1
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
2
|
Yu X, Li H, Miao X, Kang N, Sheng Y, Xu Z, Fu Z, Xu M, Zong R, Lu S. CoFe Oxides-Coated 2D Black Phosphorus for Flame-Retardant Nanocoatings with Tunable Mechanical Strength and Efficient Elimination of Toxic Gases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407060. [PMID: 39388516 DOI: 10.1002/smll.202407060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Indexed: 10/12/2024]
Abstract
2D black phosphorus (BP) degrades irreversibly into phosphate compounds under ambient conditions, which limits its application in a variety of fields. In this study, by coating amorphous ferric-cobalt oxides (CoFeO) on BP nanosheets, a multifunctional CoFeO@2D BP is successfully developed that effectively inhibited combustion and catalyzed CO oxidation to eliminate toxic gases. Strong affinity between transition-metal cations and BP allowed the uniform growth of amorphous ferric‒cobalt oxides on the BP surface, which effectively prevented the spontaneous degradation of 2D BP. By combining CoFeO@2D BP with gelatin and kosmotropic salts, the as-obtained nanocoatings are used for surface treatment of flammable polyurethane foam (PU). Kosmotropic ions induced strong hydrophobic interactions and bundling within the gelatin chains which significantly enhanced the mechanical performance of the PU. BP accelerates the carbonization of gelatin to inhibit the combustion of PU, and CoFe oxides, which act as true active centers to accelerate the oxidation of CO, effectively inhibiting the production of harmful gas. The release rate of CO decreases by 73% and the limiting oxygen index (LOI) increases from 17% to ≈32% during PU combustion. The developed novel 2D material opens the way for multifunctional coatings with integrated durability, flame retardancy, and high smoke suppression efficiency.
Collapse
Affiliation(s)
- Xiaoyang Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huan Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xuyang Miao
- Anhui Province Key Laboratory of Electric Fire and Safety Protection, State Grid Anhui Electric Power Research Institute, Hefei, 230601, China
| | - Ning Kang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Youjie Sheng
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xian, 710054, China
| | - Zhoumei Xu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhihao Fu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Mingjun Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ruowen Zong
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Shouxiang Lu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Wang H, Chen S, Chen X. Room-Temperature Self-Powered Infrared Spectrometer Based on a Single Black Phosphorus Heterojunction Diode. NANO LETTERS 2024; 24:326-330. [PMID: 38146954 DOI: 10.1021/acs.nanolett.3c04044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Infrared spectrometers with the ability to resolve the spectral intensity and wavelength simultaneously are widely used in industry and the laboratory. However, their huge volume, high price, and cryogenic operating temperature limit their applications in the rapidly developing field of portable devices. Here, we demonstrate a room-temperature self-powered infrared spectrometer based on a single black phosphorus (BP) heterojunction diode. The nonlinearly gate-tunable photocurrent spectrum involving quantum-confined Franz-Keldysh and Burstein-Moss effects in a single BP/MoS2 diode instead of using space-consuming detector arrays provides a new dimension for resolving the intensity and wavelength information of spectra simultaneously. The active area for spectral sensing is only 1500 μm2, and the photodetection range is from 1.7 to 3.6 μm. Room-temperature operation, micrometer-scale size, and silicon-compatible technology make the BP/MoS2 heterojunction a promising configuration for portable spectrometer applications.
Collapse
Affiliation(s)
- Han Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Shouheng Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Xiaolong Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
4
|
Lei Y, Ma J, Luo J, Huang S, Yu B, Song C, Xing Q, Wang F, Xie Y, Zhang J, Mu L, Ma Y, Wang C, Yan H. Layer-dependent exciton polarizability and the brightening of dark excitons in few-layer black phosphorus. Nat Commun 2023; 14:5314. [PMID: 37658093 PMCID: PMC10474117 DOI: 10.1038/s41467-023-41126-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
The evolution of excitons from 2D to 3D is of great importance in photo-physics, yet the layer-dependent exciton polarizability hasn't been investigated in 2D semiconductors. Here, we determine the exciton polarizabilities for 3- to 11-layer black phosphorus-a direct bandgap semiconductor regardless of the thickness-through frequency-resolved photocurrent measurements on dual-gate devices and unveil the carrier screening effect in relatively thicker samples. By taking advantage of the broadband photocurrent spectra, we are also able to reveal the exciton response for higher-index subbands under the gate electrical field. Surprisingly, dark excitons are brightened with intensity even stronger than the allowed transitions above certain electrical field. Our study not only sheds light on the exciton evolution with sample thickness, but also paves a way for optoelectronic applications of few-layer BP in modulators, tunable photodetectors, emitters and lasers.
Collapse
Affiliation(s)
- Yuchen Lei
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Junwei Ma
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Jiaming Luo
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Boyang Yu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Chaoyu Song
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Qiaoxia Xing
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Fanjie Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Yuangang Xie
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Jiasheng Zhang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Lei Mu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Yixuan Ma
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Chong Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Zhang M, Yang L, Wu X, Wang J. Black Phosphorus for Photonic Integrated Circuits. RESEARCH (WASHINGTON, D.C.) 2023; 6:0206. [PMID: 37593339 PMCID: PMC10430873 DOI: 10.34133/research.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Black phosphorus gives several advantages and complementarities over other two-dimensional materials. It has drawn extensive interest owing to its relatively high carrier mobility, wide tunable bandgap, and in-plane anisotropy in recent years. This manuscript briefly reviews the structure and physical properties of black phosphorus and targets on black phosphorus for photonic integrated circuits. Some of the applications are discussed including photodetection, optical modulation, light emission, and polarization conversion. Corresponding recent progresses, associated challenges, and future potentials are covered.
Collapse
Affiliation(s)
| | | | | | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering,
Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
6
|
Margot F, Lisi S, Cucchi I, Cappelli E, Hunter A, Gutiérrez-Lezama I, Ma K, von Rohr F, Berthod C, Petocchi F, Poncé S, Marzari N, Gibertini M, Tamai A, Morpurgo AF, Baumberger F. Electronic Structure of Few-Layer Black Phosphorus from μ-ARPES. NANO LETTERS 2023; 23:6433-6439. [PMID: 37460109 PMCID: PMC10375583 DOI: 10.1021/acs.nanolett.3c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (μ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.
Collapse
Affiliation(s)
- Florian Margot
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Simone Lisi
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Irène Cucchi
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Edoardo Cappelli
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Andrew Hunter
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Ignacio Gutiérrez-Lezama
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Group of Applied Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - KeYuan Ma
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian von Rohr
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Christophe Berthod
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Francesco Petocchi
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Samuel Poncé
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, BE-1348 Louvain-la-Neuve, Belgium
| | - Nicola Marzari
- Laboratory of Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Gibertini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna Tamai
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Alberto F Morpurgo
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Group of Applied Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Felix Baumberger
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
7
|
Cao R, Fan S, Yin P, Ma C, Zeng Y, Wang H, Khan K, Wageh S, Al-Ghamd AA, Tareen AK, Al-Sehemi AG, Shi Z, Xiao J, Zhang H. Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2260. [PMID: 35808105 PMCID: PMC9268368 DOI: 10.3390/nano12132260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Since atomically thin two-dimensional (2D) graphene was successfully synthesized in 2004, it has garnered considerable interest due to its advanced properties. However, the weak optical absorption and zero bandgap strictly limit its further development in optoelectronic applications. In this regard, other 2D materials, including black phosphorus (BP), transition metal dichalcogenides (TMDCs), 2D Te nanoflakes, and so forth, possess advantage properties, such as tunable bandgap, high carrier mobility, ultra-broadband optical absorption, and response, enable 2D materials to hold great potential for next-generation optoelectronic devices, in particular, mid-infrared (MIR) band, which has attracted much attention due to its intensive applications, such as target acquisition, remote sensing, optical communication, and night vision. Motivated by this, this article will focus on the recent progress of semiconducting 2D materials in MIR optoelectronic devices that present a suitable category of 2D materials for light emission devices, modulators, and photodetectors in the MIR band. The challenges encountered and prospects are summarized at the end. We believe that milestone investigations of 2D materials beyond graphene-based MIR optoelectronic devices will emerge soon, and their positive contribution to the nano device commercialization is highly expected.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Sidi Fan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Peng Yin
- College of Photoelectrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
| | - Chunyang Ma
- Research Center of Circuits and Systems, Peng Cheng Laboratory (PCL), Shenzhen 518055, China;
| | - Yonghong Zeng
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Huide Wang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.A.-G.)
| | - Ahmed A. Al-Ghamd
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.A.-G.)
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jing Xiao
- College of Physics and Electronic Engineering, Taishan University, Tai’an 271000, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| |
Collapse
|
8
|
Khaliji K, Martín-Moreno L, Avouris P, Oh SH, Low T. Twisted Two-Dimensional Material Stacks for Polarization Optics. PHYSICAL REVIEW LETTERS 2022; 128:193902. [PMID: 35622026 DOI: 10.1103/physrevlett.128.193902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The ability to control the light polarization state is critically important for diverse applications in information processing, telecommunications, and spectroscopy. Here, we propose that a stack of anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers. Moreover, we discuss an electrostatic-reconfigurable stack which can be tuned to operate as four different polarizers and be used for Stokes polarimetry.
Collapse
Affiliation(s)
- Kaveh Khaliji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Luis Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Phaedon Avouris
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
9
|
Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat Commun 2022; 13:1485. [PMID: 35304489 PMCID: PMC8933397 DOI: 10.1038/s41467-022-29171-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Image sensors with internal computing capability enable in-sensor computing that can significantly reduce the communication latency and power consumption for machine vision in distributed systems and robotics. Two-dimensional semiconductors have many advantages in realizing such intelligent vision sensors because of their tunable electrical and optical properties and amenability for heterogeneous integration. Here, we report a multifunctional infrared image sensor based on an array of black phosphorous programmable phototransistors (bP-PPT). By controlling the stored charges in the gate dielectric layers electrically and optically, the bP-PPT’s electrical conductance and photoresponsivity can be locally or remotely programmed with 5-bit precision to implement an in-sensor convolutional neural network (CNN). The sensor array can receive optical images transmitted over a broad spectral range in the infrared and perform inference computation to process and recognize the images with 92% accuracy. The demonstrated bP image sensor array can be scaled up to build a more complex vision-sensory neural network, which will find many promising applications for distributed and remote multispectral sensing. 2D materials represent a promising platform for machine vision and edge computing applications, although usually limited to ultraviolet and visible wavelengths. Here, the authors report the realization of a programmable image sensor based on black phosphorus, implementing multispectral imaging and analog in-memory computing functionalities in the near- to mid-infrared range.
Collapse
|
10
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, Moss DJ. Fabrication Technologies for the On-Chip Integration of 2D Materials. SMALL METHODS 2022; 6:e2101435. [PMID: 34994111 DOI: 10.1002/smtd.202101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
With compact footprint, low energy consumption, high scalability, and mass producibility, chip-scale integrated devices are an indispensable part of modern technological change and development. Recent advances in 2D layered materials with their unique structures and distinctive properties have motivated their on-chip integration, yielding a variety of functional devices with superior performance and new features. To realize integrated devices incorporating 2D materials, it requires a diverse range of device fabrication techniques, which are of fundamental importance to achieve good performance and high reproducibility. This paper reviews the state-of-art fabrication techniques for the on-chip integration of 2D materials. First, an overview of the material properties and on-chip applications of 2D materials is provided. Second, different approaches used for integrating 2D materials on chips are comprehensively reviewed, which are categorized into material synthesis, on-chip transfer, film patterning, and property tuning/modification. Third, the methods for integrating 2D van der Waals heterostructures are also discussed and summarized. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Zhigang Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, 94132, USA
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
11
|
Xu M, Cai X. Advances in integrated ultra-wideband electro-optic modulators [Invited]. OPTICS EXPRESS 2022; 30:7253-7274. [PMID: 35299491 DOI: 10.1364/oe.449022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Increasing data traffic and bandwidth-hungry applications require electro-optic modulators with ultra-wide modulation bandwidth for cost-efficient optical networks. Thus far, integrated solutions have emerged to provide high bandwidth and low energy consumption in compact sizes. Here, we review the design guidelines and delicate structures for higher bandwidth, applying them to lumped-element and traveling-wave electrodes. Additionally, we focus on candidate material platforms with the potential for ultra-wideband optical systems. By comparing the superiority and mechanism limitations of different integrated modulators, we design a future roadmap based on the recent advances.
Collapse
|
12
|
Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat Commun 2021; 12:5628. [PMID: 34561443 PMCID: PMC8463555 DOI: 10.1038/s41467-021-25941-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 11/08/2022] Open
Abstract
Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of ~452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons. Naturally occurring hyperbolic polaritons exist in a class of layered materials. Here, the authors show evidence, via optical spectroscopy, of hyperbolic exciton-polaritons in phosphorene, originating from its in-plane anisotropy and strong exciton resonances.
Collapse
|
13
|
Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X. 2D Materials Enabled Next-Generation Integrated Optoelectronics: from Fabrication to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003834. [PMID: 34105275 PMCID: PMC8188205 DOI: 10.1002/advs.202003834] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Indexed: 05/06/2023]
Abstract
2D materials, such as graphene, black phosphorous and transition metal dichalcogenides, have gained persistent attention in the past few years thanks to their unique properties for optoelectronics. More importantly, introducing 2D materials into silicon photonic devices will greatly promote the performance of optoelectronic devices, including improvement of response speed, reduction of energy consumption, and simplification of fabrication process. Moreover, 2D materials meet the requirements of complementary metal-oxide-semiconductor compatible silicon photonic manufacturing. A comprehensive overview and evaluation of state-of-the-art 2D photonic integrated devices for telecommunication applications is provided, including light sources, optical modulators, and photodetectors. Optimized by unique structures such as photonic crystal waveguide, slot waveguide, and microring resonator, these 2D material-based photonic devices can be further improved in light-matter interactions, providing a powerful design for silicon photonic integrated circuits.
Collapse
Affiliation(s)
- Zhao Cheng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Rui Cao
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Kangkang Wei
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuhan Yao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xinyu Liu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jianlong Kang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Jianji Dong
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhe Shi
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Xinliang Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
14
|
Liu Y, Tan Y, Liu Y, Jiang X, Zhang H, Chen F. Tailored negative/positive photoresponse of BP via doping. NANOTECHNOLOGY 2021; 32:185201. [PMID: 33477126 DOI: 10.1088/1361-6528/abde62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) is a promising material for photodetectors due to its excellent and broadband photoresponse. To realize a wide application of BP in photodetection, there is a continuous eagerness for new approaches to tailor photoresponse of BP for a specific purpose, such as high sensitivity and switching of negative/positive responses. Here, we demonstrate that the ion irradiation with controllable conditions can enhance the photoresponsivity of BP for two orders compared to the pristine one, and can select the positive/negative photoresponse of the BP. The range of the tailored photoresponse covers the whole optical spectrum, ranging from the visible (532 nm) to the mid-infrared (10 μm). This work shows a pathway to modulate the photoresponse of BP, which opens new possibilities for potential photonic applications.
Collapse
Affiliation(s)
- Yue Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, Jinan, 250100, People's Republic of China
| | - Yang Tan
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, Jinan, 250100, People's Republic of China
| | - Yanran Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, Jinan, 250100, People's Republic of China
| | - Xiantao Jiang
- Shenzhen Key Laboratory of Two Dimensional Materials and Devices, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Han Zhang
- Shenzhen Key Laboratory of Two Dimensional Materials and Devices, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, Jinan, 250100, People's Republic of China
| |
Collapse
|
15
|
Tofan D, Sakazaki Y, Walz Mitra KL, Peng R, Lee S, Li M, Velian A. Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Tofan
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Yukako Sakazaki
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Kendahl L. Walz Mitra
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Ruoming Peng
- Department of Electrical and Computer Engineering Department of Physics University of Washington Paul Allen Center 185 E Stevens Way NE Seattle WA 98195 USA
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering Department of Physics University of Washington Paul Allen Center 185 E Stevens Way NE Seattle WA 98195 USA
| | - Mo Li
- Department of Electrical and Computer Engineering Department of Physics University of Washington Paul Allen Center 185 E Stevens Way NE Seattle WA 98195 USA
| | - Alexandra Velian
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| |
Collapse
|
16
|
Tofan D, Sakazaki Y, Walz Mitra KL, Peng R, Lee S, Li M, Velian A. Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. Angew Chem Int Ed Engl 2021; 60:8329-8336. [PMID: 33480169 DOI: 10.1002/anie.202100308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/11/2022]
Abstract
Herein we introduce a facile, solution-phase protocol to modify the Lewis basic surface of few-layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft-ness are evaluated. The nature of the interaction between the Lewis acids and the bP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X-ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation of bP (>84 h for AlBr3 ), and the resulting field-effect transistors show excellent IV characteristics, photocurrent, and current stability, and are significantly p-doped. This protocol, chemically matched to bP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties in bP.
Collapse
Affiliation(s)
- Daniel Tofan
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Yukako Sakazaki
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Kendahl L Walz Mitra
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Ruoming Peng
- Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Mo Li
- Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Alexandra Velian
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H. Two‐Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000053] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jianghong Wu
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Hui Ma
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| | - Peng Yin
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yanqi Ge
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Han Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Hongtao Lin
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
18
|
Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene. Sci Rep 2021; 11:3716. [PMID: 33580112 PMCID: PMC7881155 DOI: 10.1038/s41598-021-83213-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022] Open
Abstract
The strongly anisotropic properties of phosphorene makes it an attractive material for applications in deciding the specific direction for different purposes. Here we have particularly reported the competition between strain and electric field stimuli in evaluating the band gap and electron energy loss spectrum (EELS) of single-layer black phosphorus using the tight-binding method and the Kubo conductivity. We construct possible configurations for this competition and evaluate the interband optical excitations considering the corresponding band gap variations. The band gap increases with the individual electric field, while it increases (decreases) with tensile (compressive) uniaxial in-plane strain. Contrary to the in-plane strains, the uniaxial out-of-plane strain shows a critical strain at which the system suffers from a phase transition. Furthermore, the presence of these stimuli simultaneously results in an extraordinary band gap engineering. Based on the EELS response in the electromagnetic spectrum, the armchair (zigzag) direction is classified into the infrared and visible (ultraviolet) region. We report that the electric field gives rise to the blue shift in the interband optical transitions along the armchair direction, while the compressive/tensile (tensile/compressive) in-plane/out-of-plane strain provides a red (blue) shift. Moreover, we observe an inverse behavior of EELS response to the individual and combined effects of electric field and strains compared to the band gap behavior except at critical out-of-plane strain for which the physical theory of interband excitation is simply violated. Our results provide a new perspective on the applicability of phosphorene in stimulated optical applications.
Collapse
|
19
|
Tareen AK, Khan K, Aslam M, Zhang H, Liu X. Recent progress, challenges, and prospects in emerging group-VIA Xenes: synthesis, properties and novel applications. NANOSCALE 2021; 13:510-552. [PMID: 33404570 DOI: 10.1039/d0nr07444f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The discovery of graphene (G) attracted considerable attention to the study of other novel two-dimensional materials (2DMs), which is identified as modern day "alchemy" since researchers are converting the majority of promising periodic table elements into 2DMs. Among the family of 2DMs, the newly invented monoelemental, atomically thin 2DMs of groups IIIA-VIA, called "Xenes" (where, X = IIIA-VIA group elements, and "ene" is the Latin word for nanosheets (NSs)), are a very active area of research for the fabrication of future nanodevices with high speed, low cost and elevated efficiency. Currently, any novel structure of 2DMs from the typical Xenes will probably be applicable in electronic technology. Analysis of their possible highly sensitive synthesis and characterization present opportunities for theoretically examining proposed 2D-Xenes with atomic precision in ideal circumstances, thus providing theoretical predictions for experimental support. Several theoretically predicted and experimentally synthesized 2D-Xene materials have been investigated for the group-VIA elements (tellurene (2D-Te), and selenene (2D-Se)), which are similar to topological insulators (TIs), thus potentially rendering them suitable materials for application in upcoming nanodevices. Although the investigation and device application of these materials are still in their infancy, theoretical studies and a few experiment-based investigations have proven that they are complementary to conventional (i.e., layered bulk-derived) 2DMs. This review focuses on the synthesis of novel group-VIA Xenes (2D-Te and 2D-Se) and summarizes the current development in understanding their basic properties, with the current advancement in signifying device applications. Lastly, the future research prospects, further advanced applications and associated shortcomings of the group-VIA Xenes are summarized and highlighted.
Collapse
Affiliation(s)
- Ayesha Khan Tareen
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People Republic of China. and Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen, 518060, P.R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen, 518060, P.R. China. and School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan (DGUT), Dongguan, 523808, Guangdong Province, P. R. China and Government Degree college Paharpur, Gomel University, Dera Ismail Khan, Khyber Pakhtoonkhwa (K.P.K.), 29220, Islamic Republic of Pakistan
| | - Muhammad Aslam
- Government Degree college Paharpur, Gomel University, Dera Ismail Khan, Khyber Pakhtoonkhwa (K.P.K.), 29220, Islamic Republic of Pakistan
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen, 518060, P.R. China.
| | - Xinke Liu
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People Republic of China.
| |
Collapse
|
20
|
Mu H, Wang T, Zhang D, Liu W, Yu T, Liao Q. Mechanical modulation of spontaneous emission of nearby nanostructured black phosphorus. OPTICS EXPRESS 2021; 29:1037-1047. [PMID: 33726326 DOI: 10.1364/oe.414380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
In this study, we investigate the spontaneous emission of a quantum emitter nearby black phosphorus (BP) sheet. The spontaneous emission can be modulated mechanically by rotating the BP sheet when the quantum emitter is placed parallel to the sheet. The spontaneous emission is dependent on the electron doping and rotation angle of BP with respect to the x-axis. The Purcell factor decreases with the increase in rotation angle under smaller electron doping. The Purcell factor increases with the increase in rotation angle under larger electron doping. The spontaneous emission of quantum emitter nearby two types of BP ribbon arrays tailored along armchair (type I) and zigzag (type II) directions is studied in detail. The spontaneous emission of quantum emitter parallel to type I is enhanced compared with that parallel to BP sheet. The spontaneous emission decreases remarkably for the quantum emitter parallel to type II compared with that parallel to BP sheet. The spontaneous emission can be flexibly modulated by rotating BP ribbon arrays mechanically in two types. The results obtained in this study provide a new method to actively modulate the spontaneous emission.
Collapse
|
21
|
Biswas S, Whitney WS, Grajower MY, Watanabe K, Taniguchi T, Bechtel HA, Rossman GR, Atwater HA. Tunable intraband optical conductivity and polarization-dependent epsilon-near-zero behavior in black phosphorus. SCIENCE ADVANCES 2021; 7:7/2/eabd4623. [PMID: 33523990 PMCID: PMC7793587 DOI: 10.1126/sciadv.abd4623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) offers considerable promise for infrared and visible photonics. Efficient tuning of the bandgap and higher subbands in BP by modulation of the Fermi level or application of vertical electric fields has been previously demonstrated, allowing electrical control of its above-bandgap optical properties. Here, we report modulation of the optical conductivity below the bandgap (5 to 15 μm) by tuning the charge density in a two-dimensional electron gas induced in BP, thereby modifying its free carrier-dominated intraband response. With a moderate doping density of 7 × 1012 cm-2, we were able to observe a polarization-dependent epsilon-near-zero behavior in the dielectric permittivity of BP. The intraband polarization sensitivity is intimately linked to the difference in effective fermionic masses along the two crystallographic directions, as confirmed by our measurements. Our results suggest the potential of multilayer BP to allow new optical functions for emerging photonics applications.
Collapse
Affiliation(s)
- Souvik Biswas
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - William S Whitney
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Meir Y Grajower
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials, Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hans A Bechtel
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George R Rossman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry A Atwater
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Wang S, Li S, Zhou Y, Huang J, Ren Q, Zhuo J, Cai Y. Enhanced terahertz modulation using a plasmonic perfect absorber based on black phosphorus. APPLIED OPTICS 2020; 59:9279-9283. [PMID: 33104643 DOI: 10.1364/ao.402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we design a plasmonic perfect absorber based on black phosphorus (BP) with enhanced terahertz modulation. By tuning the chemical potential (μc) of BP, the modulation depth can reach up to 95%. The influence of geometric size and bandgap of BP on reflection spectra is also investigated. Moreover, the effect of the incident angle on the reflectance is discussed with different values of μc. Our results show that the plasmonic nanoslit mode contributes to the enhancement of the modulation effect. This simple periodical structure provides a potential route to design a tunable plasmonic BP-based modulator in the THz range.
Collapse
|
23
|
Rao CN, Pawar D, Nakate UT, Aepuru R, Gui X, Mangalaraja RV, Kale SN, Suh EK, Liu W, Zhu D, Lu Y, Cao P. Electric field controlled near-infrared high-speed electro-optic switching modulator integrated with 2D MgO. OPTICS LETTERS 2020; 45:4611-4614. [PMID: 32797022 DOI: 10.1364/ol.393796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The electro-optic effect in two-dimensional (2D) MgO nanoflakes synthesized by a microwave-assisted process is demonstrated using a designed optical fiber modulator. The guiding properties of intense core modes excited by the material cavity are modulated by the external electric field. The feasibility of 2D MgO nanoflakes as an effective electro-optic modulator and switching are experimentally verified for the first time, to the best of our knowledge. The proposed optical-fiber-based electro-optic modulator achieves a linear wavelength shift with a high sensitivity of 12.87 pm/V(77.22 nm/kV/mm, in the electric field). The results show that MgO, as a metal oxide 2D material, is a very promising material for electro-optic modulators and switching.
Collapse
|
24
|
Lan C, Shi Z, Cao R, Li C, Zhang H. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. NANOSCALE 2020; 12:11784-11807. [PMID: 32462161 DOI: 10.1039/d0nr02574g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Since the discovery of graphene in 2004, it has become a worldwide hot topic due to its fascinating properties. However, the zero band gap and weak light absorption of graphene strictly restrict its applications in optoelectronic devices. In this regard, semiconducting two-dimensional (2D) materials are thought to be promising candidates for next-generation optoelectronic devices. Infrared (IR) light has gained intensive attention due to its vast applications, including night vision, remote sensing, target acquisition, optical communication, etc. Consequently, the generation, modulation, and detection of IR light are crucial for practical applications. Due to the van der Waals interaction between 2D materials and Si, the lattice mismatch of 2D materials and Si can be neglected; consequently, the integration process can be achieved easily. Herein, we review the recent progress of semiconducting 2D materials in IR optoelectronic devices. Firstly, we introduce the background and motivation of the review. Then, the suitable materials for IR applications are presented, followed by a comprehensive review of the applications of 2D materials in light emitting devices, optical modulators, and photodetectors. Finally, the problems encountered and further developments are summarized. We believe that milestone investigations of IR optoelectronics based on 2D materials beyond graphene will emerge soon, which will bring about great industrial revelations in 2D material-based integrated nanodevice commercialization.
Collapse
Affiliation(s)
- Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | | | | | | | | |
Collapse
|
25
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
26
|
Tan T, Jiang X, Wang C, Yao B, Zhang H. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000058. [PMID: 32537415 PMCID: PMC7284198 DOI: 10.1002/advs.202000058] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Graphene and the following derivative 2D materials have been demonstrated to exhibit rich distinct optoelectronic properties, such as broadband optical response, strong and tunable light-mater interactions, and fast relaxations in the flexible nanoscale. Combining with optical platforms like fibers, waveguides, grating, and resonators, these materials has spurred a variety of active and passive applications recently. Herein, the optical and electrical properties of graphene, transition metal dichalcogenides, black phosphorus, MXene, and their derivative van der Waals heterostructures are comprehensively reviewed, followed by the design and fabrication of these 2D material-based optical structures in implementation. Next, distinct devices, ranging from lasers to light emitters, frequency convertors, modulators, detectors, plasmonic generators, and sensors, are introduced. Finally, the state-of-art investigation progress of 2D material-based optoelectronics offers a promising way to realize new conceptual and high-performance applications for information science and nanotechnology. The outlook on the development trends and important research directions are also put forward.
Collapse
Affiliation(s)
- Teng Tan
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China)School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiantao Jiang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Cong Wang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Baicheng Yao
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China)School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Han Zhang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
27
|
Shi Z, Cao R, Khan K, Tareen AK, Liu X, Liang W, Zhang Y, Ma C, Guo Z, Luo X, Zhang H. Two-Dimensional Tellurium: Progress, Challenges, and Prospects. NANO-MICRO LETTERS 2020; 12:99. [PMID: 34138088 PMCID: PMC7770852 DOI: 10.1007/s40820-020-00427-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 05/23/2023]
Abstract
Since the successful fabrication of two-dimensional (2D) tellurium (Te) in 2017, its fascinating properties including a thickness dependence bandgap, environmental stability, piezoelectric effect, high carrier mobility, and photoresponse among others show great potential for various applications. These include photodetectors, field-effect transistors, piezoelectric devices, modulators, and energy harvesting devices. However, as a new member of the 2D material family, much less known is about 2D Te compared to other 2D materials. Motivated by this lack of knowledge, we review the recent progress of research into 2D Te nanoflakes. Firstly, we introduce the background and motivation of this review. Then, the crystal structures and synthesis methods are presented, followed by an introduction to their physical properties and applications. Finally, the challenges and further development directions are summarized. We believe that milestone investigations of 2D Te nanoflakes will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
Collapse
Affiliation(s)
- Zhe Shi
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Rui Cao
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, Guangdong, People's Republic of China
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xiaosong Liu
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Ye Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Chunyang Ma
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Zhinan Guo
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E, Watanabe K, Taniguchi T, Yang L, Xia F. Widely tunable mid-infrared light emission in thin-film black phosphorus. SCIENCE ADVANCES 2020; 6:eaay6134. [PMID: 32110733 PMCID: PMC7021507 DOI: 10.1126/sciadv.aay6134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 05/20/2023]
Abstract
Thin-film black phosphorus (BP) is an attractive material for mid-infrared optoelectronic applications because of its layered nature and a moderate bandgap of around 300 meV. Previous photoconduction demonstrations show that a vertical electric field can effectively reduce the bandgap of thin-film BP, expanding the device operational wavelength range in mid-infrared. Here, we report the widely tunable mid-infrared light emission from a hexagonal boron nitride (hBN)/BP/hBN heterostructure device. With a moderate displacement field up to 0.48 V/nm, the photoluminescence (PL) peak from a ~20-layer BP flake is continuously tuned from 3.7 to 7.7 μm, spanning 4 μm in mid-infrared. The PL emission remains perfectly linear-polarized along the armchair direction regardless of the bias field. Moreover, together with theoretical analysis, we show that the radiative decay probably dominates over other nonradiative decay channels in the PL experiments. Our results reveal the great potential of thin-film BP in future widely tunable, mid-infrared light-emitting and lasing applications.
Collapse
Affiliation(s)
- Chen Chen
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Xiaobo Lu
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63136, USA
| | - Bingchen Deng
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Xiaolong Chen
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Qiushi Guo
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Cheng Li
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Chao Ma
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Shaofan Yuan
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Eric Sung
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Li Yang
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63136, USA
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
29
|
Zong X, Hu H, Ouyang G, Wang J, Shi R, Zhang L, Zeng Q, Zhu C, Chen S, Cheng C, Wang B, Zhang H, Liu Z, Huang W, Wang T, Wang L, Chen X. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. LIGHT, SCIENCE & APPLICATIONS 2020; 9:114. [PMID: 32637081 PMCID: PMC7329856 DOI: 10.1038/s41377-020-00356-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 05/10/2023]
Abstract
Mid-infrared (MIR) light-emitting devices play a key role in optical communications, thermal imaging, and material analysis applications. Two-dimensional (2D) materials offer a promising direction for next-generation MIR devices owing to their exotic optical properties, as well as the ultimate thickness limit. More importantly, van der Waals heterostructures-combining the best of various 2D materials at an artificial atomic level-provide many new possibilities for constructing MIR light-emitting devices of large tuneability and high integration. Here, we introduce a simple but novel van der Waals heterostructure for MIR light-emission applications built from thin-film BP and transition metal dichalcogenides (TMDCs), in which BP acts as an MIR light-emission layer. For BP-WSe2 heterostructures, an enhancement of ~200% in the photoluminescence intensities in the MIR region is observed, demonstrating highly efficient energy transfer in this heterostructure with type-I band alignment. For BP-MoS2 heterostructures, a room temperature MIR light-emitting diode (LED) is enabled through the formation of a vertical PN heterojunction at the interface. Our work reveals that the BP-TMDC heterostructure with efficient light emission in the MIR range, either optically or electrically activated, provides a promising platform for infrared light property studies and applications.
Collapse
Affiliation(s)
- Xinrong Zong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816 Nanjing, China
| | - Huamin Hu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Gang Ouyang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Jingwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Le Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Qingsheng Zeng
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798 Singapore
| | - Chao Zhu
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798 Singapore
| | - Shouheng Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, 518060 Shenzhen, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, 518060 Shenzhen, China
| | - Zheng Liu
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816 Nanjing, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710072 Xi’an, China
| | - Taihong Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816 Nanjing, China
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
30
|
Parriaux A, Hammani K, Millot G. Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications. OPTICS LETTERS 2019; 44:4335-4338. [PMID: 31465396 DOI: 10.1364/ol.44.004335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate a dual-comb spectrometer based on the direct electro-optic modulation of a continuous-wave laser operating in the thulium amplification band. We show that the emergent two-micrometer technology is already suitable for developing all-fibered dual-comb setups employed here for gas sensing applications. By performing spectroscopic measurements around two micrometers on carbon dioxide, we obtain very good agreement between the experimental results and calculations provided by the HITRAN database. These results pave the way to the extension of electro-optic dual-comb spectrometry in the mid-infrared region.
Collapse
|
31
|
Lin Y, Liu X, Chen H, Guo X, Pan J, Yu J, Zheng H, Guan H, Lu H, Zhong Y, Chen Y, Luo Y, Zhu W, Chen Z. Tunable asymmetric spin splitting by black phosphorus sandwiched epsilon-near-zero-metamaterial in the terahertz region. OPTICS EXPRESS 2019; 27:15868-15879. [PMID: 31163776 DOI: 10.1364/oe.27.015868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
In-plane photonic spin splitting effect is investigated in tunneling terahertz waves through an epsilon-near-zero metamaterial sandwiched between monolayer black phosphorus (BP). The strong in-plane anisotropy of BP layers will induce in-plane asymmetric spin splitting. The asymmetric spin splitting can be flexibly tuned by the angles between the incident plane and the armchair crystalline directions of the top and bottom BP layers, i.e., ϕ1 and ϕ2. Based on this, an angle-resolved barcode-encryption scheme is discussed. For the special case of ϕ1 = ϕ2 = 0 or 90°, the transmitted beam undergoes Goos-Hänchen shift, which varies with the carrier density of BP. We believe these findings can facilitate the development of novel optoelectronic devices in the Terahertz region.
Collapse
|
32
|
Sherrott MC, Whitney WS, Jariwala D, Biswas S, Went CM, Wong J, Rossman GR, Atwater HA. Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus. NANO LETTERS 2019; 19:269-276. [PMID: 30525692 DOI: 10.1021/acs.nanolett.8b03876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic, electrical control of light propagation at the nanoscale. Few-layer black phosphorus is a promising material for these applications due to its in-plane anisotropic, quantum well band structure, with a direct band gap that can be tuned from 0.3 to 2 eV with a number of layers and subbands that manifest as additional optical transitions across a wide range of energies. In this Letter, we report an experimental investigation of three different, anisotropic electro-optic mechanisms that allow electrical control of the complex refractive index in few-layer black phosphorus from the mid-infrared to the visible: Pauli-blocking of intersubband optical transitions (the Burstein-Moss effect); the quantum-confined Stark effect; and the modification of quantum well selection rules by a symmetry-breaking, applied electric field. These effects generate near-unity tuning of the BP oscillator strength for some material thicknesses and photon energies, along a single in-plane crystal axis, transforming absorption from highly anisotropic to nearly isotropic. Lastly, the anisotropy of these electro-optical phenomena results in dynamic control of linear dichroism and birefringence, a promising concept for active control of the complex polarization state of light, or propagation direction of surface waves.
Collapse
Affiliation(s)
- Michelle C Sherrott
- Thomas J. Watson Laboratory of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States
- Resnick Sustainability Institute , California Institute of Technology , Pasadena , California 91125 , United States
| | - William S Whitney
- Department of Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Deep Jariwala
- Thomas J. Watson Laboratory of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States
- Resnick Sustainability Institute , California Institute of Technology , Pasadena , California 91125 , United States
| | - Souvik Biswas
- Thomas J. Watson Laboratory of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Cora M Went
- Resnick Sustainability Institute , California Institute of Technology , Pasadena , California 91125 , United States
- Department of Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Joeson Wong
- Thomas J. Watson Laboratory of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - George R Rossman
- Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
- Joint Center for Artificial Photosynthesis , California Institute of Technology , Pasadena , California 91125 , United States
| | - Harry A Atwater
- Thomas J. Watson Laboratory of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States
- Resnick Sustainability Institute , California Institute of Technology , Pasadena , California 91125 , United States
- Joint Center for Artificial Photosynthesis , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
33
|
Hu Z, Niu T, Guo R, Zhang J, Lai M, He J, Wang L, Chen W. Two-dimensional black phosphorus: its fabrication, functionalization and applications. NANOSCALE 2018; 10:21575-21603. [PMID: 30457619 DOI: 10.1039/c8nr07395c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphorus, one of the most abundant elements in the Earth (∼0.1%), has attracted much attention in the last five years since the rediscovery of two-dimensional (2D) black phosphorus (BP) in 2014. The successful scaling down of BP endows this 'old material' with new vitality, resulting from the intriguing semiconducting properties in the atomic scale limit, i.e. layer-dependent bandgap that covers from the visible light to mid-infrared light spectrum as well as hole-dominated ambipolar transport characteristics. Intensive research effort has been devoted to the fabrication, characterization, functionalization and application of BP and other phosphorus allotropes. In this review article, we summarize the fundamental properties and fabrication techniques of BP, with particular emphasis on the recent progress in molecular beam epitaxy growth of 2D phosphorus. Subsequently, we highlight recent progress in BP (opto)electronic device applications achieved via customized manipulation methods, such as interface, defect and bandgap engineering as well as forming Lego-like stacked heterostructures.
Collapse
Affiliation(s)
- Zehua Hu
- School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China and Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.
| | - Tianchao Niu
- Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing 210094, China.
| | - Rui Guo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jialin Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Min Lai
- School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jun He
- School of Physics and Electronics, Central South University, 932 Lushan Road, Changsha 100083, China
| | - Li Wang
- Institute for Advanced Study and Department of Physics, Nanchang University, 999 Xue Fu Da Dao, Nanchang 330000, China
| | - Wei Chen
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore. and Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore and National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
34
|
Xu H, Lv Y, Zeng H, Qiu D, Chu Y, Zhu Q. Flexible and Broad-Spectral Hybrid Optical Modulation Transistor Based on a Polymer-Silver Nanoparticle Blend. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26586-26593. [PMID: 30009603 DOI: 10.1021/acsami.8b06307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The light-matter interplay on a soft substrate is critically important for novel optoelectronic applications such as soft robotics, human-machine interfaces, and wearable devices. Here, we for the first time report a flexible and efficiency-enhanced hybrid optical modulation transistor (h-OMT) in the ultraviolet-infrared spectral range by blending a polymer with silver nanoparticles (AgNPs). The h-OMT device exhibits a unipolar transport and an ultrahigh on-off ratio of ∼4.8 × 106 in a small voltage range of ∼2 V. Using charge modulation reflection spectroscopy, we demonstrate that the h-OMT device shows a broad-spectral response from 400 to 2000 nm and maximum optical modulation of ∼15% at λ = 785 nm, 6-fold higher magnitude than that of the device without AgNPs. Furthermore, the incorporation of AgNPs enhances the extinction ratio by 4-fold magnitude without any complex geometry designs. We find that the performance improvement relies on the AgNP-induced electron trap states and electrochemical dopings in the polymer. Importantly, the device exhibits pronounced mechanical flexibility, and the optical modulation is kept down to a bending radius of 0.5 mm. Our data provide the possibility of organic materials for constructing novel optoelectronic systems in the future.
Collapse
Affiliation(s)
- Haihua Xu
- Department of Biomedical and Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , Shenzhen 518060 , China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound , Shenzhen 518060 , China
| | - Ying Lv
- Department of Biomedical and Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , Shenzhen 518060 , China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound , Shenzhen 518060 , China
| | - Haoxuan Zeng
- Department of Biomedical and Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , Shenzhen 518060 , China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound , Shenzhen 518060 , China
| | - Dexing Qiu
- Department of Biomedical and Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , Shenzhen 518060 , China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound , Shenzhen 518060 , China
| | - Yican Chu
- Department of Biomedical and Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , Shenzhen 518060 , China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound , Shenzhen 518060 , China
| | - Qingqing Zhu
- Department of Biomedical and Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , Shenzhen 518060 , China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound , Shenzhen 518060 , China
| |
Collapse
|
35
|
Zereshki P, Wei Y, Ceballos F, Bellus MZ, Lane SD, Pan S, Long R, Zhao H. Photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. NANOSCALE 2018; 10:11307-11313. [PMID: 29897092 DOI: 10.1039/c8nr02540a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a combined theoretical and experimental study on photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Samples of monolayer phosphorene and bulk black phosphorus were fabricated by mechanical exfoliation, identified according to their reflective contrasts, and protected by covering them with hexagonal boron nitride layers. Photocarrier dynamics in these samples was studied by an ultrafast pump-probe technique. The photocarrier lifetime of monolayer phosphorene was found to be about 700 ps, which is about 9 times longer than that of bulk black phosphorus. This trend was reproduced in our calculations based on ab initio nonadiabatic molecular dynamics combined with time-domain density functional theory in the Kohn-Sham representation, and can be attributed to the smaller bandgap and stronger nonadiabatic coupling in bulk. The transient absorption response was also found to be dependent on the sample orientation with respect to the pump polarization, which is consistent with the previously reported anisotropic absorption of phosphorene. In addition, an oscillating component of the differential reflection signal at early probe delays was observed in the bulk sample and was attributed to the layer-breathing phonon mode with an energy of about 1 meV and a decay time of about 1.35 ps. These results provide valuable information for application of monolayer phosphorene in optoelectronics.
Collapse
Affiliation(s)
- Peymon Zereshki
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Palacios-Berraquero C. Atomically-Thin Quantum Light Emitting Diodes. QUANTUM CONFINED EXCITONS IN 2-DIMENSIONAL MATERIALS 2018. [DOI: 10.1007/978-3-030-01482-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Abstract
Lately rediscovered orthorhombic black phosphorus (BP) exhibits promising properties for near- and mid-infrared optoelectronics. Although recent electrical measurements indicate that a vertical electric field can effectively reduce its transport bandgap, the impact of the electric field on light-matter interaction remains unclear. Here we show that a vertical electric field can dynamically extend the photoresponse in a 5 nm-thick BP photodetector from 3.7 to beyond 7.7 μm, leveraging the Stark effect. We further demonstrate that such a widely tunable BP photodetector exhibits a peak extrinsic photo-responsivity of 518, 30, and 2.2 mA W−1 at 3.4, 5, and 7.7 μm, respectively, at 77 K. Furthermore, the extracted photo-carrier lifetime indicates a potential operational speed of 1.3 GHz. Our work not only demonstrates the potential of BP as an alternative mid-infrared material with broad optical tunability but also may enable the compact, integrated on-chip high-speed mid-infrared photodetectors, modulators, and spectrometers. The bandgap of ultrathin black phosphorus can be tuned by a vertical electric field. Here, the authors leverage such electric field to extend the photoresponse of a black phosphorus photodetector to 7.7 μm, opening the doors to various mid-infrared applications.
Collapse
|