1
|
Liou F, Tsai HZ, Goodwin ZAH, Aikawa AS, Ha E, Hu M, Yang Y, Watanabe K, Taniguchi T, Zettl A, Lischner J, Crommie MF. Imaging Field-Driven Melting of a Molecular Solid at the Atomic Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300542. [PMID: 37317869 DOI: 10.1002/adma.202300542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Solid-liquid phase transitions are basic physical processes, but atomically resolved microscopy has yet to capture their full dynamics. A new technique is developed for controlling the melting and freezing of self-assembled molecular structures on a graphene field-effect transistor (FET) that allows phase-transition behavior to be imaged using atomically resolved scanning tunneling microscopy. This is achieved by applying electric fields to 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane-decorated FETs to induce reversible transitions between molecular solid and liquid phases at the FET surface. Nonequilibrium melting dynamics are visualized by rapidly heating the graphene substrate with an electrical current and imaging the resulting evolution toward new 2D equilibrium states. An analytical model is developed that explains observed mixed-state phases based on spectroscopic measurement of solid and liquid molecular energy levels. The observed nonequilibrium melting dynamics are consistent with Monte Carlo simulations.
Collapse
Affiliation(s)
- Franklin Liou
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Hsin-Zon Tsai
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, Prince Consort Rd, London, SW7 2BB, UK
- National Graphene Institute, University of Manchester, Booth St. E. Manchester M13 9PL, Manchester, UK
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew S Aikawa
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ethan Ha
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Michael Hu
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yiming Yang
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Johannes Lischner
- Department of Materials, Imperial College London, Prince Consort Rd, London, SW7 2BB, UK
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Li SY, Yang XQ, Chen T, Wang D, Wang SF, Wan LJ. Tri-Stable Structural Switching in 2D Molecular Assembly at the Liquid/Solid Interface Triggered by External Electric Field. ACS NANO 2019; 13:6751-6759. [PMID: 31188581 DOI: 10.1021/acsnano.9b01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A tri-stable structural switching between different polymorphisms is presented in the 2D molecular assembly of a 5-(benzyloxy)isophthalic acid derivative (BIC-C12) at the liquid/solid interface. The assembled structure of BIC-C12 is sensitive to the applied voltage between the STM tip and the sample surface. A compact lamellar structure is exclusively observed at positive sample bias, while a porous honeycomb structure or a quadrangular structure is preferred at negative sample bias. Selective switching between the lamellar structure and the honeycomb structure or the quadrangular structure is realized by controlling the polarity and magnitude of the sample bias. The transition between the honeycomb structure and the quadrangular structure is, however, absent in the assembly. This tri-stable structural switching is closely related to the molecular concentration in the liquid phase. This result provides insights into the effect of external electric field on molecular assembly and benefits the design and construction of switchable molecular architectures on surfaces.
Collapse
Affiliation(s)
- Shu-Ying Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Xue-Qing Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
- Hubei University , Wuhan 400062 , People's Republic of China
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Sheng-Fu Wang
- Hubei University , Wuhan 400062 , People's Republic of China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
| |
Collapse
|
3
|
Ahsan A, Mousavi SF, Nijs T, Nowakowska S, Popova O, Wäckerlin A, Björk J, Gade LH, Jung TA. Phase Transitions in Confinements: Controlling Solid to Fluid Transitions of Xenon Atoms in an On-Surface Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803169. [PMID: 30556276 DOI: 10.1002/smll.201803169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/20/2018] [Indexed: 06/09/2023]
Abstract
This study reports on "phase" transitions of Xe condensates in on-surface confinements induced by temperature changes and local probe excitation. The pores of a metal-organic network occupied with 1 up to 9 Xe atoms are investigated in their propensity to undergo "condensed solid" to "confined fluid" transitions. Different transition temperatures are identified, which depend on the number of Xe atoms in the condensate and relate to the stability of the Xe clustering in the condensed "phase." This work reveals the feature-rich behavior of transitions of confined planar condensates, which provide a showcase toward future "phase-transition" storage media patterned by self-assembly. This work is also of fundamental interest as it paves the way to real space investigations of reversible solid to fluid transitions of magic cluster condensates in an array of extremely well-defined quantum confinements.
Collapse
Affiliation(s)
- Aisha Ahsan
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - S Fatemeh Mousavi
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Thomas Nijs
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Sylwia Nowakowska
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Olha Popova
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Aneliia Wäckerlin
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas A Jung
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| |
Collapse
|
4
|
Li W, Kong L, Feng B, Fu H, Li H, Zeng XC, Wu K, Chen L. Abnormal phase transition between two-dimensional high-density liquid crystal and low-density crystalline solid phases. Nat Commun 2018; 9:198. [PMID: 29335410 PMCID: PMC5768887 DOI: 10.1038/s41467-017-02634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/15/2017] [Indexed: 12/03/2022] Open
Abstract
Some two-dimensional liquid systems are theoretically predicted to have an anomalous phase transition due to unique intermolecular interactions, for example the first-order transition between two-dimensional high-density water and low-density amorphous ice. However, it has never been experimentally observed, to the best of our knowledge. Here we report an entropy-driven phase transition between a high-density liquid crystal and low-density crystalline solid, directly observed by scanning tunneling microscope in carbon monoxide adsorbed on Cu(111). Combined with first principle calculations, we find that repulsive dipole–dipole interactions between carbon monoxide molecules lead to unconventional thermodynamics. This finding of unconventional thermodynamics in two-dimensional carbon monoxide not only provides a platform to study the fundamental principles of anomalous phase transitions in two-dimensional liquids at the atomic scale, but may also help to design and develop more efficient copper-based catalysis. Intermolecular interactions have a crucial role in the adsorption of molecules on a surface, however their role in promoting phase transitions is less well known. Here, the authors report an abnormal phase transition between a high-density liquid crystal and low-density solid in the case of carbon monoxide on Cu(111), driven by intermolecular interactions and entropy.
Collapse
Affiliation(s)
- Wenbin Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longjuan Kong
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huixia Fu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiao Cheng Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE, 68503, USA
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of physics, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of physics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Matvija P, Rozbořil F, Sobotík P, Ošťádal I, Pieczyrak B, Jurczyszyn L, Kocán P. Electric-field-controlled phase transition in a 2D molecular layer. Sci Rep 2017; 7:7357. [PMID: 28779091 PMCID: PMC5544747 DOI: 10.1038/s41598-017-07277-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
Abstract
Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.
Collapse
Affiliation(s)
- Peter Matvija
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic.
| | - Filip Rozbořil
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| | - Pavel Sobotík
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| | - Ivan Ošťádal
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| | - Barbara Pieczyrak
- Instytut Fizyki Doswiadczalnej, Universytet Wroclawski, Wroclaw, 50-001, Poland
| | - Leszek Jurczyszyn
- Instytut Fizyki Doswiadczalnej, Universytet Wroclawski, Wroclaw, 50-001, Poland
| | - Pavel Kocán
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| |
Collapse
|
6
|
Müller K, Enache M, Stöhr M. Confinement properties of 2D porous molecular networks on metal surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:153003. [PMID: 26982214 DOI: 10.1088/0953-8984/28/15/153003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.
Collapse
Affiliation(s)
- Kathrin Müller
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands. Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | | | | |
Collapse
|