1
|
Wang D, Ling S, Hou P. Enhanced Performance of a Self-Powered Au/WSe 2/Ta 2NiS 5/Au Heterojunction by the Interfacial Pyro-phototronic Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48576-48584. [PMID: 39207265 DOI: 10.1021/acsami.4c10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The growing need for wearable electronics and self-powered electronic devices has driven the successful development of self-powered two-dimensional (2D) photodetectors using the photovoltaic effect of Schottky and p-n junctions. However, there is an urgent need to develop multifunctional photodetectors capable of harvesting energy from different sources to overcome their limitations in efficiency and cost. While the pyro-phototronic effect has been shown to effectively influence optoelectronic processes in heterojunctions, the number of reported two-dimensional heterojunctions exhibiting interfacial pyroelectricity is still limited, and the responsivity and detectivity based on such heterojunctions tend to be low. In this study, a photodetector based on an Au/WSe2/Ta2NiS5/Au heterojunction was designed and fabricated. By harnessing the interfacial pyro-phototronic effect arising from the built-in electric fields at the Au/WSe2 Schottky junction and WSe2/Ta2NiS5 heterojunction, the photodetector exhibits a broadband response range of 405-1064 nm, with approximately 12 times enhancement in output current compared to solely relying on the photovoltaic effect. Under 660 nm light irradiation, the self-powered photodetector exhibits a responsivity of 121 mA/W, an external quantum efficiency of 22.64%, and a specific detectivity of 2 × 1012 Jones. Notably, its pyroelectric coefficient exceeds 8 × 103 μC·m-2·K-1. These findings pave the way for effectively detecting weak light and temperature variation while presenting a new strategy for developing high-performance photodetectors utilizing the interfacial pyro-phototronic effect.
Collapse
Affiliation(s)
- Danzhi Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Shiyu Ling
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Pengfei Hou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
2
|
Goel V, Kumar Y, Rawat G, Kumar H. Self-powered photodetectors: a device engineering perspective. NANOSCALE 2024. [PMID: 38669162 DOI: 10.1039/d4nr00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nanoscale self-powered photodetectors that can work without any external source of energy are required for future applications. There is potential demand for these devices in areas like wireless surveillance, weather forecasting, remote monitoring, and places where the availability of power is scarce. This study provides an overview of state of the art research trends and improvements in self-powered photodetectors. A device engineering perspective for improvement in the figures of merit has been presented along with a description of additional effects like pyro-phototronic, piezo-phototronic, and surface plasmonics.
Collapse
Affiliation(s)
- Varun Goel
- Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
| | - Yogesh Kumar
- Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
| | - Gopal Rawat
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India.
| | - Hemant Kumar
- Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
| |
Collapse
|
3
|
Guo L, Song Y, Wang B, Cong R, Zhao L, Zhang S, Li L, Wu W, Wang S, San X, Pan C, Yang Z. Surface Passivation to Enhance the Interfacial Pyro-Phototronic Effect for Self-Powered Photodetection Based on Perovskite Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16482-16493. [PMID: 38506366 DOI: 10.1021/acsami.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The interfacial pyro-phototronic effect (IPPE) presents a novel approach for improving the performance of self-powered photodetectors (PDs) based on metal halide perovskites (MHPs). The interfacial contact conditions within the Schottky junctions are crucial in facilitating the IPPE phenomenon. However, the fabrication of an ideal Schottky junction utilizing MHPs is a challenging endeavor. In this study, we present a surface passivation method aimed at enhancing the performance of self-powered photodetectors based on inverted planar perovskite structures in micro- and nanoscale metal-halide perovskite SCs. Our findings demonstrate that the incorporation of a lead halide salt with a benzene ring moiety for surface passivation leads to a substantial improvement in photoresponses by means of the IPPE. Conversely, the inclusion of an alkane chain in the salt impedes the IPPE. The underlying mechanism can be elucidated through an examination of the band structure, particularly the work function (WF) modulated by surface passivation. Consequently, this alteration affects the band bending and the built-in field (VBi) at the interface. This strategy presents a feasible and effective method for producing interfacial pyroelectricity in MHPs, thus facilitating its potential application in practical contexts such as energy conversion and infrared sensors.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Yi Song
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Baorong Wang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Suheng Zhang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Leipeng Li
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China
| | - Wenqiang Wu
- Institute of Atomic Manufacturing, Beihang University, Beijing 100191, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Xingyuan San
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Caofeng Pan
- Institute of Atomic Manufacturing, Beihang University, Beijing 100191, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
4
|
Han G, Li XF, Berbille A, Zhang Y, Luo X, Liu L, Li L, Wang ZL, Zhu L. Enhanced Piezoelectricity of MAPbI 3 by the Introduction of MXene and Its Utilization in Boosting High-Performance Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313288. [PMID: 38537247 DOI: 10.1002/adma.202313288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Recently, perovskite photodetectors (PDs) are risen to prominence due to substantial research interest. Beyond merely tweaking the composition of materials, a cutting-edge advancement lies in leveraging the innate piezoelectric polarization properties of perovskites themselves. Here, the investigation shows utilizing Ti3C2Tx, a typical MXene, as an intermediate layer for significantly boosting the piezoelectric property of MAPbI3 thin films. This improvement is primarily attributed to the enhanced polarization of the methylammonium (MA+) groups within MAPbI3, induced by the OH groups present in Ti3C2Tx. A flexible PD based on the MAPbI3/MXene heterostructure is then fabricated. The new device is sensitive to a wide range of wavelengths, displays greatly enhanced performance owing to the piezo-phototronic coupling. Moreover, the device is endowed with a greatly reduced response time, down to millisecond level, through the pyro-phototronic effect. The characterization shows applying a -1.2% compressive strain on the PD leads to a remarkable 102% increase in the common photocurrent, and a 76% increase in the pyro-phototronic current. The present work reveals how the emerging piezo-phototronic and pyro-phototronic effects can be employed to design high-performance flexible perovskite PDs.
Collapse
Affiliation(s)
- Gaosi Han
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Fen Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueming Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiongxin Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lindong Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Longyi Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Kumar M, Kim D, Seo H. Flexo-Pyrophotronic Effect Modulated Giant Near Infrared Photoresponse from VO 2 -Based Heterojunction for Optical Communication. SMALL METHODS 2024; 8:e2300425. [PMID: 37423964 DOI: 10.1002/smtd.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The flexoelectric phenomenon, which occurs when materials undergo mechanical deformation and cause strain gradients and a related spontaneous electric polarization field, can result in wide variety of energy- and cost-saving mechano-opto-electronics, such as night vision, communication, and security. However, accurate sensing of weak intensities under self-powered conditions with stable photocurrent and rapid temporal response remains essential despite the challenges related to having suitable band alignment and high junction quality. Taking use of the flexoelectric phenomena, it is shown that a centrosymmetric VO2 -based heterojunction exhibits a self-powered (i.e., 0 V), infrared (λ = 940 nm) photoresponse. Specifically, the device shows giant current modulation (103 %), good responsivity of >2.4 mA W-1 , reasonable specific detectivity of ≈1010 Jones, and a fast response speed of 0.5 ms, even at the nanoscale modulation. Through manipulation of the applied inhomogeneous force, the sensitivity of the infrared response is enhanced (> 640%). Ultrafast night optical communication like Morse code distress (SOS) signal sensing and high-performing obstacle sensors with potential impact alarms are created as proof-of-concept applications. These findings validate the potential of emerging mechanoelectrical coupling for a wide variety of novel applications, including mechanoptical switches, photovoltaics, sensors, and autonomous vehicles, which require tunable optoelectronic performance.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Dukhwan Kim
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyungtak Seo
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
6
|
Lin X, Wan L, Chen Z, Ren J, Lin S, Yuan D, Sun W, Peng B. Dual-coupling effect enables a high-performance self-powered UV photodetector. OPTICS EXPRESS 2024; 32:4627-4638. [PMID: 38297659 DOI: 10.1364/oe.514277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Self-powered ultraviolet photodetectors generally operate by utilizing the built-in electric field within heterojunctions or Schottky junctions. However, the effectiveness of self-powered detection is severely limited by the weak built-in electric field. Hence, advances in modulating the built-in electric field within heterojunctions are crucial for performance breakthroughs. Here, we suggest a method to enhance the built-in electric field by taking advantage of the dual-coupling effect between heterojunction and the self-polarization field of ferroelectrics. Under zero bias, the fabricated AgNWs/TiO2/PZT/GaN device achieves a responsivity of 184.31 mA/W and a specific detectivity of 1.7 × 1013 Jones, with an on/off ratio of 8.2 × 106 and rise/decay times reaching 0.16 ms/0.98 ms, respectively. The outstanding properties are primarily attributed to the substantial self-polarization of PZT induced by the p-GaN and the subsequent enhancement of the built-in electric field of the TiO2/PZT heterojunction. Under UV illumination, the dual coupling of the enhanced heterojunction and the self-polarizing field synergistically boost the photo-generated carrier separation and transport, leading to breakthroughs in ferroelectric-based self-powered photodetectors.
Collapse
|
7
|
Qiu D, Hou P. Ferroelectricity-Driven Self-Powered Weak Temperature and Broadband Light Detection in MoS 2/CuInP 2S 6/WSe 2 van der Waals Heterojunction Nanoarchitectonics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59671-59680. [PMID: 38102080 DOI: 10.1021/acsami.3c12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Two-dimensional ferroelectric materials enrich the modulation degrees of freedom in self-powered van der Waals temperature/light detectors by incorporating pyroelectric and bulk photovoltaic effects. However, in addition to the low polarization, the practical applications of these materials are limited due to the significant challenge posed by their ultrathin nature, which affects their polarization stability. In this report, we introduce a design for a dual heterostructure-stabilized van der Waals heterojunction that addresses this challenge by improving the performance and extending the operational lifetime of self-powered van der Waals temperature/light detectors. The design is demonstrated using the MoS2/CuInP2S6 (CIPS)/WSe2 van der Waals heterojunction, which exhibits sensitivity to small temperature changes induced by weak light across the ultraviolet to mid-infrared spectrum. It can generate a noticeable pyroelectric current without the need for an external voltage, and its pyroelectric coefficient exceeds 130 and 978 μC/m2 K for 45 and 70 nm CIPS, respectively. The heterojunction offers high detection accuracy, with a temperature variation sensitivity as small as 0.1 K and an optical power intensity detection range from low to 1 μW/cm2. Additionally, the heterojunction exhibits exceptional detectivity (D*) for different light wavelengths. Remarkably, the self-powered detection performance remains stable for months without obvious degradation in the natural environment. These results offer a promising solution for high-performance, self-sustaining temperature/light detection applications and pave the way for the development of future ferroelectricity-driven photodetection technologies.
Collapse
Affiliation(s)
- Dan Qiu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Pengfei Hou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
8
|
Guo L, Qi Y, Wu Z, Yang X, Yan G, Cong R, Zhao L, Zhang W, Wang S, Pan C, Yang Z. A Self-Powered UV Photodetector With Ultrahigh Responsivity Based on 2D Perovskite Ferroelectric Films With Mixed Spacer Cations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301705. [PMID: 37683840 DOI: 10.1002/adma.202301705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Self-powered photodetectors (PDs) have the advantages of no external power requirement, wireless operation, and long life. Spontaneous ferroelectric polarizations can significantly increase built-in electric field intensity, showing great potential in self-powered photodetection. Moreover, ferroelectrics possess pyroelectric and piezoelectric properties, beneficial for enhancing self-powered PDs. 2D metal halide perovskites (MHPs), which have ferroelectric properties, are suitable for fabricating high-performance self-powered PDs. However, the research on 2D metal halide perovskites ferroelectrics focuses on growing bulk crystals. Herein, 2D ferroelectric perovskite films with mixed spacer cations for self-powered PDs are demonstrated by mixing Ruddlesden-Popper (RP)-type and Dion-Jacobson (DJ)-type perovskite. The (BDA0.7 (BA2 )0.3 )(EA)2 Pb3 Br10 film possesses, overall, the best film qualities with the best crystalline quality, lowest trap density, good phase purity, and obvious ferroelectricity. Based on the ferro-pyro-phototronic effect, the PD at 360 nm exhibits excellent photoelectric properties, with an ultrahigh peak responsivity greater than 93 A W-1 and a detectivity of 2.5 × 1015 Jones, together with excellent reproducibility and stability. The maximum responsivities can be modulated by piezo-phototronic effect with an effective enhancement ratio of 480%. This work will open up a new route of designing MHP ferroelectric films for high-performance PDs and offers the opportunity to utilize it for various optoelectronics applications.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yaqian Qi
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Zihao Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Xiaoran Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Guoying Yan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Wei Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| |
Collapse
|
9
|
Li S, Jang JH, Chung W, Seung H, Park SI, Ma H, Pyo WJ, Choi C, Chung DS, Kim DH, Choi MK, Yang J. Ultrathin Self-Powered Heavy-Metal-Free Cu-In-Se Quantum Dot Photodetectors for Wearable Health Monitoring. ACS NANO 2023; 17:20013-20023. [PMID: 37787474 DOI: 10.1021/acsnano.3c05178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mechanically deformable photodetectors (PDs) are key device components for wearable health monitoring systems based on photoplethysmography (PPG). Achieving high detectivity, fast response time, and an ultrathin form factor in the PD is highly needed for next-generation wearable PPG systems. Self-powered operation without a bulky power-supply unit is also beneficial for point-of-care application. Here, we propose ultrathin self-powered PDs using heavy-metal-free Cu-In-Se quantum dots (QDs), which enable high-performance wearable PPG systems. Although the light-absorbing QD layer is extremely thin (∼40 nm), the developed PD exhibits excellent performance (specific detectivity: 2.10 × 1012 Jones, linear dynamic range: 102 dB, and spectral range: 250-1050 nm at zero bias), which is comparable to that of conventional rigid QD-PDs employing thick Pb-chalcogenide QD layers. This is attributed to material and device strategies─materials that include Cu-In-Se QDs, a MoS2-nanosheet-blended poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer, a ZnO nanoparticle electron transport layer, Ag and ITO electrodes, and an ultrathin form factor (∼120 nm except the electrodes) that enable excellent mechanical deformability. These allow the successful application of QD-PDs to a wearable system for real-time PPG monitoring, expanding their potential in the field of mobile bioelectronics.
Collapse
Affiliation(s)
- Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wookjin Chung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyojin Seung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Ik Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Won Jun Pyo
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
10
|
Yu P, Wang W, Zheng T, Wan X, Jiang Y. Pyro-Phototronic Effect-Enhanced Photocurrent of a Self-Powered Photodetector Based on ZnO Nanofiber Arrays/BaTiO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46031-46040. [PMID: 37733942 DOI: 10.1021/acsami.3c08880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Self-powered photodetectors (PD) based on ferroelectric materials have gained huge attention because of the spontaneous polarization and unique photovoltaic effect. However, the low photocurrent values and switch ratio of the ferroelectric materials limit their further practical applications in a wide temperature range. In this study, the self-powered ZnO nanofiber array/BaTiO3 (ZnO-NFA/BTO) PD was fabricated by high-ordered ZnO-NFA via electrospinning method deposited on a 300 nm BTO film synthesized using sol-gel method. The electrospinning can prepare ZnO-NFAs with a controllable diameter (100 nm) and orientation and is directly deposited on the quartz at a large scale, which simplifies the fabrication process. This device possesses a greater on/off ratio of 2357 at zero bias than that of BTO PD (3.33) and the ZnO-NFA PD (125) at 0.2 V. The highest responsivity and specific detectivity are 1.41 mA W-1 and 1.48 × 109 Jones at 368 nm under 0 V bias, respectively, which is enhanced about three magnitudes than the pristine BTO PD (1.21 μA W-1 and 1.02 × 109 Jones). The photocurrent of the ZnO-NFA/BTO PD strongly depends on the temperature. After the cooling system and prepolarization processing are both introduced, the largest light current (475 nA) and photovoltaic plateaus (585 nA) are enhanced by about 4417 and 4278% under 368 nm at a power intensity of 4.46 mW cm-2 at 0 °C, respectively. The enhancement of photocurrent is associated with a ferro-pyro-phototronic effect, evidenced by enhanced ferroelectric polarization. The ZnO-NFA/BTO PD can detect weak signals at low power intensity with a wide temperature range of 0-100 °C under 0 V bias. The self-powered ZnO-NFA/BTO PD provides a new and promising way to fabricate high-performance and low-cost photodetectors from inorganic perovskite materials.
Collapse
Affiliation(s)
- Pingping Yu
- Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Weiwei Wang
- Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Tianxu Zheng
- Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Xi Wan
- Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Jiang
- Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Dan S, Chakraborty R, Pal AJ. Pyro-Phototronic Effect in All-Inorganic Two-Dimensional Ruddlesden-Popper Ferroelectric Perovskite Thin-films and Photodetection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45083-45094. [PMID: 37698844 DOI: 10.1021/acsami.3c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Ferroelectric perovskites, where ferroelectricity is embedded in the structure, are being considered for different device applications. In this study, we introduce Cs2PbI2Cl2, an all-inorganic 2D Ruddlesden-Popper (RP) halide perovskite, as a ferroelectric material suitable for pyro-phototronic applications. Thin-films of the all-inorganic perovskite are successfully cast, and they demonstrate ferroelectric properties. Unlike hybrid materials, the ferroelectricity in Cs2PbI2Cl2 does not rely on the organic moiety possessing an electric dipole moment. Instead, the 2D-layer-forming octahedra are twisted and tilted due to a distortion in the bond lengths, leading to the emergence of spontaneous electric polarization. Based on the properties, we fabricate p-i-n heterojunctions by integrating the perovskite with carrier-transport layers. To determine the band-energies of the materials, scanning tunneling spectroscopy and Kelvin probe force microscopy are employed. The band-edges evidence a type-II band-alignment at both interfaces, enabling the material to exhibit both photovoltaic and pyroelectric behaviors when subjected to pulsed illumination. The devices based on the all-inorganic RP perovskite developed in this study exhibit pyro-phototronic effects and serve as self-powered photodetectors without any need for an external bias.
Collapse
Affiliation(s)
- Soirik Dan
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Raja Chakraborty
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
12
|
Kumar M, Lim S, Kim J, Seo H. Picoampere Dark Current and Electro-Opto-Coupled Sub-to-Super-linear Response from Mott-Transition Enabled Infrared Photodetector for Near-Sensor Vision Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210907. [PMID: 36740630 DOI: 10.1002/adma.202210907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Light-intensity selective superlinear photodetectors with ultralow dark current can provide an essential breakthrough for the development of high-performing near-sensor vision processing. However, the development of near-sensor vision processing is not only conceptually important for device operation (given that sensors naturally exhibit linear/sublinear responses), but also essential to get rid of the massive amount of data generated during object sensing and classification with noisy inputs. Therefore, achieving the giant superlinear photoresponse while maintaining the picoampere leakage current, irrespective of the measurement bias, is one of the most challenging tasks. Here, Mott material (vanadium dioxide) and silicon-based integrated infrared photodetectors are developed that show giant superlinear photoresponse (exponent >18) and ultralow dark current of 4.46 pA. Specifically, the device demonstrates an electro-opto-coupled insulator-to-metal transition, which leads to outstanding photocurrent on/off ratio (>106 ), a high responsivity (>1 mA W-1 ), and excellent detectivity (>1012 Jones), while maintaining response speed (τr = 6 µs and τf = 10 µs). Further, intensity-selective near-sensor processing is demonstrated and night vision pattern reorganization even with noisy inputs is exhibited. This research will pave the way for the creation of high-performance photodetectors with potential uses, such as in night vision, pattern recognition, and neuromorphic processing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seokwon Lim
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Jisu Kim
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyungtak Seo
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
13
|
Li F, Peng W, Wang Y, Xue M, He Y. Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1336. [PMID: 37110922 PMCID: PMC10146235 DOI: 10.3390/nano13081336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Pyroelectricity was discovered long ago and utilized to convert thermal energy that is tiny and usually wasted in daily life into useful electrical energy. The combination of pyroelectricity and optoelectronic yields a novel research field named as Pyro-Phototronic, where light-induced temperature variation of the pyroelectric material produces pyroelectric polarization charges at the interfaces of semiconductor optoelectronic devices, capable of modulating the device performances. In recent years, the pyro-phototronic effect has been vastly adopted and presents huge potential applications in functional optoelectronic devices. Here, we first introduce the basic concept and working mechanism of the pyro-phototronic effect and next summarize the recent progress of the pyro-phototronic effect in advanced photodetectors and light energy harvesting based on diverse materials with different dimensions. The coupling between the pyro-phototronic effect and the piezo-phototronic effect has also been reviewed. This review provides a comprehensive and conceptual summary of the pyro-phototronic effect and perspectives for pyro-phototronic-effect-based potential applications.
Collapse
Affiliation(s)
- Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Mingyan Xue
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
14
|
Kumar M, Seo H. Adaptive Memory and In Materia Reinforcement Learning Enabled by Flexoelectric-like Response from Ultrathin HfO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54876-54884. [PMID: 36450008 DOI: 10.1021/acsami.2c19148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reinforcement learning (RL) is a mathematical framework of neural learning by trial and error that revolutionized the field of artificial intelligence. However, until now, RL has been implemented in algorithms with the compatibly of traditional complementary metal-oxide-semiconductor-based von Neumann digital platforms, which thus limits performance in terms of latency, fault tolerance, and robustness. Here, we demonstrate that nanocolumnar (∼12 nm) HfO2 structures can be used as building blocks to conduct the RL within the material by combining its stress-adjustable charge transport and memory functions. Specifically, HfO2 nanostructures grown by the sputtering method exhibit self-assembled vertical nanocolumnar structures that generate voltage depending on the impact of stress under self-biased conditions. The observed results are attributed to the flexoelectric-like response of HfO2. Further, multilevel current (>10-3 A) modulation with touch and controlled suspension (∼10-12 A) with a short electric pulse (100 ms) were demonstrated, yielding a proof-of-concept memory with an on/off ratio greater than 109. Utilizing multipattern dynamic memory and tactile sensing, RL was implemented to successfully solve a maze game using an array of 6 × 4. This work could pave the way to do RL within materials for a variety of applications such as memory storage, neuromorphic sensors, smart robots, and human-machine interaction systems.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Energy Systems Research, Ajou University, Suwon16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon16499, Republic of Korea
| | - Hyungtak Seo
- Department of Energy Systems Research, Ajou University, Suwon16499, Republic of Korea
- Department of Materials Science and Engineering, Ajou University, Suwon16499, Republic of Korea
| |
Collapse
|
15
|
Guo L, Liu X, Cong R, Gao L, Zhang K, Zhao L, Wang X, Wang RN, Pan C, Yang Z. Patterned 2D Ferroelectric Perovskite Single-Crystal Arrays for Self-Powered UV Photodetector Boosted by Combining Ferro-Pyro-Phototronic and Piezo-Phototronic Effects. NANO LETTERS 2022; 22:8241-8249. [PMID: 36215318 DOI: 10.1021/acs.nanolett.2c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal halide perovskite ferroelectrics possess various physical characteristics such as piezoelectric and pyroelectric effects, which could broaden the application of perovskite ferroelectrics and enhance the optoelectronic performance. Therefore, it is promising to combine multiple effects to optimize the performance of the self-powered PDs. Herein, patterned 2D ferroelectric perovskite (PMA)2PbCl4 microbelt arrays were demonstrated through a PDMS template-assisted antisolvent crystallization method. The perovskite arrays based flexible photodetectors exhibited fine self-powered photodetection performance under 320 nm illumination and much enhanced reproducibility compared with the randomly distributed single-crystal microbelts-based PDs. Furthermore, by introducing the piezo-phototronic effect, the performance of the flexible PD was greatly enhanced. Under an external tensile strain of 0.71%, the responsivity was enhanced by 185% from 84 to 155.5 mA/W. Our findings offer the advancement of comprehensively utilizing various physical characteristics of the ferroelectrics for novel ferroelectric optoelectronics.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Xiu Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Ridong Cong
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Linjie Gao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Kai Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Xinzhan Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Rui-Ning Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, PR China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| |
Collapse
|
16
|
Zhang Y, Wang YC, Wang L, Zhu L, Wang ZL. Highly Sensitive Photoelectric Detection and Imaging Enhanced by the Pyro-Phototronic Effect Based on a Photoinduced Dynamic Schottky Effect in 4H-SiC. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204363. [PMID: 35817411 DOI: 10.1002/adma.202204363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Silicon carbide (SiC), one of the third-generation semiconductor materials with excellent electrical and optoelectronic properties, is ideal for high light-sensing performance. Here, a self-powered SiC ultraviolet (UV) photodetector (PD) is constructed with wider applicability and higher commercialization potential. The great performance of the PD is realized by a remarkable photoinduced dynamic Schottky effect derived from the symbiotic modulation of Schottky and Ohmic contact. Using the pyro-phototronic effect that exists in the N-doped 4H-SiC single crystal PDs, a fast pyroelectric response time of 0.27 s is achieved, which is almost ten times shorter than that obtained from the steady-state signal under UV illumination. The maximal transient photoresponsivity reaches 9.12 nA mW-1 , which is ≈20% higher than the conventional photoelectric signal. Moreover, different regions of the 4H-SiC centimeter-scale chip output distinct signals under UV illumination, demonstrating efficient optical imaging and information transmission capabilities of this device. This work not only reveals the fundamental optoelectronic physics lying in this vital third-generation semiconductor, but also sheds light on its potential photosensing applications for large-scale commercialization.
Collapse
Affiliation(s)
- Yueming Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Yi-Chi Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Longfei Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
17
|
Dou Y, Liang Y, Li H, Xue Y, Ye H, Han Y. Integration of H 2V 3O 8 nanowires and a GaN thin film for self-powered UV photodetectors. Chem Commun (Camb) 2022; 58:8548-8551. [PMID: 35815615 DOI: 10.1039/d2cc02773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2V3O8/GaN n-n heterojunction ultraviolet photodetectors are fabricated via a facile dip-coating method. The Schottky junction between the GaN and H2V3O8 builds a built-in electric field to achieve the self-powered phenomenon. The photodetector presents a high photocurrent (0.23 μA) and a fast response speed (less than 0.3 s) at 0 V bias and under 365 nm light illumination (24.50 mW cm-2). Furthermore, the photocurrent increases steadily as the light intensity increases from 0.53 to 24.50 mW cm-2. The H2V3O8/GaN heterojunction holds great potential to realize high-performance hybrid PDs.
Collapse
Affiliation(s)
- Yi Dou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yujun Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Haoran Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yali Xue
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hanlin Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yongsheng Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|