1
|
Zhu M, Zhou G, Dong R, Li P, Yang L. Ag supraparticles with 3D hot spots to actively capture molecules for sensitive detection by surface enhanced Raman spectroscopy. Analyst 2024; 149:1759-1765. [PMID: 38363169 DOI: 10.1039/d3an02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
To achieve highly sensitive detection using surface-enhanced Raman spectroscopy (SERS), it is imperative to fabricate a substrate with a high density of hot spots and facilitate the entry of target molecules into these hot spot regions. However, steric hindrance arising from the presence of surfactants and ligands on the SERS substrate may impede the access of target molecules to the hot spots. Here, we fabricate non-close-packed three-dimensional (3D) supraparticles with high-density hot spots to actively capture molecules. The formation of 3D supraparticles is attributed to the minimization of free energy during the gradual contraction of the droplet. The numerous capillaries present in non-close-packed supraparticles induce the movement of target molecules into the hot spot region through capillary force along with the solution. The results demonstrate that the SERS enhancement effect of 3D supraparticles is at least one order of magnitude higher than that of multi-layered nanoparticle structures formed under natural drying conditions. In addition, the SERS performance of 3D supraparticles is evaluated with diverse target molecules, including antimicrobial agents and drugs. Hence, this work provides a new idea for the preparation of non-close-packed substrates for SERS sensitive detection.
Collapse
Affiliation(s)
- Mingrui Zhu
- University of Science & Technology of China, Anhui, Hefei 230026, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Guoliang Zhou
- University of Science & Technology of China, Anhui, Hefei 230026, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Ronglu Dong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Pan Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Yetkin M, Wani YM, Kritika K, Howard MP, Kappl M, Butt HJ, Nikoubashman A. Structure Formation in Supraparticles Composed of Spherical and Elongated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1096-1108. [PMID: 38153401 DOI: 10.1021/acs.langmuir.3c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.
Collapse
Affiliation(s)
- Melis Yetkin
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Kritika Kritika
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael Kappl
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hans-Jürgen Butt
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
3
|
Erik Beck E, Weimer A, Feld A, Vonk V, Noei H, Lott D, Jeromin A, Kulkarni S, Giuntini D, Plunkett A, Domènech B, Schneider GA, Vossmeyer T, Weller H, Keller TF, Stierle A. Solvent controlled 2D structures of bottom-up fabricated nanoparticle superlattices. NANOSCALE 2023; 15:4506-4514. [PMID: 36753337 DOI: 10.1039/d2nr03043h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate that oleyl phosphate ligand-stabilized iron oxide nanocubes as building blocks can be assembled into 2D supercrystalline mono- and multilayers on flat YSZ substrates within a few minutes using a simple spin-coating process. As a bottom-up process, the growth takes place in a layer-by-layer mode and therefore by tuning the spin-coating parameters, the exact number of deposited monolayers can be controlled. Furthermore, ex situ scanning electron and atomic force microscopy as well as X-ray reflectivity measurements give evidence that the choice of solvent allows the control of the lattice type of the final supercrystalline monolayers. This observation can be assigned to the different Hansen solubilities of the solvents used for the nanoparticle dispersion because it determines the size and morphology of the ligand shell surrounding the nanoparticle core. Here, by using toluene and chloroform as solvents, it can be controlled whether the resulting monolayers are ordered in a square or hexagonal supercrystalline lattice.
Collapse
Affiliation(s)
- E Erik Beck
- Centre for X-ray and Nano Science, Deutsches Elektronen-Synchrotron (DESY), Germany.
| | - Agnes Weimer
- Institute of Physical Chemistry, Universität Hamburg, Germany
| | - Artur Feld
- Institute of Physical Chemistry, Universität Hamburg, Germany
| | - Vedran Vonk
- Centre for X-ray and Nano Science, Deutsches Elektronen-Synchrotron (DESY), Germany.
| | - Heshmat Noei
- Centre for X-ray and Nano Science, Deutsches Elektronen-Synchrotron (DESY), Germany.
| | | | - Arno Jeromin
- Centre for X-ray and Nano Science, Deutsches Elektronen-Synchrotron (DESY), Germany.
| | - Satishkumar Kulkarni
- Centre for X-ray and Nano Science, Deutsches Elektronen-Synchrotron (DESY), Germany.
| | - Diletta Giuntini
- Institute of Advanced Ceramics, Hamburg University of Technology, Germany
- Department of Mechanical Engineering, Eindhoven University of Technology, Netherlands
| | - Alexander Plunkett
- Institute of Advanced Ceramics, Hamburg University of Technology, Germany
| | - Berta Domènech
- Institute of Advanced Ceramics, Hamburg University of Technology, Germany
- ams-OSRAM International GmbH, ams OSRAM Group, Leibnizstr. 4, 93055 Regensburg, Germany
| | - Gerold A Schneider
- Institute of Advanced Ceramics, Hamburg University of Technology, Germany
| | | | - Horst Weller
- Institute of Physical Chemistry, Universität Hamburg, Germany
- Fraunhofer Center for Applied Nanotechnology, Grindelallee 117, 20146 Hamburg, Germany
| | - Thomas F Keller
- Centre for X-ray and Nano Science, Deutsches Elektronen-Synchrotron (DESY), Germany.
- Physics Department, Universität Hamburg, Germany
| | - Andreas Stierle
- Institute of Physical Chemistry, Universität Hamburg, Germany
- Physics Department, Universität Hamburg, Germany
| |
Collapse
|
4
|
Besenhard MO, Pal S, Gkogkos G, Gavriilidis A. Non-fouling flow reactors for nanomaterial synthesis. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review provides a holistic description of flow reactor fouling for wet-chemical nanomaterial syntheses. Fouling origins and consequences are discussed together with the variety of flow reactors for its prevention.
Collapse
Affiliation(s)
| | - Sayan Pal
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
5
|
Bender P, Wetterskog E, Salazar-Alvarez G, Bergström L, Hermann RP, Brückel T, Wiedenmann A, Disch S. Shape-induced superstructure formation in concentrated ferrofluids under applied magnetic fields. J Appl Crystallogr 2022; 55:1613-1621. [PMID: 36570658 PMCID: PMC9721326 DOI: 10.1107/s1600576722010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
The field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for ∼9 nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles. On the basis of the short interparticle distances found here, oriented attachment, i.e. a face-to-face arrangement of the nanocubes, is likely. The unusual field dependence of the interparticle correlations suggests a field-induced structural rearrangement.
Collapse
Affiliation(s)
- Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Germany
| | - Erik Wetterskog
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - German Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden,Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, 751 03 Uppsala, Sweden,Center for Neutron Scattering, Uppsala University, 751 20 Uppsala, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Raphael P. Hermann
- JCNS-2, PGI-4, Forschungszentrum Jülich, Germany,Materials Science and Technology Division, Oak Ridge National Laboratory, Tennessee, USA
| | | | | | - Sabrina Disch
- Department of Chemistry, Universität zu Köln, 50935 Köln, Germany,Correspondence e-mail:
| |
Collapse
|
6
|
Geng D, Yan N, Xie W, Lü Y, Wei B. Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206464. [PMID: 36271516 DOI: 10.1002/adma.202206464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn-rich globules during phase separation of immiscible Al-Cu-Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag-Cu-Ge and Ni-Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3 Sn) eutectics. The ultrasound-liquid interaction also induces surface waves during the containerless solidification of Ag-Cu and Ni-Sn eutectic alloys.
Collapse
Affiliation(s)
- Delu Geng
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Na Yan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenjun Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yongjun Lü
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bingbo Wei
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
7
|
Lv ZP, Kapuscinski M, Járvás G, Yu S, Bergström L. Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106768. [PMID: 35523733 DOI: 10.1002/smll.202106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Structural transformations and lattice expansion of oleate-capped iron oxide nanocube superlattices are studied by time-resolved small-angle X-ray scattering (SAXS) during solvent removal. The combination of conductor-like screening model for real solvents (COSMO-RS) theory with computational fluid dynamics (CFD) modeling provides information on the solvent composition and polarity during droplet evaporation. Evaporation-driven poor-solvent enrichment in the presence of free oleic acid results in the formation of superlattices with a tilted face-centered cubic (fcc) structure when the polarity reaches its maximum. The tilted fcc lattice expands subsequently during the removal of the poor solvent and eventually transforms to a regular simple cubic (sc) lattice during the final evaporation stage when only free oleic acid remains. Comparative studies show that both the increase in polarity as the poor solvent is enriched and the presence of a sufficient amount of added oleic acid is required to promote the formation of structurally diverse superlattices with large domain sizes.
Collapse
Affiliation(s)
- Zhong-Peng Lv
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Martin Kapuscinski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Materials Science and Engineering, Uppsala University, Uppsala, SE-75103, Sweden
| | - Gábor Járvás
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, HU-8200, Hungary
| | - Shun Yu
- Department of Materials and Surface Design, RISE Research Institute of Sweden, Lund, SE-22370, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
8
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
9
|
Jenewein C, Avaro J, Appel C, Liebi M, Cölfen H. Binäre 3D‐Mesokristalle aus anisotropen Nanopartikeln. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian Jenewein
- Fachbereich Chemie Physikalische Chemie Universität Konstanz Universitätsstraße 10 Konstanz Deutschland
| | - Jonathan Avaro
- Zentrum für Röntgenanalytik Empa – Eidgenössische Forschungsanstalt für Materialwissenschaft und Technologie Lerchenfeldstrasse 5 9014 St. Gallen Schweiz
| | | | - Marianne Liebi
- Zentrum für Röntgenanalytik Empa – Eidgenössische Forschungsanstalt für Materialwissenschaft und Technologie Lerchenfeldstrasse 5 9014 St. Gallen Schweiz
- Fachbereich Physik Chalmers Universität für Technologie 41296 Göteborg Schweden
| | - Helmut Cölfen
- Fachbereich Chemie Physikalische Chemie Universität Konstanz Universitätsstraße 10 Konstanz Deutschland
| |
Collapse
|
10
|
Jenewein C, Avaro J, Appel C, Liebi M, Cölfen H. 3D Binary Mesocrystals from Anisotropic Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202112461. [PMID: 34669241 PMCID: PMC9298807 DOI: 10.1002/anie.202112461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Indexed: 11/20/2022]
Abstract
Binary mesocrystals offer the combination of nanocrystal properties in an ordered superstructure. Here, we demonstrate the simultaneous self-assembly of platinum and iron oxide nanocubes into micrometer-sized 3D mesocrystals using the gas-phase diffusion technique. By the addition of minor amounts of a secondary particle type tailored to nearly identical size, shape and surface chemistry, we were able to promote a random incorporation of foreign particles into a self-assembling host lattice. The random distribution of the binary particle types on the surface and within its bulk has been visualized using advanced transmission and scanning electron microscopy techniques. The 20-40 μm sized binary mesocrystals have been further characterized through wide and small angle scattering techniques to reveal a long-range ordering on the atomic scale throughout the crystal while showing clear evidence that the material consists of individual building blocks. Through careful adjustments of the crystallization parameters, we could further obtain a reverse superstructure, where incorporated particles and host lattice switch roles.
Collapse
Affiliation(s)
- Christian Jenewein
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 10KonstanzGermany
| | - Jonathan Avaro
- Center for X-ray AnalyticsEmpa—Swiss Federal Laboratories for Materials Science and TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
| | | | - Marianne Liebi
- Center for X-ray AnalyticsEmpa—Swiss Federal Laboratories for Materials Science and TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
- Department of PhysicsChalmers University of Technology41296GothenburgSweden
| | - Helmut Cölfen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 10KonstanzGermany
| |
Collapse
|
11
|
Primc D, Indrizzi L, Tervoort E, Xie F, Niederberger M. Synthesis of Cu 3N and Cu 3N-Cu 2O multicomponent mesocrystals: non-classical crystallization and nanoscale Kirkendall effect. NANOSCALE 2021; 13:17521-17529. [PMID: 34652362 DOI: 10.1039/d1nr05767g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mesocrystals are superstructures of crystallographically aligned nanoparticles and are a rapidly emerging class of crystalline materials displaying sophisticated morphologies and properties, beyond those originating from size and shape of nanoparticles alone. This study reports the first synthesis of Cu3N mesocrystals employing structure-directing agents with a subtle tuning of the reaction parameters. Detailed structural characterizations carried out with a combination of transmission electron microscopy techniques (HRTEM, HAADF-STEM-EXDS) reveal that Cu3N mesocrystals form by non-classical crystallization, and variations in their sizes and morphologies are traced back to distinct attachment scenarios of corresponding mesocrystal subunits. In the presence of oleylamine, the mesocrystal subunits in the early reaction stages prealign in a crystallographic fashion and afterwards grow into the final mesocrystals, while in the presence of hexadecylamine the subunits come into contact through misaligned attachment, and subsequently, to some degree, realign in crystallographic register. Upon prolonged heating both types of mesocrystals undergo chemical conversion processes resulting in structural and morphological changes. A two-step mechanism of chemical conversion is proposed, involving Cu3N decomposition and anion exchange driven by the nanoscale Kirkendall effect, resulting first in multicomponent/heterostructured Cu3N-Cu2O mesocrystals, which subsequently convert into Cu2O nanocages. It is anticipated that combining nanostructured Cu3N and Cu2O in a mesocrystalline and hollow morphology will provide a platform to expand their application potential.
Collapse
Affiliation(s)
- Darinka Primc
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK
| | - Luca Indrizzi
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Elena Tervoort
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Tang Z, Lin S, Wang ZL. Quantifying Contact-Electrification Induced Charge Transfer on a Liquid Droplet after Contacting with a Liquid or Solid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102886. [PMID: 34476851 DOI: 10.1002/adma.202102886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Contact electrification (CE) is a common physical phenomenon, and its mechanisms for solid-solid and liquid-solid cases have been widely discussed. However, the studies about liquid-liquid CE are hindered by the lack of proper techniques. Here, a contactless method is proposed for quantifying the charges on a liquid droplet based on the combination of electric field and acoustic field. The liquid droplet is suspended in an acoustic field, and an electric field force is created on the droplet to balance the acoustic trap force. The amount of charges on the droplet is thus calculated based on the equilibrium of forces. Further, the liquid-solid and liquid-liquid CE are both studied by using the method, and the latter is focused. The behavior of negatively precharged liquid droplet in the liquid-liquid CE is found to be different from that of the positively precharged one. The results show that the silicone oil droplet prefers to receive negative charges from a negatively charged aqueous droplet rather than positive charges from a positively charged aqueous droplet, which provides a strong evidence about the dominant role played by electron transfer in the liquid-liquid CE.
Collapse
Affiliation(s)
- Zhen Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
13
|
Jenewein C, Cölfen H. Mesocrystals from Platinum Nanocubes. NANOMATERIALS 2021; 11:nano11082122. [PMID: 34443951 PMCID: PMC8398057 DOI: 10.3390/nano11082122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Platinum nanoparticles are widely known for their numerous electrochemical and catalytic applications. Enhanced or novel properties that may arise when ordering such particles in a highly defined manner, however, are still subject to ongoing research, as superstructure formation on the mesoscale is still a major challenge to be overcome. In this work, we therefore established a reproducible method to fabricate micrometer-sized superstructures from platinum nanocubes. Through small-angle X-ray scattering and electron diffraction methods we demonstrate that the obtained superstructures have a high degree of ordering up to the atomic scale and, therefore, fulfill all criteria of a mesocrystal. By changing the solvent and stabilizer in which the platinum nanocubes were dispersed, we were able to control the resulting crystal habit of the mesocrystals. Aside from mesocrystal fabrication, this method can be further utilized to purify nanoparticle dispersions by recrystallization with respect to narrowing down the particle size distribution and removing contaminations.
Collapse
|
14
|
Carnis J, Kirner F, Lapkin D, Sturm S, Kim YY, Baburin IA, Khubbutdinov R, Ignatenko A, Iashina E, Mistonov A, Steegemans T, Wieck T, Gemming T, Lubk A, Lazarev S, Sprung M, Vartanyants IA, Sturm EV. Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. NANOSCALE 2021; 13:10425-10435. [PMID: 34028473 DOI: 10.1039/d1nr01806j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, "multidomain" structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.
Collapse
Affiliation(s)
- Jerome Carnis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Felizitas Kirner
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Sebastian Sturm
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Alexandr Ignatenko
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ekaterina Iashina
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | - Alexander Mistonov
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | | | - Thomas Wieck
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Axel Lubk
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050 Tomsk, Russia
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Elena V Sturm
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
15
|
Kapuscinski M, Munier P, Segad M, Bergström L. Two-Stage Assembly of Mesocrystal Fibers with Tunable Diameters in Weak Magnetic Fields. NANO LETTERS 2020; 20:7359-7366. [PMID: 32924498 PMCID: PMC7587140 DOI: 10.1021/acs.nanolett.0c02770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlling the morphology and crystallographic coherence of assemblies of magnetic nanoparticles is a promising route to functional materials. Time-resolved small-angle X-ray scattering (SAXS) was combined with microscopy and scaling analysis to probe and analyze evaporation-induced assembly in levitating drops and thin films of superparamagnetic iron oxide nanocubes in weak magnetic fields. We show that assembly of micrometer-sized mesocrystals with a cubic shape preceded the formation of fibers with a high degree of crystallographic coherence and tunable diameters. The second-stage assembly of aligned cuboidal mesocrystals into fibers was driven by the magnetic field, but the first-stage assembly of the oleate-capped nanocubes was unaffected by weak magnetic fields. The transition from 3D growth of the primary mesocrystals to the second stage 1D assembly of the elongated fibers was related to the size and field dependence of isotropic van der Waals and directional dipolar interactions between the interacting mesocrystals.
Collapse
Affiliation(s)
- Martin Kapuscinski
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Pierre Munier
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Mo Segad
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Josten E, Angst M, Glavic A, Zakalek P, Rücker U, Seeck OH, Kovács A, Wetterskog E, Kentzinger E, Dunin-Borkowski RE, Bergström L, Brückel T. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals. NANOSCALE HORIZONS 2020; 5:1065-1072. [PMID: 32542274 DOI: 10.1039/d0nh00117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of nanoparticles into highly ordered crystals is largely influenced by variations in the size and shape of the constituent particles, with crystallization generally not observed if their polydispersity is too large. Here, we report on size selectivity in the self-assembly of rounded cubic maghemite nanoparticles into three-dimensional mesocrystals. Different X-ray scattering techniques are used to study and compare a nanoparticle dispersion that is used later for self-assembly, an ensemble of mesocrystals grown on a substrate, as well as an individual mesocrystal. The individual μm-sized mesocrystal is isolated using a focused-ion-beam-based technique and investigated by the diffraction of a micro-focused X-ray beam. Structural analysis reveals that individual mesocrystals have a drastically smaller size dispersity of nanoparticles than that in the initial dispersion, implying very strong size selectivity during self-assembly. The small size dispersity of the nanoparticles within individual mesocrystals is accompanied by a very narrow lattice parameter distribution. In contrast, the lattice parameter distribution within all mesocrystals of an ensemble is about four times wider than that of individual mesocrystals, indicating significant size fractionalization between mesocrystals during self-assembly. The small size dispersity within each mesocrystal has important implications for their physical properties.
Collapse
Affiliation(s)
- Elisabeth Josten
- Jülich Centre for Neutron Science (JCNS) and Peter Grünberg Institute (PGI), JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kapuscinski M, Agthe M, Lv ZP, Liu Y, Segad M, Bergström L. Temporal Evolution of Superlattice Contraction and Defect-Induced Strain Anisotropy in Mesocrystals during Nanocube Self-Assembly. ACS NANO 2020; 14:5337-5347. [PMID: 32338498 PMCID: PMC7343289 DOI: 10.1021/acsnano.9b07820] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding and controlling defect formation during the assembly of nanoparticles is crucial for fabrication of self-assembled nanostructured materials with predictable properties. Here, time-resolved small-angle X-ray scattering was used to probe the temporal evolution of strain and lattice contraction during evaporation-induced self-assembly of oleate-capped iron oxide nanocubes in a levitating drop. We show that the evolution of the strain and structure of the growing mesocrystals is related to the formation of defects as the solvent evaporated and the assembly process progressed. Superlattice contraction during the mesocrystal growth stage is responsible for the rapidly increasing isotropic strain and the introduction of point defects. The crystal strain, quantified by the Williamson-Hall analysis, became more anisotropic due to the formation of stress-relieving dislocations as the mesocrystal growth was approaching completion. Understanding the formation of the transformation of defects in mesocrystals and superlattices could assist in the development of optimized assembly processes of nanoparticles with multifunctional properties.
Collapse
Affiliation(s)
- Martin Kapuscinski
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Michael Agthe
- Center for Free-Electron Laser Science, University of Hamburg, 22607 Hamburg, Germany
| | - Zhong-Peng Lv
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Yingxin Liu
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Mo Segad
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Sønderby P, Söderberg C, Frankær CG, Peters G, Bukrinski JT, Labrador A, Plivelic TS, Harris P. Concentrated protein solutions investigated using acoustic levitation and small-angle X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:396-404. [PMID: 32153278 DOI: 10.1107/s1600577519016977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
An acoustically levitated droplet has been used to collect synchrotron SAXS data on human serum albumin protein solutions up to a protein concentration of 400 mg ml-1. A careful selection of experiments allows for fast data collection of a large amount of data, spanning a protein concentration/solvent concentration space with limited sample consumption (down to 3 µL per experiment) and few measurements. The data analysis shows data of high quality that are reproducible and comparable with data from standard flow-through capillary-based experiments. Furthermore, using this methodology, it is possible to achieve concentrations that would not be accessible by conventional cells. The protein concentration and ionic strength parameter space diagram may be covered easily and the amount of protein sample is significantly reduced (by a factor of 100 in this work). Used in routine measurements, the benefits in terms of protein cost and time spent are very significant.
Collapse
Affiliation(s)
- Pernille Sønderby
- Department of Chemistry, Technical University of Denmark, Kemitorvet B207, DK-2800 Kgs Lyngby, Denmark
| | | | - Christian G Frankær
- Deparment of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Günther Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet B207, DK-2800 Kgs Lyngby, Denmark
| | | | - Ana Labrador
- MAX IV Laboratory, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Tomás S Plivelic
- MAX IV Laboratory, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet B207, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
19
|
Wang X, Wu L, Wang G, Chen G. Dynamic Crystallization and Phase Transition in Evaporating Colloidal Droplets. NANO LETTERS 2019; 19:8225-8233. [PMID: 31644299 DOI: 10.1021/acs.nanolett.9b03633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Evaporating colloidal droplets are an omnipresent phenomenon in nature and engage in many scientific and commercial technologies. Despite their apparent importance, many of the fundamental aspects remain unknown, particularly the relationships between evaporation kinetics, volume fraction, crystallization, and phase transition. Here, we follow the structural evolution and drying dynamics across the liquid-to-solid transition of evaporating colloidal droplets containing polystyrene nanospheres with both spatial and temporal resolutions through the in situ small-angle X-ray scattering and ex situ electron microscopy techniques. We find the unconventional evaporation-driven heterogeneous crystallization and the sequential stacking of face-centered cubic (fcc), random hexagonal close-packed (rhcp), and random close-packed (rcp) superlattice structures. The crystallization and phase transition processes are further elucidated and coordinated with the real-time volume fraction variation, which constitutes a rich and dynamic picture of the self-assembly process. Starting with the Onsager principle, we provide quantitative analysis to the evaporation kinetics, including concentration gradient, gelation, and cavitation. Our findings impart a new mechanism of dynamic nucleation and crystallization and reveal the intimate link between structural heterogeneity and evaporation kinetics.
Collapse
Affiliation(s)
- Xiao Wang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Longlong Wu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Geng Wang
- Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204 , China
| | - Gang Chen
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204 , China
| |
Collapse
|
20
|
Lv ZP, Kapuscinski M, Bergström L. Tunable assembly of truncated nanocubes by evaporation-driven poor-solvent enrichment. Nat Commun 2019; 10:4228. [PMID: 31530817 PMCID: PMC6748999 DOI: 10.1038/s41467-019-12237-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/26/2019] [Indexed: 12/04/2022] Open
Abstract
Self-assembly of nanocrystals is extensively used to generate superlattices with long-range translational order and atomic crystallographic orientation, i.e. mesocrystals, with emergent mesoscale properties, but the predictability and tunability of the assembly methods are poorly understood. Here, we report how mesocrystals produced by poor-solvent enrichment can be tuned by solvent composition, initial nanocrystal concentration, poor-solvent enrichment rate, and excess surfactant. The crystallographic coherence and mesoscopic order within the mesocrystal were characterized using techniques in real and reciprocal spaces, and superlattice growth was followed in real time by small-angle X-ray scattering. We show that formation of highly ordered superlattices is dominated by the evaporation-driven increase of the solvent polarity and particle concentration, and facilitated by excess surfactant. Poor-solvent enrichment is a versatile nanoparticle assembly method that offers a promising production route with high predictability to modulate and maximize the size and morphology of nanocrystal metamaterials. Versatile methods that can predictably assemble nanocrystals into large, well-ordered superlattices are rare. Here, the authors develop such a method–evaporation-driven poor-solvent enrichment–and rigorously determine the effect of various experimental parameters on the size, morphology, and mesoscopic order of the superlattices, giving the approach high predictive power.
Collapse
Affiliation(s)
- Zhong-Peng Lv
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Martin Kapuscinski
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
21
|
Wang J, Mbah CF, Przybilla T, Englisch S, Spiecker E, Engel M, Vogel N. Free Energy Landscape of Colloidal Clusters in Spherical Confinement. ACS NANO 2019; 13:9005-9015. [PMID: 31274291 DOI: 10.1021/acsnano.9b03039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The structure of finite self-assembling systems depends sensitively on the number of constituent building blocks. Recently, it was demonstrated that hard sphere-like colloidal particles show a magic number effect when confined in emulsion droplets. Geometric construction rules permit a few dozen magic numbers that correspond to a discrete series of completely filled concentric icosahedral shells. Here, we investigate the free energy landscape of these colloidal clusters as a function of the number of their constituent building blocks for system sizes up to several thousand particles. We find that minima in the free energy landscape, arising from the presence of filled, concentric shells, are significantly broadened, compared to their atomic analogues. Colloidal clusters in spherical confinement can flexibly accommodate excess particles by ordering icosahedrally in the cluster center while changing the structure near the cluster surface. In between these magic number regions, the building blocks cannot arrange into filled shells. Instead, we observe that defects accumulate in a single wedge and therefore only affect a few tetrahedral grains of the cluster. We predict the existence of this wedge by simulation and confirm its presence in experiment using electron tomography. The introduction of the wedge minimizes the free energy penalty by confining defects to small regions within the cluster. In addition, the remaining ordered tetrahedral grains can relax internal strain by breaking icosahedral symmetry. Our findings demonstrate how multiple defect mechanisms collude to form the complex free energy landscape of colloidal clusters.
Collapse
|
22
|
Doblas D, Kister T, Cano-Bonilla M, González-García L, Kraus T. Colloidal Solubility and Agglomeration of Apolar Nanoparticles in Different Solvents. NANO LETTERS 2019; 19:5246-5252. [PMID: 31251877 DOI: 10.1021/acs.nanolett.9b01688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We studied the concentration-dependent agglomeration of apolar nanoparticles in different solvents. Octanethiol-stabilized gold nanoparticles (AuNPs) in evaporating liquid droplets were observed in situ using small-angle X-ray scattering. Concurrent analysis of liquid volume and particle agglomeration provided time-dependent absolute concentrations of free and agglomerated particles. All dispersions underwent an initial stage where the particle concentration increased but no agglomerates formed. Subsequently, agglomeration started at concentrations that varied by several orders of magnitude for different solvents. While agglomerates grew, the concentration of the dispersed particles remained at a constant "colloidal solubility" in most solvents. We consistently found that the colloidal stability of AuNPs decreased as cyclohexane > heptane > nonane > decane > toluene and suggest that details of the molecular interactions between solvent and ligand shell set this order.
Collapse
Affiliation(s)
- David Doblas
- INM - Leibniz-Institute for New Materials , Campus D2 2, 66123 Saarbrücken , Germany
| | - Thomas Kister
- INM - Leibniz-Institute for New Materials , Campus D2 2, 66123 Saarbrücken , Germany
| | - Marina Cano-Bonilla
- INM - Leibniz-Institute for New Materials , Campus D2 2, 66123 Saarbrücken , Germany
| | - Lola González-García
- INM - Leibniz-Institute for New Materials , Campus D2 2, 66123 Saarbrücken , Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials , Campus D2 2, 66123 Saarbrücken , Germany
- Colloid and Interface Chemistry , Saarland University , 66123 Saarbrücken , Germany
| |
Collapse
|
23
|
Jehannin M, Rao A, Cölfen H. New Horizons of Nonclassical Crystallization. J Am Chem Soc 2019; 141:10120-10136. [DOI: 10.1021/jacs.9b01883] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marie Jehannin
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Ashit Rao
- Faculty of Science and Technology, Physics of Complex Fluids, University of Twente, 7500 AE Enschede, The Netherlands
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
24
|
Shi Q, Di W, Dong D, Yap LW, Li L, Zang D, Cheng W. A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly. ACS NANO 2019; 13:5243-5250. [PMID: 30969755 DOI: 10.1021/acsnano.8b09628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Droplets suspended by acoustic levitation provide genuine substrate-free environments for understanding unconventional fluid dynamics, evaporation kinetics, and chemical reactions by circumventing solid surface and boundary effects. Using a fully levitated air-water interface by acoustic levitation in conjunction with drying-mediated nanoparticle self-assembly, here, we demonstrate a general approach to fabricating free-standing nanoassemblies, which can totally avoid solid surface effects during the entire process. This strategy has no limitation for the sizes or shapes of constituent metallic nanoparticle building blocks and can also be applied to fabricate free-standing bilayered and trilayered nanoassemblies or even three-dimensional hollow nanoassemblies. We believe that our strategy may be further extended to quantum dots, magnetic particles, colloids, etc. Hence, it may lead to a myriad of homogeneous or heterogeneous free-standing nanoassemblies with programmable functionalities.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| | - Wenli Di
- Functional Soft Matter & Materials Group, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an , Shanxi 710129 , People's Republic of China
| | - Dashen Dong
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| | - Lim Wei Yap
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| | - Lin Li
- Functional Soft Matter & Materials Group, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an , Shanxi 710129 , People's Republic of China
| | - Duyang Zang
- Functional Soft Matter & Materials Group, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an , Shanxi 710129 , People's Republic of China
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering , Monash University , Clayton 3800 , Victoria , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton 3168 , Victoria , Australia
| |
Collapse
|
25
|
Choi TM, Lee GH, Kim YS, Park JG, Hwang H, Kim SH. Photonic Microcapsules Containing Single-Crystal Colloidal Arrays with Optical Anisotropy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900693. [PMID: 30873667 DOI: 10.1002/adma.201900693] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Indexed: 05/16/2023]
Abstract
Colloidal particles with a repulsive interparticle potential spontaneously form crystalline lattices, which are used as a motif for photonic materials. It is difficult to predict the crystal arrangement in spherical volume as lattices are incompatible with a spherical surface. Here, the optimum arrangement of charged colloids is experimentally investigated by encapsulating them in double-emulsion drops. Under conditions of strong interparticle repulsion, the colloidal crystal rapidly grows from the surface toward the center of the microcapsule, forming an onion-like arrangement. By contrast, for weak repulsion, crystallites slowly grow and fuse through rearrangement to form a single-crystal phase. Single-crystal structure is energetically favorable even for strong repulsion. Nevertheless, a high energy barrier to colloidal rearrangement kinetically arrests the onion-like structure formed by heterogeneous nucleation. Unlike the isotropic onion-shaped product, the anisotropic single-crystal-containing microcapsules selectively display-at certain orientations but not others-one of the distinct colors from the various crystal planes.
Collapse
Affiliation(s)
- Tae Min Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gun Ho Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Seok Kim
- Korea Electronics Technology Institute (KETI), Seongnam, 13509, Republic of Korea
| | - Jin-Gyu Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hyerim Hwang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
26
|
Brunner JJ, Krumova M, Cölfen H, Sturm (née Rosseeva) EV. Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:894-900. [PMID: 31165016 PMCID: PMC6541330 DOI: 10.3762/bjnano.10.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
This letter describes the formation and detailed characterization of iron oxide mesocrystals produced by the directed assembly of superparamagnetic iron oxide-truncated nanocubes using the slow evaporation of the solvent within an externally applied homogeneous magnetic field. Anisotropic mesocrystals with an elongation along the direction of the magnetic field can be produced. The structure of the directed mesocrystals is compared to self-assembled mesocrystalline films, which are formed without the influence of a magnetic field. The remarkable structural difference of mesocrystals produced within the external magnetic field from those self-assembled without field indicates that the specific nanoparticle ordering within the superstructure is driven by competing of two types of anisotropic interactions caused by particle shape (i.e., faceting) and orientation of the magnetic moment (i.e., easy axes: <111>magnetite). Hence, these findings provide a fundamental understanding of formation mechanisms and structuring of mesocrystals built up from superparamagnetic nanoparticles and how a magnetic field can be used to design anisotropic mesocrystals with different structures.
Collapse
|
27
|
Huang X, Zhu J, Ge B, Deng K, Wu X, Xiao T, Jiang T, Quan Z, Cao YC, Wang Z. Understanding Fe 3O 4 Nanocube Assembly with Reconstruction of a Consistent Superlattice Phase Diagram. J Am Chem Soc 2019; 141:3198-3206. [PMID: 30685973 DOI: 10.1021/jacs.8b13082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanocube (NC) assemblies display complex superlattice behaviors, which require a systematic understanding of their nucleation and growth as well transformation toward construction of a consistent superlattice phase diagram. This work made use of Fe3O4 NCs with controlled environments, and assembled NCs into three-dimensional (3D) superlattices of simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc), acute and obtuse rhombohedral (rh) polymorphs, and 2D superlattices of square and hexagon. Controlled experiments and computations of in situ and static small-angle X-ray scattering (SAXS) as well as electron microscopic imaging revealed that the fcc and bcc polymorphs preferred a primary nucleation at the early stage of NC assembly, which started from the high packing planes of fcc(111) and bcc(110), respectively, in both 3D and 2D cases. Upon continuous growth of superlattice grain (or domain), a confinement stress appeared and distorted fcc and bcc into acute and obtuse rh polymorphs, respectively. The variable magnitudes of competitive interactions between configurational and directional entropy determine the primary superlattice polymorph of either fcc or bcc, while emergent enhancement of confinement effect on enlarged grains attributes to late developed superlattice transformations. Differently, the formation of a sc polymorph requires a strong driving force that either emerges simultaneously or is applied externally so that one easy case of the sc formation can be achieved in 2D thin films. Unlike the traditional Bath deformation pathway that involves an intermediate body-centered tetragonal lattice, the observed superlattice transformations in NC assembly underwent a simple rhombohedral distortion, which was driven by a growth-induced in-plane compressive stress. Establishment of a consistent phase diagram of NC-based superlattices and reconstruction of their assembly pathways provide critical insight and a solid base for controlled design and scalable fabrication of nanocube-based functional materials with desired superlattices and collective properties for real-world applications.
Collapse
Affiliation(s)
- Xin Huang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| | - Jinlong Zhu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Beijing 100090 , P. R. China
| | - Binghui Ge
- Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 Anhui , P. R. China
| | - Kerong Deng
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Xiaotong Wu
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Tianyuan Xiao
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Tian Jiang
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Zewei Quan
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Y Charles Cao
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
28
|
Titanium Dioxide (TiO2) Mesocrystals: Synthesis, Growth Mechanisms and Photocatalytic Properties. Catalysts 2019. [DOI: 10.3390/catal9010091] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hierarchical TiO2 superstructures with desired architectures and intriguing physico-chemical properties are considered to be one of the most promising candidates for solving the serious issues related to global energy exhaustion as well as environmental deterioration via the well-known photocatalytic process. In particular, TiO2 mesocrystals, which are built from TiO2 nanocrystal building blocks in the same crystallographical orientation, have attracted intensive research interest in the area of photocatalysis owing to their distinctive structural properties such as high crystallinity, high specific surface area, and single-crystal-like nature. The deeper understanding of TiO2 mesocrystals-based photocatalysis is beneficial for developing new types of photocatalytic materials with multiple functionalities. In this paper, a comprehensive review of the recent advances toward fabricating and modifying TiO2 mesocrystals is provided, with special focus on the underlying mesocrystallization mechanism and controlling rules. The potential applications of as-synthesized TiO2 mesocrystals in photocatalysis are then discussed to shed light on the structure–performance relationships, thus guiding the development of highly efficient TiO2 mesocrystal-based photocatalysts for certain applications. Finally, the prospects of future research on TiO2 mesocrystals in photocatalysis are briefly highlighted.
Collapse
|
29
|
Liu Y, Agthe M, Salajková M, Gordeyeva K, Guccini V, Fall A, Salazar-Alvarez G, Schütz C, Bergström L. Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. NANOSCALE 2018; 10:18113-18118. [PMID: 30238947 DOI: 10.1039/c8nr05598j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Assembly of bio-based nano-sized particles into complex architectures and morphologies is an area of fundamental interest and technical importance. We have investigated the assembly of sulfonated cellulose nanocrystals (CNC) dispersed in a shrinking levitating aqueous drop using time-resolved small angle X-ray scattering (SAXS). Analysis of the scaling of the particle separation distance (d) with particle concentration (c) was used to follow the transition of CNC dispersions from an isotropic state at 1-2 vol% to a compressed nematic state at particle concentrations above 30 vol%. Comparison with SAXS measurements on CNC dispersions at near equilibrium conditions shows that evaporation-induced assembly of CNC in large levitating drops is comparable to bulk systems. Colloidal states with d vs. c scalings intermediate between isotropic dispersions and unidirectional compression of the nematic structure could be related to the biphasic region and gelation of CNC. Nanoscale structural information of CNC assembly up to very high particle concentrations can help to fabricate nanocellulose-based materials by evaporative methods.
Collapse
Affiliation(s)
- Yingxin Liu
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
He Z, Jiang H, Wu L, Liu J, Wang G, Wang X, Wang J, Hou Z, Chen G, Yu S. Real‐Time Probing of Nanowire Assembly Kinetics at the Air–Water Interface by In Situ Synchrotron X‐Ray Scattering. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen He
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Hui‐Jun Jiang
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at MicroscalesiChEMUniversity of Science and Technology of China Hefei 230026 China
| | - Long‐Long Wu
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jian‐Wei Liu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Geng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Xiao Wang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jin‐Long Wang
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| | - Zhong‐Huai Hou
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at MicroscalesiChEMUniversity of Science and Technology of China Hefei 230026 China
| | - Gang Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Shu‐Hong Yu
- Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCAS Center for Excellence in NanoscienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryHefei Science Center of CASUniversity of Science and Technology of China Hefei 230026 China
| |
Collapse
|
31
|
Rao A, Cölfen H. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter. CHEM REC 2018; 18:1203-1221. [PMID: 29573321 DOI: 10.1002/tcr.201800003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| |
Collapse
|
32
|
Kapuscinski M, Agthe M, Bergström L. Time-resolved viscoelastic properties of self-assembling iron oxide nanocube superlattices probed by quartz crystal microbalance with dissipation monitoring. J Colloid Interface Sci 2018; 522:104-110. [DOI: 10.1016/j.jcis.2018.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/28/2022]
|
33
|
Wang D, Hermes M, Kotni R, Wu Y, Tasios N, Liu Y, de Nijs B, van der Wee EB, Murray CB, Dijkstra M, van Blaaderen A. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes. Nat Commun 2018; 9:2228. [PMID: 29884884 PMCID: PMC5994693 DOI: 10.1038/s41467-018-04644-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties. Colloidal nanoparticles self-assembled under spherical confinement can form a rich variety of structures. Here, the authors study the self-assembly of sharp and rounded nanocubes under such confinement, revealing the influence of particle and face geometry on positional and orientational behavior.
Collapse
Affiliation(s)
- Da Wang
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
| | - Michiel Hermes
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Ramakrishna Kotni
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Yaoting Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nikos Tasios
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Yang Liu
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.,Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands
| | - Bart de Nijs
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Ernest B van der Wee
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
| |
Collapse
|
34
|
He Z, Jiang HJ, Wu LL, Liu JW, Wang G, Wang X, Wang JL, Hou ZH, Chen G, Yu SH. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering. Angew Chem Int Ed Engl 2018; 57:8130-8134. [PMID: 29750852 DOI: 10.1002/anie.201803552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 11/07/2022]
Abstract
Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Hui-Jun Jiang
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Long-Long Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian-Wei Liu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jin-Long Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Huai Hou
- Department of Chemical Physics & Hefei National Research Center for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
35
|
Maiti S, André A, Banerjee R, Hagenlocher J, Konovalov O, Schreiber F, Scheele M. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time. J Phys Chem Lett 2018; 9:739-744. [PMID: 29365268 DOI: 10.1021/acs.jpclett.7b03278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate in situ the structural changes during self-assembly of PbS nanocrystals from colloidal solution into superlattices, solvent evaporation, and ligand exchange at the acetonitrile/air interface by grazing incidence small-angle X-ray scattering (GISAXS). We simulate and fit the diffraction peaks under the distorted wave Born approximation (DWBA) to determine the lattice parameters. We observe a continuous isotropic contraction of the superlattice in two different assembly steps, preserving the body-centered cubic lattice with an overall decrease in the lattice constants of 11%. We argue that the first contraction period is due to a combination of solvent evaporation/annealing and capillary forces acting on the superlattice, whereas the second period is dominated by the effect of replacing oleic acid on the nanocrystal surface with the short and rigid cross-linker tetrathiafulvalene dicarboxylate. This work provides guidelines for optimized ligand exchange conditions and highlights the structural particularities arising from assembling NCs on liquid surfaces.
Collapse
Affiliation(s)
- Santanu Maiti
- Institute of Applied Physics, University of Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Alexander André
- Institute of Physical and Theoretical Chemistry, University of Tübingen , Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355, India
| | - Jan Hagenlocher
- Institute of Applied Physics, University of Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Oleg Konovalov
- Beamline ID10, European Synchrotron Radiation Facility (ESRF) , Grenoble F-38043, France
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen , Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen , Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tübingen , Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen , Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization. CRYSTALS 2018. [DOI: 10.3390/cryst8010048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Zhang P, Tachikawa T, Fujitsuka M, Majima T. The Development of Functional Mesocrystals for Energy Harvesting, Storage, and Conversion. Chemistry 2017; 24:6295-6307. [DOI: 10.1002/chem.201704680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Peng Zhang
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Takashi Tachikawa
- Molecular Photoscience Research Center; Kobe University; 1-1 Rokkodai-cho Nada-ku Kobe 657-8501 Japan
- PRESTO, Science and Technology Agency (JST); 24-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
38
|
Abstract
In this review, we briefly summarize the history of mesocrystal research. We introduce the current structural definition of mesocrystals and discuss the appropriate base for the classification of mesocrystals and their relations with other classes of solid state materials in terms of their structure. Building up on this, we comment on the problems in mesocrystal research both fundamental and methodological. Additionally, we make the short overview of the mesocrystal formation principles and synthetic routes used for their fabrications. As an outlook into the future, we highlight the most notable trends in mesocrystal research and developments.
Collapse
|
39
|
Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly. Sci Rep 2017; 7:2802. [PMID: 28584236 PMCID: PMC5459806 DOI: 10.1038/s41598-017-02121-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 11/08/2022] Open
Abstract
Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent.
Collapse
|
40
|
Agthe M, Wetterskog E, Bergström L. Following the Assembly of Iron Oxide Nanocubes by Video Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:303-310. [PMID: 27991791 DOI: 10.1021/acs.langmuir.6b03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model. The growth of each mesocrystal depends only on the number of nanoparticles within the accessible region irrespective of the relative time of formation. The mass of the dried mesocrystals estimated from the analysis of the bandwidth-shift-to-frequency-shift ratio correlates well with the total mass of the oleate-coated nanoparticles in the deposited dispersion drop.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Erik Wetterskog
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University , SE-75121 Uppsala, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| |
Collapse
|