1
|
Heo JH, Park JK, Lee HJ, Shin EH, Hong SY, Hong KH, Zhang F, Im SH. Inorganic-Derived 0D Perovskite Induced Surface Lattice Arrangement for Efficient and Stable All-Inorganic Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408387. [PMID: 39152921 DOI: 10.1002/adma.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Indexed: 08/19/2024]
Abstract
The inverted inorganic CsPbI3 perovskite solar cells (PSCs) are prospective candidates for next-generation photovoltaics owing to inherent robust thermal/photo-stability and compatibility for tandems. However, the performance and stability of the inverted CsPbI3 PSCs fall behind the n-i-p counterparts due to poor energetic alignment and abundant interfacial defect states. Here, an inorganic 0D Cs4PbBr6 with a good lattice strain arrangement is implemented as the surface anchoring capping layer on CsPbI3. The Cs4PbBr6 perovskite induces enhanced electron-selective junction and thus facilitates efficient charge extraction and effectively inhibits non-radiative recombination. Consequently, the CsPbI3 PSCs with Cs4PbBr6 demonstrate the highest power conversion efficiency (PCE) of CsPbI3-based inverted PSCs, reaching 21.03% PCE from a unit cell and 17.39% PCE from a module with a 64 cm2 aperture area. Furthermore, the resulting devices retain 92.48% after 1000 h under simultaneous 1-sun and damp heat (85 °C / 85% relative humidity) environment.
Collapse
Affiliation(s)
- Jin Hyuck Heo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Kyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyong Joon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Ha Shin
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Seok Yeong Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Ha Hong
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Li H, Hu Y, Zhang Y, Zhang H, Yao D, Lin Y, Yan X. Metal Halide Perovskite Nanocrystals-Intermediated Hydrogel for Boosting the Biosensing Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409090. [PMID: 39225445 DOI: 10.1002/adma.202409090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Metal-halide perovskites have become attractive nanomaterials for advanced biosensors, yet the structural design remains challenging due to the trade-off between environmental stability and sensing sensitivity. Herein, a trinity strategy is proposed to address this issue by integrating Mn (II) substitution with CsPb2Cl5 inert shell and NH2-PEG-COOH coating for designing Mn2+-doped CsPbCl3/CsPb2Cl5 core/shell hetero perovskite nanocrystals (PMCP PNCs). The trinity strategy isolates the emissive Mn2+-doped CsPbCl3 core from water and the Mn2+ d-d transition generates photoluminescence with a long lifetime, endowing the NH2-PEG-COOH capped Mn2+-doped CsPbCl3/CsPb2Cl5 PNCs with robust water stability and oxygen-sensitive property. Given the structural integration, photoluminescent hydrogel biosensors are designed by embedding the PMCP PNCs into the hydrogel system to deliver on-site pesticide information on food products. Impressively, benefiting from the dual enzyme triggered-responsive property of PMCP PNCs, the hydrogel biosensor is endowed with ultra-high sensitivity toward chlorpyrifos pesticide at the nanogram per milliliter level. Such a robust PMCP PNCs-based hydrogel sensor can provide accurate pesticide information while guiding the construction of photoluminescent biosensors for upcoming on-site applications.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yanan Hu
- Department of Food Quality and Safety College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Wang S, Zhou W, Wei Z, Li H, Xiao Y. Solvent-tuned perovskite heterostructures enable visual linoleic acid assay and edible oil species discrimination via wavelength shift. Food Chem 2024; 449:139190. [PMID: 38579653 DOI: 10.1016/j.foodchem.2024.139190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenbin Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hang Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Han X, Wan S, He L, Zou J, Mavric A, Wang Y, Piotrowski M, Bandela AK, Samorì P, Wang Z, Leydecker T, Thumu U. Tunable Emissive CsPbBr 3/Cs 4PbBr 6 Quantum Dots Engineered by Discrete Phase Transformation for Enhanced Photogating in Field-Effect Phototransistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401973. [PMID: 39189467 PMCID: PMC11348058 DOI: 10.1002/advs.202401973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/11/2024] [Indexed: 08/28/2024]
Abstract
Precise control of quantum structures in hybrid nanocrystals requires advancements in scientific methodologies. Here, on the design of tunable CsPbBr3/Cs4PbBr6 quantum dots are reported by developing a unique discrete phase transformation approach in Cs4PbBr6 nanocrystals. Unlike conventional hybrid systems that emit solely in the green region, this current strategy produces adjustable luminescence in the blue (450 nm), cyan (480 nm), and green (510 nm) regions with high photoluminescence quantum yields up to 45%, 60%, and 85%, respectively. Concentration-dependent studies reveal that phase transformation mechanisms and the factors that drive CsBr removal occur at lower dilutions while the dissolution-recrystallization process dominates at higher dilutions. When the polymer-CsPbBr3/Cs4PbBr6 integrated into a field-effected transistor the resulting phototransistors featured enhanced photosensitivity exceeding 105, being the highest reported for an n-type phototransistor, while maintaining good transistor performances as compared to devices consisting of polymer-CsPbBr3 NCs.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Siyuan Wan
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Lin He
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Junlong Zou
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Andraz Mavric
- Materials Research LaboratoryUniversity of Nova GoricaVipavska 13Nova GoricaSI‐5000Slovenia
| | - Yixi Wang
- School of New Energy Materials and ChemistryLeshan Normal UniversityLeshanSichuan614000China
| | - Marek Piotrowski
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Anil Kumar Bandela
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 7006, 8 Allée Gaspard MongeStrasbourg67000France
| | - Zhiming Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Tim Leydecker
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
6
|
Agarwal N, Agarwal D, Debnath T. Amino Acid-Driven Dimensional Reduction of CsPbBr 3 Nanocrystals. ACS OMEGA 2024; 9:31026-31034. [PMID: 39035888 PMCID: PMC11256307 DOI: 10.1021/acsomega.4c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Inspired by biomineralization, the recent incorporation of organic molecules into inorganic lattices shows interesting optical properties and tunability. We functionalize all inorganic CsPbBr3 perovskite nanocrystals (PNCs) with amino acid (AA) cysteine using the water-hexane interfacial approach. Along with the AA cysteine, we added AuBr3 salt into the aqueous phase, leading to the formation of a Au-cysteine thiolate complex to activate the aqueous to nonaqueous phase transportation of the AA via a molecular shuttle, oleylamine. The interaction between CsPbBr3 PNCs and the Au-cysteine thiolate complex is probed using optical spectroscopy, which reveals dimensional reduction of the parent PNCs to form CsPbBr3 nanoplatelets (NPls) and subsequent phase transformation to CsPb2Br5 NPls. X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy conclusively support the above chemical transformation reaction via interfacial chemistry. We propose a mechanistic insight into the dimensional growth in one direction in the presence of AAs via preferential ligand binding to specific facets, leading to transformation from 3D cubes to 2D NPls, while, presumably, the phase transformation occurs via the CsBr stripping mechanism upon prolonged interaction with water. Since AAs are building blocks for several redox-active complex biological moieties, including proteins, investigation of the interaction of AAs with PNCs may be advantageous since the latter can act as a fluorescent probe for bioimaging application.
Collapse
Affiliation(s)
- Nikunj Agarwal
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Deepshikha Agarwal
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Tushar Debnath
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
- Nano
Physical Spectroscopy Group, Department of Chemistry, School of Natural
Sciences, Shiv Nadar Institution of Eminence, Delhi NCR 201314, Uttar Pradesh, India
| |
Collapse
|
7
|
Otero-Martínez C, Zaffalon ML, Ivanov YP, Livakas N, Goldoni L, Divitini G, Bora S, Saleh G, Meinardi F, Fratelli A, Chakraborty S, Polavarapu L, Brovelli S, Manna L. Ultrasmall CsPbBr 3 Blue Emissive Perovskite Quantum Dots Using K-Alloyed Cs 4PbBr 6 Nanocrystals as Precursors. ACS ENERGY LETTERS 2024; 9:2367-2377. [PMID: 39372427 PMCID: PMC11450558 DOI: 10.1021/acsenergylett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 10/08/2024]
Abstract
We report a colloidal synthesis of blue emissive, stable cube-shaped CsPbBr3 quantum dots (QDs) in the strong quantum confinement regime via dissolution-recrystallization starting from pre-syntesized (K x Cs1-x )4PbBr6 nanocrystals which are then reacted with PbBr2. This is markedly different from the known case of Cs4PbBr6 nanocrystals that react within seconds with PbBr2 and get transformed into much larger, green emitting CsPbBr3 nanocrystals. Here, instead, the conversion of (K x Cs1-x )4PbBr6 nanocrystals to CsPbBr3 QDs occurs in a time span of hours, and tuning of the QD size is achieved by adjusting the concentration of the precursors. The QDs exhibit excitonic features in optical absorption that are tunable in the 420-452 nm range, accompanied by blue photoluminescence with quantum yield around 60%. Detailed spectroscopic investigations in both the single and multiexciton regime reveal the exciton fine structure and the effect of Auger recombination of these CsPbBr3 QDs, confirming theoretical predictions for this system.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO,
Department of Physical Chemistry, Materials Chemistry and Physics
Group, Universidade de Vigo, Campus Universitario
As Lagoas-Marcosende, 36310 Vigo, Spain
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Yurii P. Ivanov
- Electron
Microscopy and Nanoscopy, Istituto Italiano
di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Nikolaos Livakas
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, 16146 Genova, Italy
| | - Luca Goldoni
- Material
Characterization Facility, Istituto Italiano
di Tecnologia Via Morego 30, 16163 Genova, Italy
| | - Giorgio Divitini
- Electron
Microscopy and Nanoscopy, Istituto Italiano
di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Sankalpa Bora
- Materials
Theory for Energy Scavenging (MATES) Lab, Department of Physics, Harish-Chandra Research Institute (HRI), A C.I. of
Homi Bhabha National Institute (HBNI), Jhunsi, Prayagraj 211019, India
| | - Gabriele Saleh
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Andrea Fratelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Sudip Chakraborty
- Materials
Theory for Energy Scavenging (MATES) Lab, Department of Physics, Harish-Chandra Research Institute (HRI), A C.I. of
Homi Bhabha National Institute (HBNI), Jhunsi, Prayagraj 211019, India
| | - Lakshminarayana Polavarapu
- CINBIO,
Department of Physical Chemistry, Materials Chemistry and Physics
Group, Universidade de Vigo, Campus Universitario
As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
8
|
Samanta S, Paul S, Debnath T. Obtaining Ligand-Free Aqueous Au-Nanoparticles Using Reversible CsPbBr 3 ↔ Au@CsPbBr 3 Nanocrystal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311712. [PMID: 38258404 DOI: 10.1002/smll.202311712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Water-hexane interfacial preparation of photostable Au@CsPbBr3 (Au@CPB) hybrid nanocrystals (NCs) from pure CsPbBr3 (CPB) NCs is reported, with the coexistence of exciton and localized surface plasmon resonance with equal dominance. This enables strong exciton-plasmon coupling in these plasmonic perovskite NCs where not only the photoluminescence is quenched intrinsically due to ultrafast charge separation, but also the light absorption property increases significantly, covering the entire visible region. Using a controlled interfacial strategy, a reversible chemical transformation between CPB and Au@CPB NCs is shown, with the simultaneous eruption of larger-size ligand-free aqueous Au nanoparticles (NPs). An adsorption-desorption mechanism is proposed for the reversible transformation, while the overgrowth reaction of the Au NPs passes through the Au aggregation intermediate. This study further shows that the plasmonic Au@CPB hybrid NCs as well as ligand-free Au NPs exhibit clear surface enhanced Raman scattering (SERS) effect of a commercially available probe molecule. Overall, the beautiful interfacial chemistry delivers two independent plasmonic materials, i.e., Au@CPB NCs and ligand-free aqueous Au NPs, which may find important implications in photocatalytic and biomedical applications.
Collapse
Affiliation(s)
- Subarna Samanta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujay Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
9
|
Gao R, Xu W, Wang Z, Li F, Liu Y, Li G, Chen K. Heteroepitaxial Growth to Construct Hexagonal/Hexagonal β-NaYF 4:Yb,Tm/Cs 4PbBr 6 Multi-Code Emitting Core/Shell Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309107. [PMID: 38145322 DOI: 10.1002/smll.202309107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Synthesis of upconversion nanoparticles (UCNPs)-metal halide perovskites (MHPs) heterostructure is garnered immense attentions due to their unparalleled photophysical properties. However, the obvious difference in their structural forms makes it a huge challenge. Herein, hexagonal β-NaYF4 and hexagonal Cs4PbBr6 are filtrated to construct the UCNP/MHP heterostructural luminescent material. The similarity in their crystal structures facilitate the heteroepitaxial growth of Cs4PbBr6 on the surface of β-NaYF4 NPs, leading to the formation of high-quality β-NaYF4:Yb,Tm/Cs4PbBr6 core/shell nanocrystals (NCs). Interestingly, this heterostructure endows the core/shell NCs with typically narrow-band green emission centered at 524 nm under 980 nm excitation, which should be attributed to the Förster resonance energy transfer (FRET) from Tm3+ to Cs4PbBr6. It is noteworthy that the FRET efficiency of β-NaYF4:Yb,Tm/Cs4PbBr6 core/shell NCs (58.33%) is much higher than that of the physically mixed sample (1.84%). In addition, the reduced defect density, lattice anchoring effect, as well as diluted ionic bonding proportion induced by the core/shell structure further increase the excellent water-resistance and thermal cycling stability of Cs4PbBr6. These findings open up a new way to construct UCNP/MHP heterostructure with better multi-code luminescence performance and stability and promote its wide optoelectronic applications.
Collapse
Affiliation(s)
- Rui Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Wanqing Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhiqing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yueli Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Keqiang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518052, P. R. China
| |
Collapse
|
10
|
Stojkovski D, Szafrański M. High-Pressure Structural and Optical Studies of Pure Low-Dimensional Cesium Lead Chlorides CsPb 2Cl 5 and Cs 4PbCl 6. Inorg Chem 2024; 63:7903-7911. [PMID: 38629161 PMCID: PMC11061828 DOI: 10.1021/acs.inorgchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/30/2024]
Abstract
We report high-pressure single-crystal X-ray diffraction, optical absorption, and photoluminescence investigations of all-inorganic perovskite-related materials CsPb2Cl5 and Cs4PbCl6. The crystal structure of CsPb2Cl5, composed of alternate layers of Cs+ cations and Pb-Cl frameworks, is stable under pressure up to at least 4.2 GPa. Because external stress is mainly absorbed by the Cs+ layers, the optical absorption edge of the crystal only slightly red-shifts with increasing pressure, which correlates well with a moderate shortening of the Pb-Cl bonds. A quite different response to pressure shows Cs4PbCl6, the crystal built of isolated PbCl64- octahedra and Cs+ cations. During the compression at around 3.4 GPa, the trigonal phase I, space group R3̅c, transforms to the orthorhombic phase II, space group Cmce, which at around 4 GPa transforms into phase III. On decompression, phase II is not restored, but phase III converts through a diffuse phase transition into another high-pressure phase IV, which is stable in a wide pressure range and transforms to the initial phase I only around atmospheric pressure. The red shift of the absorption edge and the profound modification of the absorption spectrum in phase II were ascribed to the deformation of the PbCl64- octahedra. The transition to phase III induces a blue shift of the absorption edge, while the transition to phase IV is associated with a large red shift. Photoluminescence was detected in phases I and II with the intensity quenched with increasing pressure.
Collapse
Affiliation(s)
- Darko Stojkovski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego
2, 61-614 Poznań, Poland
| | - Marek Szafrański
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego
2, 61-614 Poznań, Poland
| |
Collapse
|
11
|
von Schwerin P, Döblinger M, Debnath T, Feldmann J, Akkerman QA. Size-Tunable Manganese-Doped Spheroidal CsPbCl 3 Quantum Dots. J Phys Chem Lett 2024; 15:3728-3732. [PMID: 38546986 DOI: 10.1021/acs.jpclett.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Manganese doping has been demonstrated as a versatile tool to tune the emission of CsPbCl3 nanocrystals (NCs). Although this has been demonstrated in nanocubes and nanoplatelets, strategies for doping Mn2+ in size-tunable, excitonic CsPbCl3 quantum dots (QDs) remain absent. In this work, we demonstrate the synthesis of size-tunable spheroidal CsPbCl3:Mn2+ QDs, which can be obtained by a water-hexane interfacial combined anion and cation exchange strategy starting from CsPbBr3 QDs. Interestingly, the QDs exhibit a fast 0.2 ms Mn2+ photoluminescence (PL) lifetime and an energy transfer (ET) time of approximately 100 ps from the excitonic state of the QD to the atomic state of the Mn2+ ion. The size dependence observation of the manganese PL efficiency and the slow ET rate suggest that Mn2+ mainly gets incorporated at the QD's surface, highlighting the importance of strategies chosen for the incorporation of Mn2+ into perovskite QDs.
Collapse
Affiliation(s)
- Patrick von Schwerin
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| | - Markus Döblinger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (E), 81377 Munich, Germany
| | - Tushar Debnath
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
- Nano Physical Spectroscopy Group, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, Uttar Pradesh 201314, India
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| | - Quinten A Akkerman
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
| |
Collapse
|
12
|
Sahu S, Debnath T, Sahu K. Reversible CsPbBr 3 ↔ CsPb 2Br 5 Transformation via Reverse Micellar Aqueous Solution. J Phys Chem Lett 2024; 15:3677-3682. [PMID: 38535976 DOI: 10.1021/acs.jpclett.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Lead halide perovskites suffer from water and moisture instability due to the highly ionic nature of the crystal structures, though a few groups took advantage of it for chemical transformation via water-assisted strategy. However, direct exposure of the perovskite to bulk water leads to uncontrolled chemical transformation. Here, we report a controlled chemical transformation of CsPbBr3 to CsPb2Br5 triggered by nanoconfined water by placing CsPbBr3 in the nonpolar phase within a reverse micelle. The chemical transformation reaction is probed by using steady-state and time-resolved optical spectroscopy. We observe absorption and photoluminescence in the UV region stemming clearly from the CsPb2Br5 phase upon interaction with the reverse micellar aqueous solution. Transmission electron microscopy and X-ray diffraction measurements further provided the structure and morphology. Our results direct the formation of CsPbBr3-CsPb2Br5 nanocomposite under dry conditions while the chemically transformed CsPb2Br5 phase exists only in moist conditions, which we explain via the CsBr-stripping mechanism.
Collapse
Affiliation(s)
- Subhashree Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Tushar Debnath
- Nano Physical Spectroscopy Group, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, Uttar Pradesh 201314, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Xu Q, Zhang T, Liu M, Wang M, Cao K, Chen R. CsBr-Triggered Reversible Phase Transition of Perovskite Nanocrystals for Advanced Information Encryption and Decryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17051-17061. [PMID: 38511856 DOI: 10.1021/acsami.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Luminescent perovskite nanocrystals (NCs), possessing the advantages of low cost, easy detection, and excellent luminescence, are becoming more and more significant in the fields of information encryption and decryption. Most hydrochromic perovskite NCs for information encryption have moderate reversibility and are easily passively decrypted by water in the moist air, limiting their practical applications. Herein, a lyochromic material is synthesized based on reversible phase transition between luminescent CsPbBr3-HBr (pretreating CsPbBr3 with HBr) and nonluminescent Cs4PbBr6, exhibiting excellent reversibility in 50 cycles triggered by CsBr solution. HBr treatment boosts the ion migration of NCs via diminishing surface ligands and passivating Br vacancy, assisting CsBr concentration acting as a crucial factor in dynamic ion exchange equilibrium between the trigger solution and CsPbBr3-HBr. By utilizing CsPbBr3-HBr as a safety ink, the CsBr-triggered photoluminescence switch has been demonstrated to be reproducible, stable, and reliable for information encryption and decryption.
Collapse
Affiliation(s)
- Qing Xu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianwei Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengjia Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Wang
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Cao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Liu JZ, Chai XY, Huang J, Li RS, Li CM, Ling J, Cao QE, Huang CZ. Chiral Assembly of Perovskite Nanocrystals: Sensitive Discrimination of Amino Acid Enantiomers. Anal Chem 2024; 96:4282-4289. [PMID: 38469640 DOI: 10.1021/acs.analchem.3c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Chirality is a widespread phenomenon in nature and in living organisms and plays an important role in living systems. The sensitive discrimination of chiral molecular enantiomers remains a challenge in the fields of chemistry and biology. Establishing a simple, fast, and efficient strategy to discriminate the spatial configuration of chiral molecular enantiomers is of great significance. Chiral perovskite nanocrystals (PNCs) have attracted much attention because of their excellent optical activity. However, it is a challenge to prepare perovskites with both chiral and fluorescence properties for chiral sensing. In this work, we synthesized two chiral fluorescent perovskite nanocrystal assembly (PNA) enantiomers by using l- or d-phenylalanine (Phe) as chiral ligands. PNA exhibited good fluorescence recognition for l- and d-proline (Pro). Homochiral interaction led to fluorescence enhancement, while heterochiral interaction led to fluorescence quenching, and there is a good linear relationship between the fluorescence changing rate and l- or d-Pro concentration. Mechanism studies show that homochiral interaction-induced fluorescence enhancement is attributed to the disassembly of chiral PNA, while no disassembly of chiral PNA was found in heterochiral interaction-induced fluorescence quenching, which is attributed to the substitution of Phe on the surface of chiral PNA by heterochiral Pro. This work suggests that chiral perovskite can be used for chiral fluorescence sensing; it will inspire the development of chiral nanomaterials and chiral optical sensors.
Collapse
Affiliation(s)
- Jin-Zhou Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xin-Yi Chai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jingtao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Liu Y, Yun R, Li Y, Sun W, Zheng T, Huang Q, Zhang L, Li X. Chemical transformation mechanism for blue-to-green emitting CsPbBr 3 nanocrystals. NANOSCALE 2024. [PMID: 38466175 DOI: 10.1039/d3nr05215j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Recently, metal-halide perovskites have rapidly emerged as efficient light emitters with near-unity quantum yield and size-dependent optical and electronic properties, which have attracted considerable attention from researchers. However, the ultrafast nucleation rate of ionic perovskite counterparts severely limits the in-depth exploration of the growth mechanism of colloidal nanocrystals (NCs). Herein, we used an inorganic ligand nitrosonium tetrafluoroborate (NOBF4) to trigger a slow post-synthesis transformation process, converting non-luminescent Cs4PbBr6 NCs into bright green luminescent CsPbBr3 NCs to elucidate the concrete transformation mechanism via four stages: (i) the dissociation of pristine NCs, (ii) the formation of Pb-Br intermediates, (iii) low-dimensional nanoplatelets (NPLs) and (iv) cubic CsPbBr3 NCs, corresponding to the blue-to-green emission process. The desorption and reorganization of organic ligands induced by NO+ and the involvement of BF4- in the ligand exchange process played pivotal roles in this dissolution-recrystallization of NCs. Moreover, controlled shape evolution from anisotropic NPLs to NCs was investigated through variations in the amount of NOBF4. This further validates that additives exert a decisive role in the symmetry and growth of nanostructured perovskite crystals during phase transition based on the ligand-exchange mechanism. This finding serves as a source of inspiration for the synthesis of highly luminescent CsPbBr3 NCs, providing valuable insights into the chemical mechanism in post-synthesis transformation.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| | - Rui Yun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| | - Yue Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| | - Wenda Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| | - Tiancheng Zheng
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| | - Qian Huang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Efficient Utilization of solar energy of Tianjin, Tianjin 300071, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P. R. China.
| |
Collapse
|
16
|
Yue Y, Xu H, Jiang L, Zhao X, Deng D. Introducing Specific Iodine Ions in Perovskite-Based Nanocomplex to Cater for Versatile Biomedical Imaging and Tumor Radiotherapy. Adv Healthc Mater 2024; 13:e2302721. [PMID: 37990787 DOI: 10.1002/adhm.202302721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Multimodal biomedical imaging and imaging-guided therapy have garnered extensive attention owing to the aid of nanoagents with the aim of further improving the therapeutic efficacy of diseases. The ability to engineer nanocomplexes (NCs) or control how they behave within an organism remains largely elusive. Here, a multifunctional nanoplatform is developed based on stabilized I-doped perovskite, CsPbBr3 -x Ix @SiO2 @Lip-c(RGD)2 (PSL-c(RGD)2 ) NCs. In particular, by regulating the amount of regular I- ions introduced, the fluorescence emission spectrum of perovskite-based NCs can be modulated well to match the requirement for biomedical optical imaging at the scale from molecule, cell to mouse; doping 125 I enables the nanoformulation to be competent for single-photon emission computed tomography (SPECT) imaging; the introduction of 131 I- imparts the NCs with the capability for radiotherapy. Through facile manipulation of specific iodine ions, this nanoplatform exhibits a remarkable ability to match multifunctional biomedical imaging and tumor therapy. In addition, their in vivo behavior can be manipulated by adjusting the thickness of the silica shell and the surface polarity for more practical applications. These experimental explorations offer a novel approach for engineering desirable multimodal NCs to simultaneously image and combat malignant tumors.
Collapse
Affiliation(s)
- Yumeng Yue
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoran Xu
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Liwen Jiang
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaomin Zhao
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Deng
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
17
|
Jiang L, Qiu Y, Xiang L, Tang J. APTES and CTAB Synergistic Induce a Heterozygous CsPbBr 3/Cs 4PbBr 6 Perovskite Composite and its Application on the Sensitive Fluorescent Detection of Iodide ions. J Fluoresc 2024:10.1007/s10895-024-03623-x. [PMID: 38396149 DOI: 10.1007/s10895-024-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Recently, all-inorganic halide perovskite quantum dots (IPQD) as a new fluorescent material with excellent fluorescence properties have attracted wide attention. However, their instability in polar solvents is the main factor hindering their application in analysis. Herein, a heterozygous perovskite (CsPbBr3/Cs4PbBr6) was simultaneously prepared and stabilized by a silylanization strategy using (3-aminopropyl)-triethoxysilane (APTES) and cetyltrimethyl ammonium bromide (CTAB) assisted precipitation encapsulation method. The synthesized CsPbBr3/Cs4PbBr6 emitted an independent fluorescence at 520 nm. The obtained CsPbBr3/Cs4PbBr6 exhibited good stability in ethanol/water mixtures. It was used as a fluorescent probe for sensitively detecting iodide ions (I-) by fluorescence quenching mechanism in the concentration range of 1 ~ 70.0 µM with the detection limit (LOD) of 0.83 µM (relative standard deviation (RSD) = 1.33%, n = 20). The simplicity and high selectivity of the proposed fluorescent analysis method were the prominent features. This work could be extended to the other target ion detection by a perovskite fluorescent quenching.
Collapse
Affiliation(s)
- Lingyu Jiang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China
| | - Yunyun Qiu
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China
| | - Li Xiang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China
| | - Jianshe Tang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, China.
| |
Collapse
|
18
|
Zuo ZH, Feng ZW, Peng YY, Su Y, Liu ZQ, Li G, Yin Y, Chen Y. Designing Yolk-Shell Nanostructures for Reversible Water-Vapor-Responsive Dual-Mode Switching of Fluorescence and Structural Color. ACS NANO 2024; 18:4456-4466. [PMID: 38276073 DOI: 10.1021/acsnano.3c11092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Metal halide perovskites offer ample opportunities to develop advanced optoelectronic devices. This work showcases that the integration of metal halide perovskites into metal oxide nanoshells with controllable interior cavities can enable water-vapor-responsive dual-mode switching of fluorescence and structural color. Through a ship-in-a-bottle method to introduce a controlled amount of CsPbBr3 into MnO2 nanoshells, we have designed CsPbBr3@MnO2 yolk-shell nanostructures, which can uptake a defined amount of water to exhibit rapid (less than 1 s) and reversible (≥100 cycles) responses in both fluorescence on-off and color change when exposed to dynamic water vapor. These responses originate from the water-triggered phase transformation of CsPbBr3 to CsPb2Br5 and the structural color change of the MnO2 shell. The altered electronic and bonding structure at the oxide-halide interface, rapid water accumulation in the yolk-shell cavity, and protective effect of the oxide shell facilitate the reversible transformations. The response characteristics of the yolk-shell nanostructures have been further demonstrated in fabricating patterned films capable of multiple fluorescence/structural color responses, highlighting their potential for applications in advanced anticounterfeiting and encryption.
Collapse
Affiliation(s)
- Zhi-Han Zuo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Zi-Wen Feng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Ying-Ying Peng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yucong Su
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, Zhejiang 311305, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
20
|
Wang S, Wei Z, Xu Q, Yu L, Xiao Y. Trinity Strategy: Enabling Perovskite as Hydrophilic and Efficient Fluorescent Nanozyme for Constructing Biomarker Reporting Platform. ACS NANO 2024; 18:1084-1097. [PMID: 38149588 DOI: 10.1021/acsnano.3c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Water instability and sensing homogeneity are the Achilles' heel of CsPbX3 NPs in biological fluids application. This work reports the preparation of Mn2+:CsPbCl3@SiO2 yolk-shell nanoparticles (YSNPs) in aqueous solutions created through the integration of ligand, surface, and crystal engineering strategies. The SN2 reaction between 4-chlorobutyric acid (CBA) and oleylamine (OAm) yields a zwitterionic ligand that facilitates the dispersion of YSNPs in water, while the robust SiO2 shell enhances their overall stability. Besides, Mn2+ doping in YSNPs not only introduces a second emission center but also enables potential postsynthetic designability, leading to the switching from YSNPs to MnO2@YSNPs with excellent oxidase (OXD)-like activity. Theoretical calculations reveal that electron transfer from CsPbCl3 to in situ MnO2 and the adsorption-desorption process of 3,3',5,5'-tetramethylbenzidine (TMB) synergistically amplify the OXD-like activity. In the presence of ascorbic acid (AA), Mn4+ in MnO2@YSNPs (fluorescent nanozyme) is reduced to Mn2+ and dissociated, thereby inhibiting the OXD-like activity and triggering fluorescence "turn-on/off", i.e., dual-mode recognition. Finally, a biomarker reporting platform based on MnO2@YSNPs fluorescent nanozyme is constructed with AA as the reporter molecule, and the accurate detection of human serum alkaline phosphatase (ALP) is realized, demonstrating the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
21
|
Collantes C, Teixeira W, González-Pedro V, Bañuls MJ, Quintero-Campos P, Morais S, Maquieira Á. Water-assisted synthesis of stable and multicolored CsPbX 3@SiO 2 core-shell nanoparticles as fluorescent probes for biosensing. Dalton Trans 2023; 52:18464-18472. [PMID: 38013493 DOI: 10.1039/d3dt02593d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Colloidal lead halide perovskite nanocrystals are highly luminescent materials with great promise as fluorescent probes in biosensing as long as their intrinsic instability in aqueous media is effectively addressed. In this study, we successfully prepared stable and multicolored CsPbX3@SiO2 (X = Cl/Br, Br and I) core-shell nanoparticles through a simple method based on the water-induced transformation of Cs4PbX6 into CsPbX3, combined with sol-gel procedures. We observed that the concentration of the Cs4PbX6 precursor plays a crucial role in the formation of isolated nanospheres with uniform silica coating and in controlling the number of core-free particles. Furthermore, our research expands this approach to other halide compositions, resulting in multicolored core-shell nanoparticles with emission wavelengths ranging from 490 to 700 nm, average sizes below 30 nm, and photoluminescence quantum yields close to 60%. Unlike in previous reports, the silica coating boosts the photoluminescence quantum yields compared to uncoated counterparts and provides increased structural stability for more than four days. Moreover, a controlled thermal treatment confers water stability to the as-synthesized nanoparticles. To establish the feasibility of the developed materials as fluorescent probes, we successfully demonstrated their specific recognition of a humanized antibody (omalizumab) used in treating patients with severe allergic asthma. This work paves the way to develop in vitro tests using CsPbX3@SiO2 core-shell nanoparticles as fluorogenic probes.
Collapse
Affiliation(s)
- Cynthia Collantes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
| | - William Teixeira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
| | - Victoria González-Pedro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 València, Spain
| | - María-José Bañuls
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 València, Spain
| | - Pedro Quintero-Campos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 València, Spain
- Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 València, Spain
- Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain
| |
Collapse
|
22
|
Qiao Z, Wang X, Zhai Y, Yu R, Fang Z, Chen G. In Situ Real-Time Observation of Formation and Self-Assembly of Perovskite Nanocrystals at High Temperature. NANO LETTERS 2023. [PMID: 37982537 DOI: 10.1021/acs.nanolett.3c02908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
All-inorganic cesium lead halide perovskite nanocrystals (NCs) have received much attention due to their outstanding optical and electronic properties, but the underlying growth mechanism remains elusive due to their rapid formation process. Here, we report an in situ real-time study of the growth of Cs4PbBr6 NCs under practical synthesis conditions in a custom-made reactor. Through the synchrotron-based small-angle X-ray scattering technique, we find that the formation of Cs4PbBr6 NCs is accomplished in three steps: the fast nucleation process accompanied by self-focusing growth, the subsequent diffusion-limited Ostwald ripening, and the self-assembly of NCs into the face-centered cubic (fcc) superlattices at high temperature and the termination of growth. The simultaneously collected wide-angle X-ray scattering signals further corroborate the three-step growth model. The influence of superlattice formation is also elucidated, which improves the uniformity of the final NCs.
Collapse
Affiliation(s)
- Zhi Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yufeng Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhu Fang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Ghimire S, Khatun MF, Sachith BM, Okamoto T, Sobhanan J, Subrahmanyam C, Biju V. Highly Luminescent and Stable Halide Perovskite Nanocrystals by Interfacial Defect Passivation and Amphiphilic Ligand Capping. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41081-41091. [PMID: 37581484 DOI: 10.1021/acsami.3c05868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Halide vacancies cause lattice degradation and nonradiative losses in halide perovskites. In this study, we strategically fill bromide vacancies in CsPbBr3 perovskite nanocrystals with NaBr, KBr, or CsBr at the organic-aqueous interface for hydrophobic ligand-capped nanocrystals or in a polar solvent (2-propanol) for amphiphilic ligand-capped nanocrystals. Energy-dispersive X-ray spectra, powder X-ray diffraction data, and scanning transmission electron microscopy images help us confirm vacancy filling and the structures of samples. The bromide salts increase the photoluminescence quantum yield (98 ± 2%) of CsPbBr3 by decreasing the nonradiative decay rate. Single-particle studies show the quantum yield increase originates from the poorly luminescent nanocrystals becoming highly luminescent after filling vacancies. Furthermore, we tune the optical band gap (ultraviolet-visible-near-infrared) of the hydrophobic ligand-capped nanocrystals by halide exchange at the toluene-water interface using saturated NaCl or NaI solutions, which completes in about 60 min under continuous mixing. In contrast, the amphiphilic ligand accelerates the halide exchange in 2-propanol, suggesting ambipolar functional groups speed up the ion-exchange reaction. The bromide vacancy-filled or halide-exchanged samples in a toluene-water biphasic solvent show higher stability than amphiphilic ligand-capped samples in 2-propanol. This strategy of defect passivation, ion exchange, and ligand chemistry to improve quantum yields and tune band gaps of halide perovskite nanocrystals can be promising for designing stable and water-soluble perovskite samples for solar cells, light-emitting diodes, photodetectors, and photocatalysts.
Collapse
Affiliation(s)
- Sushant Ghimire
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| | - Most Farida Khatun
- Graduate School of Environmental Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| | - Bhagyashree M Sachith
- Graduate School of Environmental Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| | - Takuya Okamoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| | - Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284 Sangareddy, Telangana, India
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284 Sangareddy, Telangana, India
| |
Collapse
|
24
|
Zhang X, Yang P. CsPbX 3 (X = Cl, Br, and I) Nanocrystals in Substrates toward Stable Photoluminescence: Nanoarchitectonics, Properties, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11188-11212. [PMID: 37548228 DOI: 10.1021/acs.langmuir.3c01848] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br, and I) perovskite nanocrystals (NCs) possess great potential in light-emitting diode applications because of their high brightness, low cost, tunable luminescence, and facile synthesis nature. However, these NCs are often disadvantaged by their instability in nonsolvent environment that hinders the practical applications of the material. In order to solve these issues, cesium lead halide NCs prepared using a solvent environment can be placed on substrates to retain the high stability and expand the applicability of the material. This Review focuses on the transfer of the all-inorganic cesium lead halide NCs (synthesized in solutions) onto matrix materials and their direct synthesis on these bases, including the inert shell growth (inorganic and organic shell), embedment in matrixes (e.g., metal organic frameworks, porous SiO2, glass, ZrO2, Al2O3, and AlOOH), and direct synthesis in substrates. In particular, the strategies for stability and PL property improvement of the materials are also summarized. The purpose of this Review is to provide inspiration for the encapsulation of cesium lead halide NCs with high brightness and stability in matrixes to expand the applicability of these materials in wide color gamut backlighting (e.g., white-light-emitting devices).
Collapse
Affiliation(s)
- Xiao Zhang
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow 31-155, Poland
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
25
|
Su K, Yuan SX, Wu LY, Liu ZL, Zhang M, Lu TB. Nanoscale Janus Z-Scheme Heterojunction for Boosting Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301192. [PMID: 37069769 DOI: 10.1002/smll.202301192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Artificial photosynthesis for CO2 reduction coupled with water oxidation currently suffers from low efficiency due to inadequate interfacial charge separation of conventional Z-scheme heterojunctions. Herein, an unprecedented nanoscale Janus Z-scheme heterojunction of CsPbBr3 /TiOx is constructed for photocatalytic CO2 reduction. Benefitting from the short carrier transport distance and direct contact interface, CsPbBr3 /TiOx exhibits significantly accelerated interfacial charge transfer between CsPbBr3 and TiOx (8.90 × 108 s-1 ) compared with CsPbBr3 :TiOx counterpart (4.87 × 107 s-1 ) prepared by traditional electrostatic self-assembling. The electron consumption rate of cobalt doped CsPbBr3 /TiOx can reach as high as 405.2 ± 5.6 µmol g-1 h-1 for photocatalytic CO2 reduction to CO coupled with H2 O oxidation to O2 under AM1.5 sunlight (100 mW cm-2 ), over 11-fold higher than that of CsPbBr3 :TiOx , and surpassing the reported halide-perovskite-based photocatalysts under similar conditions. This work provides a novel strategy to boost charge transfer of photocatalysts for enhancing the performance of artificial photosynthesis.
Collapse
Affiliation(s)
- Ke Su
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Su-Xian Yuan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Li-Yuan Wu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhao-Lei Liu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
26
|
Hooper RW, Lin K, Veinot JGC, Michaelis VK. 3D to 0D cesium lead bromide: A 79/81Br NMR, NQR and theoretical investigation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107472. [PMID: 37186965 DOI: 10.1016/j.jmr.2023.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Inorganic metal halides offer unprecedented tunability through elemental variation of simple three-element compositions, but can exhibit complicated phase behaviour, degradation, and microscopic phenomena (disorder/dynamics) that play an integral role for the bulk-level chemical and physical properties of these materials. Understanding the halogen chemical environment in such materials is crucial to addressing many of the concerns regarding implementing these materials in commercial applications. In this study, a combined solid-state nuclear magnetic resonance, nuclear quadrupole resonance and quantum chemical computation approach is used to interrogate the Br chemical environment in a series of related inorganic lead bromide materials: CsPbBr3, CsPb2Br5, and Cs4PbBr6. The quadrupole coupling constants (CQ) were determined to range from 61 to 114 MHz for 81Br, with CsPbBr3 exhibiting the largest measured CQ and Cs4PbBr6 the smallest. GIPAW DFT was shown to be an excellent pre-screening tool for estimating the EFG of Br materials and can increase experimental efficiency by providing good starting estimates for acquisition. Finally, the combination of theory and experiment to inform the best methods for expanding further to the other quadrupolar halogens is discussed.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Katherine Lin
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
27
|
Zhang Y, Hou G, Wu Y, Chen M, Dai Y, Liu S, Zhao Q, Lin H, Fang J, Jing C, Chu J. Surface Reconstruction of CsPbBr 3 Nanocrystals by the Ligand Engineering Approach for Achieving High Quantum Yield and Improved Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6222-6230. [PMID: 37079335 DOI: 10.1021/acs.langmuir.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.
Collapse
Affiliation(s)
- Yu Zhang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Guangning Hou
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yong Wu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Maosheng Chen
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yannan Dai
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Shaohua Liu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Qingbiao Zhao
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Hechun Lin
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junfeng Fang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junhao Chu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
28
|
Peltek OO, Talianov PM, Krylova A, Polushkin AS, Anastasova EI, Mikushina DD, Gets D, Zelenkov LE, Khubezhov S, Pushkarev A, Zyuzin MV, Makarov SV. Ligand-free template-assisted synthesis of stable perovskite nanocrystals with near-unity photoluminescence quantum yield within the pores of vaterite spheres. NANOSCALE 2023; 15:7482-7492. [PMID: 37017125 DOI: 10.1039/d3nr00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ligand-free methods for the synthesis of halide perovskite nanocrystals are of great interest because of their excellent performance in optoelectronics and photonics. In addition, template-assisted synthesis methods have become a powerful tool for the fabrication of environmentally stable and bright nanocrystals. Here we develop a novel approach for the facile ligand-free template-assisted fabrication of perovskite nanocrystals with a near-unity absolute quantum yield, which involves CaCO3 vaterite micro- and submicrospheres as templates. We show that the optical properties of the obtained nanocrystals are affected not mainly by the template morphology, but strongly depend on the concentration of precursor solutions, anion and cation ratio, as well as on adding defect-passivating rare-earth dopants. The optimized samples are further tested as infrared radiation visualizers exhibiting promising characteristics comparable to those that are commercially available.
Collapse
Affiliation(s)
- Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Pavel M Talianov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Anna Krylova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Artem S Polushkin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Elizaveta I Anastasova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 197101, Russian Federation
| | - Daria D Mikushina
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Dmitri Gets
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Lev E Zelenkov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Soslan Khubezhov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Anatoly Pushkarev
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
29
|
Zhou X, Bose R, Zhu X, Mehta A, Kim MJ, Malko AV. Highly Emissive Zero-Dimensional Cesium Lead Iodide Perovskite Nanocrystals with Thermally Activated Delayed Photoluminescence. J Phys Chem Lett 2023; 14:2933-2939. [PMID: 36930797 DOI: 10.1021/acs.jpclett.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We utilized a modified reverse-microemulsion method to develop highly emissive and photostable zero-dimensional (0D) Cs4Pb(Br1-xIx)6 perovskite nanocrystals (PNCs). We employed single-particle photoluminescence (PL) spectroscopy to explore blinking statistics and demonstrate single-photon emission from individual PNCs. Low-temperature blinking and photon correlation studies revealed a transition from single- to multiphoton emission with progressively longer "delayed" PL components, reaching ∼70 ns at room temperature and representing a distinctive behavior to previously known iodide PNCs. Such thermally activated PL emission is explained by the existence of defect-related "reservoir" states, feeding back into the PNC's emissive state and providing multiple photons within a single excitation cycle. This work establishes a new member in the 0D class of perovskite materials, studies its photophysical properties, and reveals its potential for future optoelectronic applications.
Collapse
|
30
|
Li X, Wang Z, Sun H, Bai F, Xu S, Wang C. Solvent stimuli-responsive off-on fluorescence induced by synergistic effect of doping and phase transformation for Te 4+ doped indium halide perovskite: Giving printable and colorless ink for information encryption and decryption. J Colloid Interface Sci 2023; 633:808-816. [PMID: 36493745 DOI: 10.1016/j.jcis.2022.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Since traditional fluorescent materials are too easily observed by the eyes just under the UV light, off-on fluorescent materials are explored as the new generation of fluorescent labels. In the "off" state, such off-on fluorescent labels cannot be observed by naked eyes under either natural light or UV light. Only after a specific decryption treatment to make the fluorescent materials turning into the "on" state, the fluorescent labels can be observed under the UV light. Up to now, it is still a challenge to prepare fluorescent inks with aforementioned ideal properties by using halide perovskite materials. Herein, we reported the first example of Te4+ doped indium halide perovskite inks with both off-on fluorescence under solvent stimuli and invisible ink color by the naked eyes. The synergistic effect of doping/undoping of Te4+ together with the reversible phase transformation between Cs2InCl5(H2O) and Cs3InCl6 under solvent stimuli is key for the off-on fluorescence of crystals. Under acid solvent, the substitutional doping of Te4+ during the process of phase transformation from Cs3InCl6 to Cs2InCl5(H2O):Te4+ gives rise to "turning-on" orange emission from Te-induced self-trap emission (STE). Under the stimuli of methanol, the dissolution of Te4+ from the crystals destroys the structure of Te4+ in ligand-field and results in "turning-off" Te-induced emission during the process of phase transformation from Cs2InCl5(H2O):Te4+ to Cs3InCl6. On the basis of the Te4+ doped indium halide perovskite, printable and colorless ink can be prepared for the confidential information encryption and decryption. Since the mixture of Cs3InCl6 crystals and TeCl4 have no absorption in visible light scope, the printed encrypted information by such off-state fluorescent ink is colorless and invisible by the naked eyes under either ambient light or UV light. After decryption by acid solvent stimuli, the resulted Cs2InCl5(H2O):Te4+ doping crystals have a large Stokes shift with absorption below 450 nm from the excitation of Te4+ in ligand-field and emission around 570 nm from Te-induced STE. It makes the decryption information still colorless and invisible by the naked eyes under the ambient light but visible and readable under the UV light. In comparison to traditional undoped CsPbBr3/CsPb2Br5 perovskites with small Stokes shift and eye-visible ink color, the current colorless Te4+doped indium halide perovskites are no doubt providing better security level for both encrypted and decrypted information.
Collapse
Affiliation(s)
- Xiang Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhiwei Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Hongcan Sun
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Fuquan Bai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuhong Xu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
31
|
Guan J, Yang D, Ma J, Shen Y, Xu Q, Hu X. Ultra-stable CsPbBr 3@PbBrOH nanorods for fluorescence labeling application based on methylimidazole-assisted synthesis. J Mater Chem B 2023; 11:1705-1712. [PMID: 36723145 DOI: 10.1039/d2tb02502g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The extension application of perovskites in aqueous media such as bioassays requires the development of a water-stable perovskite with a simple preparation process and low cost. However, the degradation of perovskites in aqueous solution is still a thorny problem. Here, we develop a methylimidazole-assisted two-step synthesis protocol to prepare CsPbBr3@PbBrOH nanorods with superior water stability and remarkable optical properties at room temperature. The synergy of 2-methylimidazole (2-MIM), an N-donor ligand, with water can not only facilitate CsPbBr3 formation and suppress CsPb2Br5 or Cs4PbBr6 formation, but also promote the formation of a PbBrOH shell capping CsPbBr3. 2-MIM is ionized into 2-MIM- in DMF and 2-MIM+ in water. They passivated the surface defects and changed the crystallization environment, leading to water-stable CsPbBr3@PbBrOH. The obtained CsPbBr3@PbBrOH nanorods can still maintain 91% PL intensity after being stored in water for more than 2 months. Furthermore, the CsPbBr3@PbBrOH nanorods show excellent stability in polar solvents, water, and phosphate buffer solution in a wide pH range, as well as better thermal and irradiation stability. In addition, the CsPbBr3@PbBrOH nanorods are further functionalized with polydopamine (PDA) for biomolecular immobilization and immunoassay studies. The resulting assay shows a detection limit of 0.003 ng mL-1 for IgG detection, illustrating important progress towards expanding fluorescence labeling application of perovskite nanomaterials for immunoassays.
Collapse
Affiliation(s)
- Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Junyi Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yingzhuo Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
32
|
Bhatia H, Martin C, Keshavarz M, Dovgaliuk I, Schrenker NJ, Ottesen M, Qiu W, Fron E, Bremholm M, Van de Vondel J, Bals S, Roeffaers MBJ, Hofkens J, Debroye E. Deciphering the Role of Water in Promoting the Optoelectronic Performance of Surface-Engineered Lead Halide Perovskite Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7294-7307. [PMID: 36705637 DOI: 10.1021/acsami.2c20605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lead halide perovskites are promising candidates for high-performance light-emitting diodes (LEDs); however, their applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and water-treated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.
Collapse
Affiliation(s)
- Harshita Bhatia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Cristina Martin
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
- Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, C/ José María Sánchez Ibañez s/n, 02071Albacete, Spain
| | - Masoumeh Keshavarz
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Iurii Dovgaliuk
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL Université, 75005Paris, France
| | - Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020Wilrijk, Belgium
| | - Martin Ottesen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000Aarhus C, Denmark
| | - Weiming Qiu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Eduard Fron
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Martin Bremholm
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000Aarhus C, Denmark
| | - Joris Van de Vondel
- Quantum Solid-State Physics (QSP), Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven3001, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020Wilrijk, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, 3001Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| |
Collapse
|
33
|
Yang D, Zhang X, Liu S, Xu Z, Yang Y, Li X, Ye Q, Xu Q, Zeng H. Diverse CsPbI 3 assembly structures: the role of surface acids. NANOSCALE 2023; 15:1637-1644. [PMID: 36594626 DOI: 10.1039/d2nr06208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface ligand engineering, seed introduction and external driving forces play major roles in controlling the anisotropic growth of halide perovskites, which have been widely established in CsPbBr3 nanomaterials. However, colloidal CsPbI3 nanocrystals (NCs) have been less studied due to their low formation energy and low electronegativity. Here, by introducing different molar ratios of surface acids and amines to limit the monomer concentration of lead-iodine octahedra during nucleation, we report dumbbell-shaped CsPbI3 NCs obtained by the in situ self-assembly of nanospheres and nanorods with average sizes of 89 nm and 325 nm, respectively, which showed a high photoluminescence quantum yield of 89%. Structural and surface state analyses revealed that the strong binding of benzenesulfonic acid promoted the formation of a Pb(SO3-)x-rich surface of CsPbI3 assembly structures. Furthermore, the addition of benzenesulfonic acid increases the supersaturation threshold and the solubility of PbI2 in a high-temperature reaction system, and controls effectively the lead-iodine octahedron monomer concentration in the second nucleation stage. As a result, the as-synthesized CsPbI3-Sn NCs exhibited different assembly morphologies and high PLQYs, among which the role of sulfonate groups can be further verified by UV absorption and surface characteristics. The strategy provides a new frontier to rationally control the surface ligand-induced self-assembly structures of perovskites.
Collapse
Affiliation(s)
- Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xuebin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Shijia Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Zhiheng Xu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
34
|
Das A, Debnath T. Water-Triggered Chemical Transformation of Perovskite Nanocrystals. Chemistry 2023; 29:e202202475. [PMID: 36259609 DOI: 10.1002/chem.202202475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 12/03/2022]
Abstract
Recently emerged lead-halide perovskite nanocrystals (PNCs) are promising optoelectronic material due to their easy solution processability, wide range of color tunability, as well as very high photoluminescence quantum yield. Despite their significant success in lab-scale optoelectronic applications, the long-term stability becomes the main issue, hindering them towards commercialization. The highly ionic nature of such lead-halide structure makes them extremely unstable in water and air. But a very few groups have taken the advantage of such nature of the crystal structure for water-triggered chemical transformation towards shape, composition, and morphology controlled stable and bright PNCs, which are otherwise difficult to obtain by typical direct approach. Furthermore, using polymer as an encapsulating layer for the PNCs, water-soluble stable PNCs have been prepared. In this review, the recent progress on the water-hexane interface chemistry towards chemical transformation to produce several PNCs is described. Such method not only ensure to yield several shape-controlled perovskites nanocrystals, but also formation of perovskites in aqueous phase that show promising application towards bio-imaging.
Collapse
Affiliation(s)
- Avik Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati (IIT G), Guwahati, Assam, 781039, India
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology Guwahati (IIT G), Guwahati, Assam, 781039, India
| |
Collapse
|
35
|
Precursor silanization assisted synthesis and optical tuning of dual-phase perovskite nanocrystals embedded in silica matrix with high environmental stability. J Colloid Interface Sci 2023; 630:212-222. [DOI: 10.1016/j.jcis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
36
|
Huang CY, Li H, Wu Y, Lin CH, Guan X, Hu L, Kim J, Zhu X, Zeng H, Wu T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. NANO-MICRO LETTERS 2022; 15:16. [PMID: 36580150 PMCID: PMC9800676 DOI: 10.1007/s40820-022-00983-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 05/19/2023]
Abstract
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaoming Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
37
|
Rao L, Sun B, Zhang Q, Wen M, Zhang J, Zhong G, Fu T, Niu X, Tang Y. Highly emissive green CsPbBr 3/Cs 4PbBr 6 composites: formation kinetics, excellent heat, light, and polar solvent resistance, and flexible light-emitting application. OPTICS EXPRESS 2022; 30:45376-45392. [PMID: 36522944 DOI: 10.1364/oe.474545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Benefit from their near-unity photoluminescence quantum yield (PL QY), narrow emission band, and widely tunable bandgap, metal halide perovskites have shown promising in light-emitting applications. Despite such promise, how to facile, environmentally-friendly, and large-scale prepare solid metal halide perovskite with high emission and stability remains a challenging. Herein, we demonstrate a convenient and environmentally-friendly method for the mass synthesis of solid CsPbBr3/Cs4PbBr6 composites using high-power ultrasonication. Adjusting key experimental parameters, bright emitting CsPbBr3/Cs4PbBr6 solids with a maximum PL QY of 71% were obtained within 30 min. XRD, SEM, TEM, Abs/PL, XPS, and lifetime characterizations provide solid evidence for forming CsPbBr3/Cs4PbBr6 composites. Taking advantage of these composites, the photostability, thermostability, and polar solvent stability of CsPbBr3/Cs4PbBr6 are much improved compared to CsPbBr3. We further demonstrated CsPbBr3/Cs4PbBr6 use in flexible/stretchable film and high-power WLEDs. After being subjected to bending, folding, and twisting, the film retains its bright emission and exhibits good resistance to mechanical deformation. Additionally, our WLEDs display a superior, durable high-power-driving capability, operating currents up to 300 mA and maintaining high luminous intensity for 50 hours. Such highly emissive and stable metal halide perovskites make them promising for solid-state lighting, lasing, and flexible/stretchable display device applications.
Collapse
|
38
|
Titanium oxide mediated rapid charge separation in halide perovskite for efficient photocatalytic CO2 reduction. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Piotrowski M, Ge Z, Wang Y, Bandela AK, Thumu U. Programmable precise kinetic control over crystal phase, size, and equilibrium in spontaneous metathesis reaction for Cs-Pb-Br nanostructure patterns at room temperature. NANOSCALE 2022; 14:16806-16815. [PMID: 36300506 DOI: 10.1039/d2nr04102b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Growth kinetics involved in spontaneous random clustering of perovskite precursors to a particular cesium-lead-bromide (Cs-Pb-Br) nanocrystal (NC) is a poorly understood phenomenon and its spectroscopic investigation is highly challenging. There is scarcely any method that has been optimized yet in which perovskites and their related NCs of a particular size can be grown, viewed, or tuned to another by reaction handling. Here, for the first time, we shed light on the largely overlooked process of growth kinetics of these transformations throughout the reaction trajectory of anionic [PbBrx]n- crystallization dictated by Cs+ cation and report a simple and direct approach to control the metathesis reaction between two precursors (specifically Cs+- and PbBr2-associated oligomeric complexes) in one solvent at room temperature to monitor the NC growth characteristics in a stepwise manner even in the early stages of nucleation. Altering the molar ratio of the two precursors up to a factor of 10 leads to the formation of three prominent phases (CsPbBr3, Cs4PbBr6, CsBr) as dictated by Cs+ to trigger distinct morphological forms (nanobelts, nanoplatelets, rhombohedral NCs, pseudo-rhombic NCs, spherical CsBr NCs, cubic CsBr NCs) including a transient phase that is formed out of linearly self-assembled CsPbBr3 clusters. Our results pave the way towards understanding spontaneous crystallization to develop well-defined, hassle-free routes for diverse perovskite NCs in a simple yet controlled manner.
Collapse
Affiliation(s)
- Marek Piotrowski
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhongsheng Ge
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yixi Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Anil Kumar Bandela
- Department of Chemistry, Ben Gurion University of the Negev Beer, Sheva 84105, Israel.
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
40
|
Pathipati SR, Shah MN, Akhil S, Mishra N. In situ synthesis of high-quantum-efficiency and stable bromide-based blue-emitting perovskite nanoplatelets. NANOSCALE ADVANCES 2022; 4:4766-4781. [PMID: 36381516 PMCID: PMC9642352 DOI: 10.1039/d2na00354f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We present a facile synthetic approach for the growth of two-dimensional CsPbBr3 nanoplatelets (NPLs) in the temperature range of 50-80 °C via the vacuum-assisted low-temperature (VALT) method. In this method, we utilized the solubility of the PbBr2 precursor at temperatures high than the reaction temperature, thus making Br available during the reaction to form NPLs with fewer defects. The high chemical availability of Br during the reaction changes the growth dynamics and formation of highly crystalline nanoplatelets. Using this method, we have synthesized NPLs with an emission wavelength range of 450 to 485 nm that have high photoluminescence quantum yields (PLQY) from 80 to 100%. The synthesized NPLs retain their initial PLQY of about 80% after one month at ambient conditions. The formation of NPLs with fewer defects and enhanced radiative recombination was further confirmed by X-ray diffraction (XRD), reduced Urbach energy, time-resolved photocurrent measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy. Additionally, we utilized the synthesized NPLs for the fabrication of down-conversion light emitting diodes (LEDs), and the electroluminescence peak was barely shifted compared to the photoluminescence peak.
Collapse
Affiliation(s)
- Srinivasa Rao Pathipati
- Laboratory for Semiconductor Research, Department of Physics, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology, and Research (Deemed University) Vadlamudi Guntur Andhra Pradesh India 522213
| | - Muhammad Naeem Shah
- College of Electronics and Information Engineering, Shenzhen University Shenzhen Guangdong P. R. China 518000
| | - Syed Akhil
- Department of Chemistry, SRM University - AP, Andhra Pradesh Neerukonda, Guntur Andhra Pradesh 522240 India
| | - Nimai Mishra
- Department of Chemistry, SRM University - AP, Andhra Pradesh Neerukonda, Guntur Andhra Pradesh 522240 India
| |
Collapse
|
41
|
Bi J, Chang J, Lei M, Zhang W, Meng F, Wang G. Thiourea-Assisted Facile Fabrication of High-Quality CsPbBr 3 Perovskite Films for High-Performance Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48888-48896. [PMID: 36269617 DOI: 10.1021/acsami.2c13658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inorganic CsPbBr3 perovskite solar cells have attracted widespread attention recently because of their decent efficiency and good ambient stability. Nevertheless, the fabrication of high-quality CsPbBr3 perovskite via the conventional solution-processing strategy still faces great challenges because the solubility of CsBr in the conventional solvent is poor. Here, we develop a facile thiourea-assisted two-step spin-coating process to fabricate a CsPbBr3 perovskite film with high phase purity and crystallinity and enlarged crystal grains. Thiourea is introduced into the PbBr2 layer during the first-step spin-coating process, which promotes the wettability of the PbBr2 layer and produces the space for growing large perovskite grains. The green high-concentration CsBr/H2O solution is adopted at the second-step spin-coating process, enabling enough CsBr to be deposited by a facile one-step process. By optimizing the content of thiourea, a compact CsPbBr3 perovskite film with a smooth surface, large grains, and high phase purity and crystallinity is formed. Consequently, the fabricated perovskite solar cell with the architecture of FTO/TiO2/CsPbBr3 film/carbon exhibits a superior performance with a high efficiency of 9.11%. In addition, the unencapsulated device preserves over 90% of its initial efficiency after storage at ambient conditions for 45 days.
Collapse
Affiliation(s)
- Jiayu Bi
- School of Chemistry and Materials, Bohai University, Jinzhou121003, China
| | - Jiarun Chang
- School of Chemistry and Materials, Bohai University, Jinzhou121003, China
| | - Miao Lei
- School of Chemistry and Materials, Bohai University, Jinzhou121003, China
| | - Wei Zhang
- School of Chemistry and Materials, Bohai University, Jinzhou121003, China
| | - Fanning Meng
- School of Chemistry and Materials, Bohai University, Jinzhou121003, China
| | - Guiqiang Wang
- School of Chemistry and Materials, Bohai University, Jinzhou121003, China
| |
Collapse
|
42
|
Chen R, Liu M, Wang M, Zhang Y, Shan B, Cao K. Acid-mediated phase transition synthesis of stable nanocrystals for high-power LED backlights. NANOSCALE 2022; 14:13628-13638. [PMID: 36093742 DOI: 10.1039/d2nr03431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite nanocrystals (PNCs) have excellent optical and optoelectronic properties, but their intrinsic instability hampers their practical applications. Herein, stable CsPbBr3 nanocrystals (NCs) are fabricated with triethylaluminium (TMA, a Lewis acid) and hydrobromic acid by the co-assisted transformation of Cs4PbBr6 NCs. TMA forms a cross-linked alumina (AlOx) encapsulation layer on the nanocrystal surface to suppress the deformation and ion migration. The introduction of hydrobromic acid acts as a binding ligand, and the acidified reaction environment provides conditions for the water-triggered phase transformation of Cs4PbBr6 NCs into CsPbBr3 NCs. The synergistic effect of TMA and hydrobromic acid improves the stability of CsPbBr3 NCs. The obtained CsPbBr3 NC film maintains a high photoluminescence (PL) intensity after immersion in water. When stored in the atmosphere for over 30 days, the PL intensity of the CsPbBr3 NC film hardly decreases. The proposed acid co-assisted phase transformation strategy provides a new avenue for the stabilization of PNCs which exhibits wider application prospects in backlight displays.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Hubei 430074, China.
| | - Mengjia Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Hubei 430074, China.
| | - Min Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Hubei 430074, China
| | - Yinghao Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Hubei 430074, China.
| | - Bin Shan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Hubei 430074, China
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Hubei 430074, China.
| |
Collapse
|
43
|
Lu D, Urayama A, Saito N. Enhanced luminescence and dispersion stability of lead halide perovskite nanocrystals by surface modification via O/W emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Pan Q, Hu J, Fu J, Lin Y, Zou C, Di D, Wang Y, Zhang Q, Cao M. Ultrahigh Stability of Perovskite Nanocrystals by Using Semiconducting Molecular Species for Displays. ACS NANO 2022; 16:12253-12261. [PMID: 35913128 DOI: 10.1021/acsnano.2c03062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The instability of perovskite nanocrystals (NCs) to moisture, heat, and blue light severely hinders their commercial applications in quantum dot displays. Here, organic semiconducting molecules are introduced onto CsPbBr3 NCs, and the as-obtained CsPbBr3 NCs have a high photoluminescent quantum yield (PLQY) of 82% and extremely high stability in harsh commercial accelerated operational stability tests (such as high temperature (85 °C) and high humidity (85%)). The products can survive and maintain more than 80% of the initial PL intensity value under high temperature, high humidity, and long-term blue light irradiation for hundreds to thousands of hours. They are among the most stable perovskite NCs and even superior to those encapsulated by inert shells and commercial green-emissive CdSe@ZnS quantum dots (QDs). The mechanism of the exceptional stability has been proposed, mainly including the strong interaction and moderate photocarrier transfer between the quasi type II heterostructure formed by the molecule and CsPbBr3. By using these stable CsPbBr3 NCs, a QD-enhanced liquid crystal display prototype has been successfully fabricated with a wide color gamut. This work provides understandings on the functionality of ligands in perovskite fields and a promising prospect in perovskite-based display technologies.
Collapse
Affiliation(s)
- Qi Pan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jingjing Hu
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), 99 Jinjihu Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jie Fu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yi Lin
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), 99 Jinjihu Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chen Zou
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Yunjun Wang
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), 99 Jinjihu Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Mishra A, Bose R, Zheng Y, Xu W, McMullen R, Mehta AB, Kim MJ, Hsu JWP, Malko AV, Slinker JD. Stable and Bright Electroluminescent Devices utilizing Emissive 0D Perovskite Nanocrystals Incorporated in a 3D CsPbBr 3 Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203226. [PMID: 35679199 DOI: 10.1002/adma.202203226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The 0D cesium lead halide perovskite Cs4 PbBr6 has drawn remarkable interest due to its highly efficient robust green emission compared to its 3D CsPbBr3 counterpart. However, seizing the advantages of the superior photoluminescence properties for practical light-emitting devices remains elusive. To date, Cs4 PbBr6 has been employed only as a higher-bandgap nonluminescent matrix to passivate or provide quantum/dielectric confinement to CsPbBr3 in light-emitting devices and to enhance its photo-/thermal/environmental stability. To resolve this disparity, a novel solvent engineering method to incorporate highly luminescent 0D Cs4 PbBr6 nanocrystals (perovskite nanocrystals (PNCs)) into a 3D CsPbBr3 film, forming the active emissive layer in single-layer perovskite light-emitting electrochemical cells (PeLECs) is designed. A dramatic increase of the maximum external quantum efficiency and luminance from 2.7% and 6050 cd m-2 for a 3D-only PeLEC to 8.3% and 11 200 cd m-2 for a 3D-0D PNC device with only 7% by weight of 0D PNCs is observed. The majority of this increase is driven by the efficient inherent emission of the 0D PNCs, while the concomitant morphology improvement also contributes to reduced leakage current, reduced hysteresis, and enhanced operational lifetime (half-life of 129 h), making this one of the best-performing LECs reported to date.
Collapse
Affiliation(s)
- Aditya Mishra
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Riya Bose
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Yangzi Zheng
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Weijie Xu
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Reema McMullen
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Abhas B Mehta
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Moon J Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Julia W P Hsu
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Anton V Malko
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| | - Jason D Slinker
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080-3021, USA
| |
Collapse
|
46
|
Min S, Choe H, Cho J. Stabilizing and accessing across ternary phase cesium lead bromide perovskite nanocrystals: thermodynamic and kinetic controls. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Seonhong Min
- School of Chemistry and Energy, Sungshin Women’s University, Seoul, South Korea
| | - Hyejin Choe
- School of Chemistry and Energy, Sungshin Women’s University, Seoul, South Korea
| | - Junsang Cho
- School of Chemistry and Energy, Sungshin Women’s University, Seoul, South Korea
| |
Collapse
|
47
|
Li M, Yang D, Huang X, Zhang H, Zhao Y, Yin B, Pan Q, Kang J, Zheng N, Liu X, Qiu J, Yang Z, Dong G. Coupling Localized Laser Writing and Nonlocal Recrystallization in Perovskite Crystals for Reversible Multidimensional Optical Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201413. [PMID: 35419852 DOI: 10.1002/adma.202201413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The ability to generate and manipulate photoluminescence (PL) with high spatial resolution has been of primary importance for applications in micro-optoelectronics, while the emerging metal halide perovskites offer novel material platforms where diverse photonic functionalities and fine structuring are constantly explored. Herein, micro-PL patterns consisting of highly luminescent CsPbBr3 nanocrystals (NCs) in nonluminescent perovskite crystals are directly fabricated by focused femtosecond laser irradiation. Further modulation with a moisture field leads to the selective dissolution of the laser-destabilized perovskite structures as revealed by density functional theory simulations, thus allowing for facile control of the reversible PL from the recrystallization of moisture-induced CsPbBr3 NCs. By leveraging the coupled laser writing and moisture modulation, multimodal information encryption is realized by reversible encryption-reading and repeatable erasing-refreshing. This optical storage mechanism is also extended to 3D and 4D by realizing spatially and temporally resolved optical encryption. The coupled multifield modulation on perovskite crystals can enable potential applications in optical storage and encryption, and offer a novel solution for the creation and manipulation of localized PL structures with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Mingjia Li
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dandan Yang
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xiongjian Huang
- State Key Laboratory of Luminescent Materials and Devices, and School of Physics and Optoelectronic, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hao Zhang
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yifei Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bozhao Yin
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Qiwen Pan
- State Key Laboratory of Luminescent Materials and Devices, and School of Physics and Optoelectronic, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Juan Kang
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, and College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhongmin Yang
- State Key Laboratory of Luminescent Materials and Devices, and School of Physics and Optoelectronic, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guoping Dong
- State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
48
|
Yang H, Cai T, Dube L, Chen O. Synthesis of double perovskite and quadruple perovskite nanocrystals through post-synthetic transformation reactions. Chem Sci 2022; 13:4874-4883. [PMID: 35655869 PMCID: PMC9067587 DOI: 10.1039/d2sc00574c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lead-free halide perovskite nanocrystals (NCs) represent a group of emerging materials which hold promise for various optical and optoelectronic applications. Exploring facile synthetic methods for such materials has been of great interest to not only fundamental research but also technological implementations. Herein, we report a fundamentally new method to access lead-free Bi-based double perovskite (DP) and quadruple perovskite (or layered double perovskite, LDP) NCs based on a post-synthetic transformation reaction of Cs3BiX6 (X = Cl, Br) zero-dimensional (0D) perovskite NCs under mild conditions. The produced NCs show good particle uniformity, high crystallinity, and comparable optical properties to the directly synthesized NCs. The relatively slow kinetics and stop-on-demand feature of the transformation reaction allow real-time composition-structure-property investigations of the reaction, thus elucidating a cation-alloyed intermediate-assisted transformation mechanism. Our study presented here demonstrates for the first time that post-synthetic transformation of 0D perovskite NCs can serve as a new route towards the synthesis of high-quality lead-free perovskite NCs, and provides valuable insights into the crystal structures, excitonic properties and their relationships of perovskite NCs.
Collapse
Affiliation(s)
- Hanjun Yang
- Department of Chemistry, Brown University 324 Brook St. Providence Rhode Island 02912 USA
| | - Tong Cai
- Department of Chemistry, Brown University 324 Brook St. Providence Rhode Island 02912 USA
| | - Lacie Dube
- Department of Chemistry, Brown University 324 Brook St. Providence Rhode Island 02912 USA
| | - Ou Chen
- Department of Chemistry, Brown University 324 Brook St. Providence Rhode Island 02912 USA
| |
Collapse
|
49
|
Tang Y, Yin C, Jing Q, Zhang C, Yu ZG, Lu Z, Xiao M, Wang X. Quantized Exciton Motion and Fine Energy-Level Structure of a Single Perovskite Nanowire. NANO LETTERS 2022; 22:2907-2914. [PMID: 35362973 DOI: 10.1021/acs.nanolett.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The quantum-confinement effect profoundly influences the exciton energy-level structures and recombination dynamics of semiconductor nanostructures but remains largely unexplored in traditional one-dimensional nanowires mainly due to their poor optical qualities. Here, we show that in defect-tolerant perovskite material of highly luminescent CsPbBr3 nanowires, the exciton's center-of-mass motion perpendicular to the axial direction is severely confined. This is reflected in the two sets of photoluminescence spectra emitted from a single CsPbBr3 nanowire, each of which consists of doublet peaks with linear polarizations perpendicular and parallel to the axial direction. Moreover, different exciton states can be mixed by the Rashba spin-orbit coupling effect, resulting in two single photoluminescence peaks with linear polarizations both along the nanowire axis. The above findings mark the emergence of an ideal platform for the exploration of intrinsic one-dimensional exciton photophysics and optoelectronics, thus bridging the long-missing research gap between the well-studied two- and zero-dimensional semiconductor nanostructures.
Collapse
Affiliation(s)
- Ying Tang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunyang Yin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiang Jing
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhi-Gang Yu
- Sivananthan Laboratories, Bolingbrook, Illinois 60440, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
50
|
Wu L, Wang Y, Kurashvili M, Dey A, Cao M, Döblinger M, Zhang Q, Feldmann J, Huang H, Debnath T. Interfacial Manganese-Doping in CsPbBr 3 Nanoplatelets by Employing a Molecular Shuttle. Angew Chem Int Ed Engl 2022; 61:e202115852. [PMID: 34995399 PMCID: PMC9305410 DOI: 10.1002/anie.202115852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Mn-doping in cesium lead halide perovskite nanoplatelets (NPls) is of particular importance where strong quantum confinement plays a significant role towards the exciton-dopant coupling. In this work, we report an immiscible bi-phasic strategy for post-synthetic Mn-doping of CsPbX3 (X=Br, Cl) NPls. A systematic study shows that electron-donating oleylamine acts as a shuttle ligand to transport MnX2 through the water-hexane interface and deliver it to the NPls. The halide anion also plays an essential role in maintaining an appropriate radius of Mn2+ and thus fulfilling the octahedral factor required for the formation of perovskite crystals. By varying the thickness of parent NPls, we can tune the dopant incorporation and, consequently, the exciton-to-dopant energy transfer process in doped NPls. Time-resolved optical measurements offer a detailed insight into the exciton-to-dopant energy transfer process. This new approach for post-synthetic cation doping paves a way towards exploring the cation exchange process in several other halide perovskites at the polar-nonpolar interface.
Collapse
Affiliation(s)
- Linzhong Wu
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhou215123JiangsuP. R. China
| | - Yiou Wang
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
| | - Mariam Kurashvili
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
| | - Amrita Dey
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhou215123JiangsuP. R. China
| | - Markus Döblinger
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13 (E)81377MünchenGermany
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow University199 Ren'ai RoadSuzhou215123JiangsuP. R. China
| | - Jochen Feldmann
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
| | - He Huang
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
- School of Optoelectronic Science and Engineering &Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215006P. R. China
| | - Tushar Debnath
- Chair for Photonics and OptoelectronicsNano-Institute MunichDepartment of PhysicsLudwig-Maximilians-Universität MünchenKöniginstr. 1080539MünchenGermany
| |
Collapse
|