1
|
Yuan D, Jiang Y, Wang F, Ma D, Chu K. Efficient urea electrosynthesis from CO 2 and nitrate on amorphous TiS 2. J Colloid Interface Sci 2025; 679:60-66. [PMID: 39442206 DOI: 10.1016/j.jcis.2024.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Electrosynthesis of urea via co-electrolysis of CO2 and NO3- (EUCN) offers a promising avenue for simultaneously addressing environmental concerns and producing valuable urea. In this study, we report that amorphous TiS2 (a-TiS2) with rich S-vacancies (Sv) serves as an effective and robust EUCN catalyst. In a flow electrolyzer, a-TiS2 achieves the maximum urea-Faradaic efficiency of 34.5 % and urea yield rate of 30.6mmol h-1 gcat-1 at -0.7 V. RHE, significantly outperforming crystalline TiS2 and most reported EUCN catalysts. A combination of extensive atomic characterizations, theoretical computations and in situ spectroscopic measurements reveals the synergistic catalysis of Ti site and Ti-Sv site to promote *NH2/*CO formation and their CN coupling, whilst suppressing the competing hydrogen evolution and NO3--to-NH3 reactions, thus enabling a highly selective EUCN for urea synthesis.
Collapse
Affiliation(s)
- Di Yuan
- School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yafu Jiang
- School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fuzhou Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dongwei Ma
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Garg AK, Kumar V, Rohit, Saini D, Sonkar SK. H 2O 2 Mediated Photoreduction of Nitrates to Ammonia by Iron Filings under Ambient Conditions. J Phys Chem Lett 2025; 16:876-881. [PMID: 39824614 DOI: 10.1021/acs.jpclett.4c03039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Herein, a simple ambient conditioned sunlight promoted photochemical reduction reaction is demonstrated for the of nitrate (NO3-) conversion to ammonia (NH3) with the maximum conversion yield of ∼16 mM using iron filings (f-Fe) in the presence of H2O2. Based on a radical scavenging study of reactive species and the characterization of catalyst f-Fe before and after the reaction, a plausible mechanism has been proposed for the ambient conditioned synthesis of NH3. The results associated with the NH3 synthesis have been verified using the 15N isotopic labeled nitrate (15NO3-), which supports the simpler viability of the reported procedure.
Collapse
Affiliation(s)
- Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Vishrant Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Rohit
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
3
|
Sun Y, Huang B, Dai Y, Wei W. Improving Nitric Oxide Reduction Reaction Activity of TMN 4-C Model Catalysts by Axial Atom Coordination. J Phys Chem Lett 2025; 16:9-16. [PMID: 39689696 DOI: 10.1021/acs.jpclett.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In comparison with the conventional four-nitrogen coordinated transition metal (TMN4), we clarify that the electrochemical nitric oxide reduction reaction (NORR) activity can be significantly improved by axially coordinating nonmetal atoms (O, F, Cl) over the metal sites. In light of an electron-withdrawing effect, the axial fifth ligand disrupts the electron distribution symmetry and regulates the local electronic structure of the metal active center. It subsequently moderates the TM-NO interaction and thus enhances the activity. In particular, MnN4O-C, FeN4O-C, CoN4O-C, and CoN4F-C are identified as promising NORR catalysts with ultralow limiting potential (UL) of -0.07, -0.07, -0.07, and -0.05 V, respectively. In addition, the axial atom can also passivate the competing hydrogen evolution reaction (HER), increasing the selectivity toward NH3 formation. It therefore can be concluded that the present work affirms a novel strategy for the rational design of advanced electrocatalysts, highlighting the significance of optimal metal-ligand match and the coordination microenvironment tuning of the active centers.
Collapse
Affiliation(s)
- Yalei Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Luo W, Liu J, Hu Y, Yan Q. Single and dual-atom catalysts towards electrosynthesis of ammonia and urea: a review. NANOSCALE 2024; 16:20463-20483. [PMID: 39435616 DOI: 10.1039/d4nr02387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ammonia and urea represent two important chemicals that have contributed to the rapid development of humanity. However, their industrial production requires harsh conditions, consuming excessive energy and resulting in significant greenhouse gas emission. Therefore, there is growing interest in the electrocatalytic synthesis of ammonia and urea as it can be carried out under ambient conditions. Recently, atomic catalysts (ACs) have gained increased attention for their superior catalytic properties, being able to outperform their micro and nano counterparts. This review examines the advantages and disadvantages of ACs and summarises the advancement of ACs in the electrocatalytic synthesis of ammonia and urea. The focus is on two types of AC - single-atom catalysts (SACs) and diatom catalysts (DACs). SACs offer various advantages, including the 100% atom utilization that allows for low material mass loading, suppression of competitive reactions such as hydrogen evolution reaction (HER), and alternative reaction pathways allowing for efficient synthesis of ammonia and urea. DACs inherit these advantages, possessing further benefits of synergistic effects between the two catalytic centers at close proximity, particularly matching the NN bond for N2 reduction and boosting C-N coupling for urea synthesis. DACs also possess the ability to break the linear scaling relation of adsorption energy of reactants and intermediates, allowing for tuning of intermediate adsorption energies. Finally, possible future research directions using ACs are proposed.
Collapse
Affiliation(s)
- Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yue Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
5
|
Xiang J, Qiang C, Shang S, Guo Y, Chu K. Relay Catalysis of Isolated Rhodium-Alloyed Copper Boosts Urea Electrosynthesis from Nitrate and CO 2. ACS NANO 2024; 18:29856-29863. [PMID: 39412110 DOI: 10.1021/acsnano.4c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Urea electrosynthesis from the coelectrolysis of NO3- and CO2 (UENC) presents a fascinating approach for simultaneously migrating NO3- pollutants and producing valuable urea. In this study, isolated Rh-alloyed copper (Rh1Cu) is explored as a highly active and selective catalyst toward the UENC. Combined in situ spectroscopic analysis and theoretical calculations reveal the relay catalysis of the Rh1 site and Cu site to promote the UENC energetics, in which the Rh1 site activates NO3- to form *NH2 while the Cu site activates CO2 to form *CO. The formed *CO is then migrated from the Cu substrate to the nearby Rh1 site, which promotes the C-N coupling of *NH2 and *CO toward the urea formation. Prominently, Rh1Cu achieves an exceptional UENC performance in the flow cell, exhibiting the highest urea-Faradaic efficiency of 67.10% and urea yield rate of 50.36 mmol h-1 g-1 at -0.6 V versus RHE.
Collapse
Affiliation(s)
- Jiaqi Xiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chaofan Qiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shiyao Shang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
6
|
Zhang M, Liu Y, Duan Y, Liu X, Wang YQ. Ce-doped copper oxide and copper vanadate Cu 3VO 4 hybrid for boosting nitrate electroreduction to ammonia. J Colloid Interface Sci 2024; 671:258-269. [PMID: 38810340 DOI: 10.1016/j.jcis.2024.05.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The electrocatalytic nitrate reduction to ammonia reaction (ENO3RR) holds great potential as a cost-effective method for synthesizing ammonia. This work designed a cerium (Ce) doped Cu2+1O/Cu3VO4 catalyst. The coupling of vanadium-based oxides with Cu2+1O effectively adjusts the catalyst's electronic structure, addressing the inherent issues of limited activity and low conductivity in typical copper-based oxides; moreover, Ce doping generates oxygen vacancies (Ov), providing more active sites and thereby enhancing the ENO3RR performance. The catalyst exhibits superior NH3Faradaic efficiency (93.7 %) with a NH3 yield of 18.905 mg h-1 cm-2at -0.5 V vs. RHE under alkaline conditions. This study provides guidance for the design of highly efficient catalysts for ENO3RR.
Collapse
Affiliation(s)
- Meng Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010021, PR China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010021, PR China
| | - Yun Duan
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010021, PR China
| | - Xu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010021, PR China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010021, PR China.
| |
Collapse
|
7
|
Pan D, Austeria P M, Lee S, Bae HS, He F, Gu GH, Choi W. Integrated electrocatalytic synthesis of ammonium nitrate from dilute NO gas on metal organic frameworks-modified gas diffusion electrodes. Nat Commun 2024; 15:7243. [PMID: 39174506 PMCID: PMC11341735 DOI: 10.1038/s41467-024-51256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
The electrocatalytic conversion of NO offers a promising technology for not only removing the air pollutant but also synthesizing valuable chemicals. We design an integrated-electrocatalysis cell featuring metal organic framework (MOF)-modified gas diffusion electrodes for simultaneous capture of NO and generation of NH4NO3 under low-concentration NO flow conditions. Using 2% NO gas, the modified cathode exhibits a higher NH4+ yield and Faradaic efficiency than an unmodified cathode. Notably, the modified cathode shows a twofold increase in NH4+ production with 20 ppm NO gas supply. Theoretical calculations predict favorable transfer of adsorbed NO from the adsorption layer to the catalyst layer, which is experimentally confirmed by enhanced NO mass transfer from gas to electrolyte across the modified electrode. The adsorption layer-modified anode also exhibits a higher NO3- yield for NO electro-oxidation compared to the unmodified electrode under low NO concentration flow. Among various integrated-cell configurations, a single-chamber setup produces a higher NH4NO3 yield than a double-chamber setup. Furthermore, a higher NO utilization efficiency is obtained with a single-gasline operation mode, where the NO-containing gas flows sequentially from the cathode to the anode.
Collapse
Affiliation(s)
- Donglai Pan
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Muthu Austeria P
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Shinbi Lee
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Ho-Sub Bae
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Fei He
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Geun Ho Gu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Wonyong Choi
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea.
| |
Collapse
|
8
|
Wu D, Chen K, Lv P, Ma Z, Chu K, Ma D. Direct Eight-Electron N 2O Electroreduction to NH 3 Enabled by an Fe Double-Atom Catalyst. NANO LETTERS 2024; 24:8502-8509. [PMID: 38949570 DOI: 10.1021/acs.nanolett.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h-1 cm-2 at -0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.
Collapse
Affiliation(s)
- Donghai Wu
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ziyu Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dongwei Ma
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Yu J, Zheng Z, Wang A, Humayun M, Attia YA. MoO 3 with the Synergistic Effect of Sulfur Doping and Oxygen Vacancies: The Influence of S Doping on the Structure, Morphology, and Optoelectronic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1189. [PMID: 39057866 PMCID: PMC11280073 DOI: 10.3390/nano14141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Molybdenum trioxide (MoO3) is an attractive semiconductor. Thus, bandgap engineering toward photoelectronic applications is appealing yet not well studied. Here, we report the incorporation of sulfur atoms into MoO3, using sulfur powder as a source of sulfur, via a self-developed hydrothermal synthesis approach. The formation of Mo-S bonds in the MoO3 material with the synergistic effect of sulfur doping and oxygen vacancies (designated as S-MoO3-x) is confirmed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The bandgap is tuned from 2.68 eV to 2.57 eV upon sulfur doping, as confirmed by UV-VIS DRS spectra. Some MoS2 phase is identified with sulfur doping by referring to the photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS), allowing significantly improved charge carrier separation and electron transfer efficiency. Therefore, the as-prepared S-MoO3-x delivers a sensitive photocurrent response and splendid cycling stability. This study on the synergistic effect of sulfur doping and oxygen vacancies provides key insights into the impact of doping strategies on MoO3 performance, paving new pathways for its optimization and development in relevant fields.
Collapse
Affiliation(s)
- Jian Yu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; (J.Y.); (Z.Z.)
| | - Zhaokang Zheng
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; (J.Y.); (Z.Z.)
| | - Aiwu Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; (J.Y.); (Z.Z.)
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Yasser A. Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt;
| |
Collapse
|
10
|
Chen K, Ma D, Zhang Y, Wang F, Yang X, Wang X, Zhang H, Liu X, Bao R, Chu K. Urea Electrosynthesis from Nitrate and CO 2 on Diatomic Alloys. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402160. [PMID: 38876146 DOI: 10.1002/adma.202402160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Urea electrosynthesis from co-electrolysis of NO3 - and CO2 (UENC) offers a promising technology for achieving sustainable and efficient urea production. Herein, a diatomic alloy catalyst (CuPd1Rh1-DAA), with mutually isolated Pd and Rh atoms alloyed on Cu substrate, is theoretically designed and experimentally confirmed to be a highly active and selective UENC catalyst. Combining theoretical computations and operando spectroscopic characterizations reveals the synergistic effect of Pd1-Cu and Rh1-Cu active sites to promote the UENC via a tandem catalysis mechanism, where Pd1-Cu site triggers the early C-N coupling and promotes *CO2NO2-to-*CO2NH steps, while Rh1-Cu site facilitates the subsequent protonation step of *CO2NH2 to *COOHNH2 toward the urea formation. Impressively, CuPd1Rh1-DAA assembled in a flow cell presents the highest urea Faradaic efficiency of 72.1% and urea yield rate of 53.2 mmol h-1 gcat -1 at -0.5 V versus RHE, representing nearly the highest performance among all reported UENC catalysts.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Danyang Ma
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ying Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Fuzhou Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Rui Bao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
11
|
Wang F, Shang S, Sun Z, Yang X, Chu K. P-Block Antimony-Copper Single-Atom Alloys for Selective Nitrite Electroreduction to Ammonia. ACS NANO 2024; 18:13141-13149. [PMID: 38718265 DOI: 10.1021/acsnano.4c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electrocatalytic reduction of NO2- to NH3 (NO2RR) offers an effective method for alleviating NO2- pollution and generating valuable NH3. Herein, a p-block single-atom alloy, namely, isolated Sb alloyed in a Cu substrate (Sb1Cu), is explored as a durable and high-current-density NO2RR catalyst. As revealed by the theoretical calculations and operando spectroscopic measurements, we demonstrate that Sb1 incorporation can not only hamper the competing hydrogen evolution reaction but also optimize the d-band center of Sb1Cu and intermediate adsorption energies to boost the protonation energetics of NO2--to-NH3 conversion. Consequently, Sb1Cu integrated in a flow cell achieves an outstanding NH3 yield rate of 2529.4 μmol h-1 cm-2 and FENH3 of 95.9% at a high current density of 424.2 mA cm-2, as well as a high durability for 100 h of electrolysis.
Collapse
Affiliation(s)
- Fuzhou Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shiyao Shang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zeyi Sun
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
12
|
Xue Q, Qi X, Li K, Zeng Y, Xu F, Zhang K, Qi X, Li L, Cabot A. Axial heteroatom (P, S and Cl)-decorated Fe single-atom catalyst for the oxygen reduction reaction: a DFT study. RSC Adv 2024; 14:16379-16388. [PMID: 38774610 PMCID: PMC11106811 DOI: 10.1039/d4ra01754d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
An FeN4 single-atom catalyst (SAC) embedded in a graphene matrix is considered an oxygen reduction reaction (ORR) catalyst for its good activity and durability, and decoration on the Fe active site can further modulate the performance of the FeN4 SAC. In this work, the axial heteroatom (L = P, S and Cl)-decorated FeN4 SAC (FeN4L) and pure FeN4 were comparatively studied using density functional theory (DFT) calculations. It was found that the rate-determining step (RDS) in the ORR on pure FeN4 is the reduction of OH to H2O in the last step with an overpotential of 0.58 V. However, the RDS of the ORR for the axial heteroatom-decorated FeN4L is the reduction of O2 to OOH in the first step. The axial P and S heteroatom-decorated FeN4P and FeN4S exhibit lower activity than pure FeN4 since the overpotentials of the ORR on FeN4P and FeN4S are 1.02 V and 1.09 V, respectively. Meanwhile, FeN4Cl exhibits the best activity towards the ORR since it possesses the lowest overpotential (0.51 V). The main reason is that the axial heteroatom decoration alleviates the adsorption of all the species in the whole ORR, thus modulating the free energy in every elementary reaction step. A volcano relationship between the d band center and the ORR activity can be determined among the axial heteroatom-decorated FeN4L SACs. The d band center of the Fe atom in various FeN4L SACs follows the order of FeN4 > FeN4Cl > FeN4S > FeN4P, whereas the overpotential of the ORR on various catalysts follows the order of FeN4Cl > FeN4 > FeN4S ≈ FeN4P. ΔG(*OH) is a simple descriptor for the prediction of the ORR activity of various axial heteroatom-decorated FeN4L, although the RDS in the ORR is either the first step or the last step. This paper provides a guide to the design and selection of the ORR over SACs with different axial heteroatom decorations, contributing to the rational design of more powerful ORR electrocatalysts and achieving advances in electrochemical conversion and storage devices.
Collapse
Affiliation(s)
- Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
- Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona 08930 Spain
| | - Xuede Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
- Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona 08930 Spain
| | - Kun Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
| | - Yi Zeng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
| | - Feng Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
| | - Kai Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 China
- Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona 08930 Spain
| | - Li Li
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona 08930 Spain
- ICREA Pg. Lluis Companys 23 08010 Barcelona Catalonia Spain
| |
Collapse
|
13
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
14
|
Wang D, Lu XF, Luan D, Lou XWD. Selective Electrocatalytic Conversion of Nitric Oxide to High Value-Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312645. [PMID: 38271637 DOI: 10.1002/adma.202312645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Indexed: 01/27/2024]
Abstract
The artificial disturbance in the nitrogen cycle has necessitated an urgent need for nitric oxide (NO) removal. Electrochemical technologies for NO conversion have gained increasing attention in recent years. This comprehensive review presents the recent advancements in selective electrocatalytic conversion of NO to high value-added chemicals, with specific emphasis on catalyst design, electrolyte composition, mass diffusion, and adsorption energies of key intermediate species. Furthermore, the review explores the synergistic electrochemical co-electrolysis of NO with specific carbon source molecules, enabling the synthesis of a range of valuable chemicals with C─N bonds. It also provides in-depth insights into the intricate reaction pathways and underlying mechanisms, offering valuable perspectives on the challenges and prospects of selective NO electrolysis. By advancing comprehension and fostering awareness of nitrogen cycle balance, this review contributes to the development of efficient and sustainable electrocatalytic systems for the selective synthesis of valuable chemicals from NO.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
15
|
Li H, Wu D, Wu J, Lv W, Duan Z, Ma D. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study. NANOSCALE 2024; 16:7058-7067. [PMID: 38445992 DOI: 10.1039/d4nr00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.
Collapse
Affiliation(s)
- Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
16
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
17
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
18
|
Chen K, Xiang J, Guo Y, Liu X, Li X, Chu K. Pd 1Cu Single-Atom Alloys for High-Current-Density and Durable NO-to-NH 3 Electroreduction. NANO LETTERS 2024; 24:541-548. [PMID: 38185876 DOI: 10.1021/acs.nanolett.3c02259] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 μmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaqi Xiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
19
|
Xiang J, Zhao H, Chen K, Li X, Li X, Chu K. Atomically dispersed Pd on defective BN nanosheets for nitrite electroreduction to ammonia. J Colloid Interface Sci 2024; 653:390-395. [PMID: 37722167 DOI: 10.1016/j.jcis.2023.09.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Electrocatalytic NO2- reduction to NH3 (NO2RR) offers a prospective strategy to concurrently achieve polluted NO2- removal and effective NH3 electrosynthesis. In this work, we report atomically dispersed Pd on defective BN nanosheets (Pd1/BN) as an efficient catalyst for the NO2RR, achieving the highest NH3-Faradaic efficiency of 91.7% with an NH3 yield rate of 347.1 μmol h-1 cm-2 at -0.6 V vs. RHE, superior to those of most previously reported electrocatalysts. Theoretical computations reveal the isolated Pd sites as catalytic centers to selectively adsorb NO2- and accelerate NO2--to-NH3 hydrogenation process with a minimized reaction barrier, eventually contributing to the considerably enhanced NO2RR selectivity and activity of Pd1/BN.
Collapse
Affiliation(s)
- Jiaqi Xiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongyan Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xingang Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
20
|
Wan Y, Du W, Chen K, Zhang N, Chu K. Electrocatalytic nitrite-to-ammonia reduction on isolated Cu sites. J Colloid Interface Sci 2023; 652:2180-2185. [PMID: 37709610 DOI: 10.1016/j.jcis.2023.09.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
We report that isolated Cu atoms anchored on MnO2 nanowires (Cu1/MnO2) can be an effective catalyst towards the electrocatalytic NO2--to-NH3 reduction (NO2RR). A combination of experiments and theoretical calculations reveals that isolated Cu sites can effectively activate NO2-, lower the energy barrier of *NO→*NOH rate-determining step and suppress the competitive hydrogen evolution, thus facilitating both activity and selectivity towards the NO2RR. As a result, Cu1/MnO2 shows the maximum NH3-Faradaic efficiency of 93.3% with a corresponding NH3 yield rate of 439.8 μmol h-1 cm-2 at -0.7 V vs. RHE, together with an excellent electrocatalytic durability.
Collapse
Affiliation(s)
- Yuying Wan
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wenyu Du
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
21
|
Zhang G, Zhang N, Chen K, Zhao X, Chu K. Atomically Mo-Doped SnO 2-x for efficient nitrate electroreduction to ammonia. J Colloid Interface Sci 2023; 649:724-730. [PMID: 37385037 DOI: 10.1016/j.jcis.2023.06.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Electrochemical NO3--to-NH3 reduction (NO3RR) emerges as an appealing strategy to alleviate contaminated NO3- and generate valuable NH3 simultaneously. However, substantial research efforts are still needed to advance the development of efficient NO3RR catalysts. Herein, atomically Mo-doped SnO2-x with enriched O-vacancies (Mo-SnO2-x) is reported as a high-efficiency NO3RR catalyst, delivering the highest NH3-Faradaic efficiency of 95.5% with a corresponding NH3 yield rate of 5.3 mg h-1 cm-2 at -0.7 V (RHE). Experimental and theoretical investigations reveal that d-p coupled Mo-Sn pairs constructed on Mo-SnO2-x can synergistically enhance the electron transfer efficiency, activate the NO3- and reduce the protonation barrier of rate-determining step (*NO→*NOH), thereby drastically boosting the NO3RR kinetics and energetics.
Collapse
Affiliation(s)
- Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaolin Zhao
- National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, Beijing, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
22
|
Zhang Y, Wan Y, Liu X, Chen K, Chu K. Nb-doped NiO nanoflowers for nitrite electroreduction to ammonia. iScience 2023; 26:107944. [PMID: 37810221 PMCID: PMC10558769 DOI: 10.1016/j.isci.2023.107944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Electrocatalytic reduction of nitrite to ammonia (NO2RR) is considered as an appealing route to simultaneously achieve sustainable ammonia production and abate hazardous nitrite pollution. Herein, atomically Nb-doped NiO nanoflowers are designed as a high-performance NO2RR catalyst, which exhibits the highest NH3-Faradaic efficiency of 92.4% with an NH3 yield rate of 200.5 μmol h-1 cm-2 at -0.6 V RHE. Theoretical calculations unravel that Nb dopants can act as Lewis acid sites to render effective NO2- activation, decreased protonation energy barriers, and restricted hydrogen evolution, ultimately leading to a high NO2RR selectivity and activity.
Collapse
Affiliation(s)
- Ying Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuying Wan
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoxu Liu
- College of Science, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
23
|
Hossain MI, Hasnat MA. Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment. Heliyon 2023; 9:e19299. [PMID: 37662791 PMCID: PMC10474438 DOI: 10.1016/j.heliyon.2023.e19299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Organophosphorus Pesticides (OPPs) are among the extensively used pesticides throughout the world to boost agricultural production. However, persistent residues of these toxic pesticides in various vegetables, fruits, and drinking water poses detrimental health effects. Consequently, the rapid monitoring of these harmful chemicals through simple and cost-effective methods has become crucial. In such an instance, electrochemical methods offer simple, rapid, sensitive, reproducible, and affordable detection pathways. To overcome the limitations associated with electrochemical enzymatic sensors, non-enzymatic sensors have emerged as promising and simpler alternatives. The non-enzymatic sensors have demonstrated superior activity, reaching detection limit up to femto (10-15) molar concentration in recent years, leveraging higher selectivity obtained through the molecularly imprinted polymers, synergistic effects between carbonaceous nanomaterials and metals, metal oxide alloys, and other alternative approaches. Herein, this review paper provides an overview of the recent advancements in the development of non-enzymatic electrochemical sensors for the detection of commonly used OPPs, such as Chlorpyrifos (CHL), Diazinon (DZN), Malathion (MTN), Methyl parathion (MP) and Fenthion (FEN). The design method of the electrodes, electrode functioning mechanism, and their analytical performance metrics, such as limit of detection, sensitivity, selectivity, and linearity range, were reviewed and compared. Furthermore, the existing challenges within this rapidly growing field were discussed along with their potential solutions which will facilitate the fabrication of advanced and sustainable non-enzymatic sensors in the future.
Collapse
Affiliation(s)
- Mohammad Imran Hossain
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
24
|
Hermawan A, Alviani VN, Wibisono, Seh ZW. Fundamentals, rational catalyst design, and remaining challenges in electrochemical NO x reduction reaction. iScience 2023; 26:107410. [PMID: 37593457 PMCID: PMC10428125 DOI: 10.1016/j.isci.2023.107410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Nitrogen oxides (NOx) emissions carry pernicious consequences on air quality and human health, prompting an upsurge of interest in eliminating them from the atmosphere. The electrochemical NOx reduction reaction (NOxRR) is among the promising techniques for NOx removal and potential conversion into valuable chemical feedstock with high conversion efficiency while benefiting energy conservation. However, developing efficient and stable electrocatalysts for NOxRR remains an arduous challenge. This review provides a comprehensive survey of recent advancements in NOxRR, encompassing the underlying fundamentals of the reaction mechanism and rationale behind the design of electrocatalysts using computational modeling and experimental efforts. The potential utilization of NOxRR in a Zn-NOx battery is also explored as a proof of concept for concurrent NOx abatement, NH3 synthesis, and decarbonizing energy generation. Despite significant strides in this domain, several hurdles still need to be resolved in developing efficient and long-lasting electrocatalysts for NOx reduction. These possible means are necessary to augment the catalytic activity and electrocatalyst selectivity and surmount the challenges of catalyst deactivation and corrosion. Furthermore, sustained research and development of NOxRR could offer a promising solution to the urgent issue of NOx pollution, culminating in a cleaner and healthier environment.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| | - Wibisono
- Research Center for Radiation Detection and Nuclear Analysis Technology, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
25
|
Wu B, Huang L, Yan L, Gang H, Cao Y, Wei D, Wang H, Guo Z, Zhang W. Boron-Modulated Electronic-Configuration Tuning of Cobalt for Enhanced Nitric Oxide Fixation to Ammonia. NANO LETTERS 2023; 23:7120-7128. [PMID: 37490464 DOI: 10.1021/acs.nanolett.3c01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Electrocatalytic nitric oxide reduction (eNORR) to ammonia (NH3) provides an environmental route to alleviate NO pollution and yield great-value chemicals. The evolution of eNORR has been primarily hindered, however, by the poor reaction kinetics and low solubility of the NO in aqueous electrolytes. Herein, we have rationally designed a cobalt-based composite with a heterostructure as a highly efficient eNORR catalyst. In addition, by integrating boron to modulate the electronic structure, the catalyst CoB/Co@C delivered a significant NH3 yield of 315.4 μmol h-1 cm-2 for eNORR and an outstanding power density of 3.68 mW cm-2 in a Zn-NO battery. The excellent electrochemical performance of CoB/Co@C is attributed to the enrichment of NO by cobalt and boron dual-site adsorption and fast charge-transfer kinetics. It is demonstrated that the boron is pivotal in the enhancement of NO, the suppression of hydrogen evolution, and Co oxidation to boost eNORR performance.
Collapse
Affiliation(s)
- Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiyin Gang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
26
|
Zhang Y, Xiang J, Chen K, Guo Y, Ma D, Chu K. Palladium metallene for nitric oxide electroreduction to ammonia. Chem Commun (Camb) 2023. [PMID: 37378464 DOI: 10.1039/d3cc00131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We demonstrate Pd metallene as an efficient catalyst for electrocatalytic NO reduction to NH3 (NORR), showing the maximum NO-to-NH3 faradaic efficiency of 89.6% with a corresponding NH3 yield rate of 112.5 μmol h-1 cm-2 at -0.3 V in neutral media. Theoretical calculations unveil that NO can be effectively activated and hydrogenated on the hcp site of Pd through a mixed pathway with a low energy barrier.
Collapse
Affiliation(s)
- Ying Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Jiaqi Xiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
27
|
Zhang G, Wan Y, Zhao H, Guo Y, Chu K. A metal-free catalyst for electrocatalytic NO reduction to NH 3. Dalton Trans 2023; 52:6248-6253. [PMID: 37133365 DOI: 10.1039/d3dt00994g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal-free boron phosphide (BP) is explored for the first time as an effective catalyst for electrocatalytic NO reduction to NH3, showing a high NH3-faradaic efficiency of 83.3% with an NH3 yield rate of 96.6 μmol h-1 cm-2, surpassing most metal-based catalysts. Theoretical results reveal that the B and P atoms of BP can serve as dual-active centers to synergistically activate NO, promote the NORR hydrogenation process and inhibit the competing hydrogen evolution reaction.
Collapse
Affiliation(s)
- Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yuying Wan
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Hongyan Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|