927933 DOI: 10.1002/smtd.202100700] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Indexed: 06/14/2023]
Abstract
The electrocatalytic reduction of carbon dioxide into organic fuels and feedstocks is a fascinating method to implement the sustainable carbon cycle. Thus, a rational design of advanced electrocatalysts and a deep understanding of reaction mechanisms are crucial for the complex reactions of carbon dioxide reduction with multiple electron transfer. In situ and operando techniques with real-time monitoring are important to obtain deep insight into the electrocatalytic reaction to reveal the dynamic evolution of electrocatalysts' structure and composition under experimental conditions. In this paper, the reaction pathways for the CO2 reduction reaction (CO2 RR) in the generation of various products (e.g., C1 and C2 ) via the proposed mechanisms are introduced. Moreover, recent advances in the development and applications of in situ and operando characterization techniques, from the basic working principles and in situ cell structure to detailed applications are discussed. Suggestions and future directions of in situ/operando analysis are also addressed.
Collapse
Affiliation(s)
- Xueying Cao
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Dongxing Tan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Bari Wulan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - K S Hui
- School of Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - K N Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, 999078, P. R. China
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
24
|
Scholten F, Nguyen KC, Bruce JP, Heyde M, Roldan Cuenya B. Identifying Structure-Selectivity Correlations in the Electrochemical Reduction of CO 2 : A Comparison of Well-Ordered Atomically Clean and Chemically Etched Copper Single-Crystal Surfaces. Angew Chem Int Ed Engl 2021; 60:19169-19175. [PMID: 34019726 PMCID: PMC8457179 DOI: 10.1002/anie.202103102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Indexed: 11/10/2022]
Abstract
The identification of the active sites for the electrochemical reduction of CO2 (CO2 RR) to specific chemical products is elusive, owing in part to insufficient data gathered on clean and atomically well-ordered electrode surfaces. Here, ultrahigh vacuum based preparation methods and surface science characterization techniques are used with gas chromatography to demonstrate that subtle changes in the preparation of well-oriented Cu(100) and Cu(111) single-crystal surfaces drastically affect their CO2 RR selectivity. Copper single crystals with clean, flat, and atomically ordered surfaces are predicted to yield hydrocarbons; however, these were found experimentally to favor the production of H2 . Only when roughness and defects are introduced, for example by electrochemical etching or a plasma treatment, are significant amounts of hydrocarbons generated. These results show that structural and morphological effects are the key factors determining the catalytic selectivity of CO2 RR.
Collapse
Affiliation(s)
- Fabian Scholten
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Khanh‐Ly C. Nguyen
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Jared P. Bruce
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Markus Heyde
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| | - Beatriz Roldan Cuenya
- Interface Science DepartmentFritz-Haber Institute of the Max Planck Society14195BerlinGermany
| |
Collapse
|
25
|
da Silva Freitas W, D’Epifanio A, Mecheri B. Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Scholten F, Nguyen KC, Bruce JP, Heyde M, Roldan Cuenya B. Identifying Structure–Selectivity Correlations in the Electrochemical Reduction of CO
2
: A Comparison of Well‐Ordered Atomically Clean and Chemically Etched Copper Single‐Crystal Surfaces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fabian Scholten
- Interface Science Department Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Khanh‐Ly C. Nguyen
- Interface Science Department Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Jared P. Bruce
- Interface Science Department Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Markus Heyde
- Interface Science Department Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Interface Science Department Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| |
Collapse
|
27
|
An H, Wu L, Mandemaker LDB, Yang S, de Ruiter J, Wijten JHJ, Janssens JCL, Hartman T, van der Stam W, Weckhuysen BM. Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO 2 Reduction on Copper. Angew Chem Int Ed Engl 2021; 60:16576-16584. [PMID: 33852177 DOI: 10.1002/anie.202104114] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/07/2022]
Abstract
The electrocatalytic carbon dioxide (CO2 ) reduction reaction (CO2 RR) into hydrocarbons is a promising approach for greenhouse gas mitigation, but many details of this dynamic reaction remain elusive. Here, time-resolved surface-enhanced Raman spectroscopy (TR-SERS) is employed to successfully monitor the dynamics of CO2 RR intermediates and Cu surfaces with sub-second time resolution. Anodic treatment at 1.55 V vs. RHE and subsequent surface oxide reduction (below -0.4 V vs. RHE) induced roughening of the Cu electrode surface, which resulted in hotspots for TR-SERS, enhanced time resolution (down to ≈0.7 s) and fourfold improved CO2 RR efficiency toward ethylene. With TR-SERS, the initial restructuring of the Cu surface was followed (<7 s), after which a stable surface surrounded by increased local alkalinity was formed. Our measurements revealed that a highly dynamic CO intermediate, with a characteristic vibration below 2060 cm-1 , is related to C-C coupling and ethylene production (-0.9 V vs. RHE), whereas lower cathodic bias (-0.7 V vs. RHE) resulted in gaseous CO production from isolated and static CO surface species with a distinct vibration at 2092 cm-1 .
Collapse
Affiliation(s)
- Hongyu An
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Longfei Wu
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Shuang Yang
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Jim de Ruiter
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Jochem H J Wijten
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Joris C L Janssens
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Thomas Hartman
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
28
|
An H, Wu L, Mandemaker LDB, Yang S, Ruiter J, Wijten JHJ, Janssens JCL, Hartman T, Stam W, Weckhuysen BM. Sub‐Second Time‐Resolved Surface‐Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO
2
Reduction on Copper. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongyu An
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Longfei Wu
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Shuang Yang
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Jim Ruiter
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Jochem H. J. Wijten
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Joris C. L. Janssens
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Thomas Hartman
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Ward Stam
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|