1
|
Hu Y, Yu S, Wei B, Yang D, Ma D, Huang S. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. MATERIALS HORIZONS 2023; 10:3895-3928. [PMID: 37448235 DOI: 10.1039/d3mh00877k] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stimulus-responsive photonic crystals (PCs) possessing unconventional nonclosely packed structures have received growing attention due to their unique capability of mimicking the active structural colors of natural organisms (for example, chameleons' mechanochromic properties). However, there is rarely any systematic review regarding the progress of nonclose-packed photonic crystals (NPCs), involving their fabrication, working mechanisms, and applications. Herein, a comprehensive review of the fundamental principles and practical fabrication strategies of one/two/three-dimensional NPCs is summarized from the perspective of designing nonclose-packed structures. Subsequently, responsive NPCs with exciting functions and working mechanisms are sorted and delineated according to their diverse responses to physical (force, temperature, magnetic, and electric fields), chemical (ions, pH, vapors, and solvents), and biological (glucose, organophosphate, creatinine, and bacteria) stimuli. We then systematically introduced and discussed the applications of NPCs in sensors, printing, anticounterfeiting, display, optical devices, etc. Finally, the current challenges and development prospects for NPCs are presented. This review not only concludes the design principle for NPCs but also provides a significant basis for the exploration of next-generation NPCs.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Siyi Yu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
2
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
3
|
Erdem T, Zupkauskas M, O’Neill T, Cassiagli A, Xu P, Altintas Y, Mutlugun E, Eiser E. Magnetically controlled anisotropic light emission of DNA-functionalized supraparticles. MRS BULLETIN 2022; 47:1084-1091. [DOI: 10.1557/s43577-022-00352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 09/01/2023]
|
4
|
Luo S, Mancini A, Lian E, Xu W, Berté R, Li Y. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3842. [PMID: 36364618 PMCID: PMC9655199 DOI: 10.3390/nano12213842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Applicable surface-enhanced Raman scattering (SERS) active substrates typically require low-cost patterning methodology, high reproducibility, and a high enhancement factor (EF) over a large area. However, the lack of reproducible, reliable fabrication for large area SERS substrates in a low-cost manner remains a challenge. Here, a patterning method based on nanosphere lithography and adhesion lithography is reported that allows massively parallel fabrication of 10-nm annular gap arrays on large areas. The arrays exhibit excellent reproducibility and high SERS performance, with an EF of up to 107. An effective wearable SERS contact lens for glucose detection is further demonstrated. The technique described here extends the range of SERS-active substrates that can be fabricated over large areas, and holds exciting potential for SERS-based chemical and biomedical detection.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Wenqi Xu
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Yi Li
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
6
|
Plasmon-Induced Transparency for Tunable Atom Trapping in a Chiral Metamaterial Structure. NANOMATERIALS 2022; 12:nano12030516. [PMID: 35159861 PMCID: PMC8838906 DOI: 10.3390/nano12030516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022]
Abstract
Plasmon-induced transparency (PIT), usually observed in plasmonic metamaterial structure, remains an attractive topic for research due to its unique optical properties. However, there is almost no research on using the interaction of plasmonic metamaterial and high refractive index dielectric to realize PIT. Here, we report a novel nanophotonics system that makes it possible to realize PIT based on guided-mode resonance and numerically demonstrate its transmission and reflection characteristics by finite element method simulations. The system is composed of a high refractive-index dielectric material and a two-dimensional metallic photonic crystal with 4-fold asymmetric holes. The interaction mechanism of the proposed structure is analyzed by the coupled-mode theory, and the effects of the parameters on PIT are investigated in detail. In addition, we first consider this PIT phenomenon of such fields on atom trapping (87Rb), and the results show that a stable 3D atom trapping with a tunable range of position of about ~17 nm is achieved. Our work provides a novel, efficient way to realize PIT, and it further broadens the application of plasmonic metamaterial systems.
Collapse
|
7
|
Kim JM, Lee C, Lee Y, Lee J, Park SJ, Park S, Nam JM. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006966. [PMID: 34013617 DOI: 10.1002/adma.202006966] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic gap nanostructures (PGNs) have been extensively investigated mainly because of their strongly enhanced optical responses, which stem from the high intensity of the localized field in the nanogap. The recently developed methods for the preparation of versatile nanogap structures open new avenues for the exploration of unprecedented optical properties and development of sensing applications relying on the amplification of various optical signals. However, the reproducible and controlled preparation of highly uniform plasmonic nanogaps and the prediction, understanding, and control of their optical properties, especially for nanogaps in the nanometer or sub-nanometer range, remain challenging. This is because subtle changes in the nanogap significantly affect the plasmonic response and are of paramount importance to the desired optical performance and further applications. Here, recent advances in the synthesis, assembly, and fabrication strategies, prediction and control of optical properties, and sensing applications of PGNs are discussed, and perspectives toward addressing these challenging issues and the future research directions are presented.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jinhaeng Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
8
|
Şenel Z, İçöz K, Erdem T. Tuning optical properties of self-assembled nanoparticle network with external optical excitation. JOURNAL OF APPLIED PHYSICS 2021; 129. [DOI: 10.1063/5.0036737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
DNA-driven self-assembly enables precise positioning of the colloidal nanoparticles owing to specific Watson–Crick interactions. Another important feature of this self-assembly method is its reversibility by controlling the temperature of the medium. In this work, we study the potential of another mechanism to control the binding/unbinding process of DNA-functionalized gold nanoparticles. We employ laser radiation that can be absorbed by the gold nanoparticles to heat their network and disassociate it. Here, we show that we can actively control the optical properties of the nanoparticle network by external optical excitation. We find out that by irradiating the structure with a green hand-held laser, the total transmittance can increase by ∼30% compared to the transmittance of the sample not irradiated by the laser. Similarly, the optical microscopy images indicate the transformation of the nanoparticle network from opaque to transparent, while the nanoparticles formed a network again after the laser irradiation stopped. Our results prove that the optical excitation can be used to tailor the structure and thus the optical properties of the DNA-self-assembled nanoparticle networks.
Collapse
Affiliation(s)
- Zeynep Şenel
- Department of Electrical-Electronics Engineering, Abdullah Gül University , Erkilet Bul., 38080 Kayseri, Turkey
| | - Kutay İçöz
- Department of Electrical-Electronics Engineering, Abdullah Gül University , Erkilet Bul., 38080 Kayseri, Turkey
| | - Talha Erdem
- Department of Electrical-Electronics Engineering, Abdullah Gül University , Erkilet Bul., 38080 Kayseri, Turkey
| |
Collapse
|
9
|
Gao PF, Lei G, Huang CZ. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal Chem 2021; 93:4707-4726. [DOI: 10.1021/acs.analchem.0c04390] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Gang Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Ma T, Huang Q, He H, Zhao Y, Lin XI, Lu Y. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range. OPTICS EXPRESS 2019; 27:16624-16634. [PMID: 31252886 DOI: 10.1364/oe.27.016624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
A novel electromagnetically induced transparency (EIT) all-dielectric metamaterial is proposed, fabricated, and characterized. The unit cell of the proposed metamaterial comprises of two asymmetric split ring resonators (a-SRRs) positioned with a mirror symmetry. The asymmetric nature of a-SRRs results from the length difference of two arcs. Optical properties of the fabricated metamaterial are investigated numerically using finite difference method, as well as experimentally using a terahertz time-domain spectroscopy. The results confirm that the proposed metamaterial exhibits an EIT transparent window in the frequency range around 0.78THz with a Q-factor of ~75.7 and a time-delay up to ~28.9ps. Theoretical investigations show that EIT effects in our metamaterial are achieved by hybridizing two bright modes in the same unit cell, which are aroused by the excitation of magnetic moments. We also confirm that the proposed metamaterial has great potential for sensing applications with high sensitivity and high figure of merit (FOM), which guarantees potential applications in in situ chemical and biological sensing.
Collapse
|
11
|
Ling Y, Huang L, Hong W, Liu T, Luan J, Liu W, Lai J, Li H. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. NANOSCALE 2018; 10:19517-19523. [PMID: 30320322 DOI: 10.1039/c8nr03564d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamical manipulation of plasmon-induced transparency (PIT) in metamaterials promises numerous potential applications; however, previously reported approaches require complex metamaterial structures or an external stimulus, and dynamic control is limited to a single PIT transparency window. We propose here a metamaterial with a simple structure to realize a dynamically controllable PIT effect. Simply by changing the polarization direction of incident light, the number of PIT transparency windows can be increased from 1 to 2, accompanied by a tunable amplitude and a switchable resonance-wavelength. Moreover, a coupled three-level plasmonic system is employed to explain the underlying mechanism and near-field coupling between the horizontal and vertical gold bars, and the analytical results show good consistency with the numerical calculations. This work provides a simple approach for designing compact and tunable PIT devices and has potential applications in selective filtering, plasmonic switching and optical sensing.
Collapse
Affiliation(s)
- Yonghong Ling
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin QY, Palacios E, Zhou W, Li Z, Mason JA, Liu Z, Lin H, Chen PC, Dravid VP, Aydin K, Mirkin CA. DNA-Mediated Size-Selective Nanoparticle Assembly for Multiplexed Surface Encoding. NANO LETTERS 2018; 18:2645-2649. [PMID: 29570302 DOI: 10.1021/acs.nanolett.8b00509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiplexed surface encoding is achieved by positioning two different sizes of gold nanocubes on gold surfaces with precisely defined locations for each particle via template-confined, DNA-mediated nanoparticle assembly. As a proof-of-concept demonstration, cubes with 86 and 63 nm edge lengths are assembled into arrangements that physically and spectrally encrypt two sets of patterns in the same location. These patterns can be decrypted by mapping the absorption intensity of the substrate at λ = 773 and 687 nm, respectively. This multiplexed encoding platform dramatically increases the sophistication and density of codes that can be written using colloidal nanoparticles, which may enable high-security, high-resolution encoding applications.
Collapse
|