1
|
Shi N, Fan L, Xu Y, Yin W, Chen H, Yuan B, Zhou C, Chen J. Significant Enhancement of Negative Thermal Expansion Under Low Pressure in Cu 2P 2O 7. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312289. [PMID: 38924308 DOI: 10.1002/smll.202312289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Much effort is made to achieve the negative thermal expansion (NTE) control, but rare methods reached the improvement of intrinsic NTE. In the present work, a significantly enhanced NTE is realized in Cu2P2O7 by applying low pressure. Especially, the volumetric coefficient of thermal expansion (CTE) of Cu2P2O7 reached to -50.0 × 10-6 K-1 (150-325K) under 0.25 GPa, which is increased by 47.5% compared to its NTE in a similar temperature range under atmosphere pressure. This character enables a more effective manifestation of the thermal compensation role of Cu2P2O7 in composites. The enhanced NTE mechanisms are analyzed by high pressure synchrotron X-ray diffraction, neutron diffraction at variable temperature and pressure, as well as density functional theory (DFT) calculations. The results show that applied pressure accelerates the contraction of the distance between adjacent CuO layers and CuO columns. Meanwhile, the low-frequency phonon contribution to NTE in α-Cu2P2O7 is improved. This work is meaningful for the exploration of methods to enhance NTE and the practical application of NTE materials.
Collapse
Affiliation(s)
- Naike Shi
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Longlong Fan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dalang, Dongguan, 523803, China
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Yin
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dalang, Dongguan, 523803, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaican Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dalang, Dongguan, 523803, China
| | - Bao Yuan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dalang, Dongguan, 523803, China
| | - Chang Zhou
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
- Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
2
|
Liu H, Zhang Y, Zhang L, Mu X, Zhang L, Zhu S, Wang K, Yu B, Jiang Y, Zhou J, Yang F. Unveiling Atomic-Scaled Local Chemical Order of High-Entropy Intermetallic Catalyst for Alkyl-Substitution-Dependent Alkyne Semihydrogenation. J Am Chem Soc 2024; 146:20193-20204. [PMID: 39004825 DOI: 10.1021/jacs.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.
Collapse
Affiliation(s)
- Haojie Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xilong Mu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulong Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Li L, Gao W, Wan Z, Wan X, Ye J, Gao J, Wen D. Confining N-Doped Carbon Dots into PtNi Aerogels Skeleton for Robust Electrocatalytic Methanol Oxidation and Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400158. [PMID: 38415969 DOI: 10.1002/smll.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Noble metallic aerogels with the self-supported hierarchical structure and remarkable activity are promising for methanol fuel cells, but are limited by the severe poisoning and degradation of active sites during electrocatalysis. Herein, the highly stable electrocatalyst of N-doped carbon dots-PtNi (NCDs-PtNi) aerogels is proposed by confining NCDs with alloyed PtNi for methanol oxidation and oxygen reduction reactions. Comprehensive electrocatalytic measurements and theoretical investigations suggest the improvement in structure stability and regulation in electronic structure for better electrocatalytic durability when confining NCDs with PtNi aerogels. Notably, the NCDs-PtNi aerogels perform 12-fold higher activity than that of Pt/C and maintain 52% of their initial activity after 5000 cycles toward acidic methanol oxidation. The enhanced stability and activity of NCDs-PtNi aerogels are also evident for oxygen reduction reactions in different electrolytes. These results highlight the effectiveness of stabilizing metallic aerogels with NCDs, offering a feasible pathway to develop robust electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Lanqing Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, P. R. China
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Wei Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, P. R. China
| | - Ziqi Wan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianqi Ye
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Xue F, Li Q, Lv M, Weng S, Li T, Ren Y, Liu Y, Li D, He Y, Li Q, Chen X, Zhang Q, Gu L, Deng J, Chen J, He L, Kuang X, Miao J, Cao Y, Lin K, Xing X. Decoding Active Sites for Highly Efficient Semihydrogenation of Acetylene in Palladium-Copper Nanoalloys. NANO LETTERS 2024; 24:6269-6277. [PMID: 38743874 DOI: 10.1021/acs.nanolett.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.
Collapse
Affiliation(s)
- Fan Xue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qiheng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jie Chen
- Spallation Neutron Source Science Center, Dongguan 523803, People's Republic of China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, People's Republic of China
| | - Lunhua He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Spallation Neutron Source Science Center, Dongguan 523803, People's Republic of China
| | - Xiaojun Kuang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, People's Republic of China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
5
|
Guo L, Wu S, Zhou Z, Ma Y. Structural analysis of nanocrystals by pair distribution function combining electron diffraction with crystal tilting. IUCRJ 2024; 11:202-209. [PMID: 38362918 PMCID: PMC10916296 DOI: 10.1107/s2052252524001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
As an important characterization method, pair distribution function (PDF) has been extensively used in structural analysis of nanomaterials, providing key insights into the degree of crystallinity, atomic structure, local disorder etc. The collection of scattering signals with good statistics is necessary for a reliable structural analysis. However, current conventional electron diffraction experiments using PDF (ePDF) are limited in their ability to acquire continuous diffraction rings for large nanoparticles. Herein, a new method - tilt-ePDF - is proposed to improve the data quality and compatibility of ePDF by a combination of electron diffraction and specimen tilting. In the present work, a tilt-series of electron diffraction patterns was collected from gold nanoparticles with three different sizes and a standard sample polycrystalline aluminium film for ePDF analysis. The results show that tilt-ePDF can not only enhance the continuity of diffraction rings, but can also improve the signal-to-noise ratio in the high scattering angle range. As a result, compared with conventional ePDF data, tilt-ePDF data provide structure parameters with a better accuracy and lower residual factors in the refinement against the crystal structure. This method provides a new way of utilizing ePDF to obtain accurate local structure information from nanoparticles.
Collapse
Affiliation(s)
- Linshuo Guo
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Shitao Wu
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
6
|
Xue F, Li Q, Lv M, Song Y, Yang T, Wang X, Li T, Ren Y, Ohara K, He Y, Li D, Li Q, Chen X, Lin K, Xing X. Atomic Three-Dimensional Investigations of Pd Nanocatalysts for Acetylene Semi-hydrogenation. J Am Chem Soc 2023. [PMID: 38015199 DOI: 10.1021/jacs.3c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Deciphering the three-dimensional (3D) insight into nanocatalyst surfaces at the atomic level is crucial to understanding catalytic reaction mechanisms and developing high-performance catalysts. Nevertheless, better understanding the inherent insufficiency of a long-range ordered lattice in nanocatalysts is a big challenge. In this work, we report the local structure of Pd nanocatalysts, which is beneficial for demonstrating the shape-structure-adsorption relationship in acetylene hydrogenation. The 5.27 nm spherical Pd catalyst (Pdsph) shows an ethylene selectivity of 88% at complete acetylene conversion, which is much higher than those of the Pd octahedron and Pd cube and superior to other reported monometallic Pd nanocatalysts so far. By virtue of the local structure revelation combined with the atomic pair distribution function (PDF) and reverse Monte Carlo (RMC) simulation, the atomic surface distribution of the unique compressed strain of Pd-Pd pairs in Pdsph was revealed. Density functional theory calculations verified the obvious weakening of the ethylene adsorption energy on account of the surface strain of Pdsph. It is the main factor to avoid the over-hydrogenation of acetylene. The present work, entailing shape-induced surface strain manipulation and atomic 3D insight, opens a new path to understand and optimize chemical activity and selectivity in the heterogeneous catalysis process.
Collapse
Affiliation(s)
- Fan Xue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanfei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianxing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoge Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), 5 Yiheyuan Road, Beijing 100871, China
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Koji Ohara
- Faculty of Materials for Energy, Shimane University, 1060, Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
- Diffraction and Scattering Division, Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiheng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Fu S, Chen GX, Guo H, Liu S, Yan M, Lou Y, Ying H, Yao Z, Ren Y, Jiang W, Zhu H, Hahn H, Feng T, Lan S. Synthesis of Free-Standing Pd-Ni-P Metallic Glass Nanoparticles with Durable Medium-Range Ordered Structure for Enhanced Electrocatalytic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300721. [PMID: 37081277 DOI: 10.1002/smll.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Topologically disordered metallic glass nanoparticles (MGNPs) with highly active and tailorable surface chemistries have immense potential for functional uses. The synthesis of free-standing MGNPs is crucial and intensively pursued because their activity strongly depends on their exposed surfaces. Herein, a novel laser-evaporated inert-gas condensation method is designed and successfully developed for synthesizing free-standing MGNPs without substrates or capping agents, which is implemented via pulse laser-induced atomic vapor deposition under an inert helium atmosphere. In this way, the metallic atoms vaporized from the targets collide with helium atoms and then condense into short-range-order (SRO) clusters, which mutually assemble to form the MGNPs. Using this method, free-standing Pd40 Ni40 P20 MGNPs with a spherical morphology are synthesized, which demonstrates satisfactory electrocatalytic activity and durability in oxygen reduction reactions. Moreover, local structure investigations using synchrotron pair distribution function techniques reveal the transformation of SRO cluster connection motifs of the MGNPs from face-sharing to edge-sharing modes during cyclic voltammetry cycles, which enhances the electrochemical stability by blocking crystallization. This approach provides a general strategy for preparing free-standing MGNPs with high surface activities, which may have widespread functional applications.
Collapse
Affiliation(s)
- Shu Fu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guo-Xing Chen
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Suzhou Nuclear Power Research Institute Co., Ltd, Suzhou, 215004, China
| | - Hu Guo
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Sinan Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mengyang Yan
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu Lou
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huiqiang Ying
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhongzheng Yao
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - He Zhu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Horst Hahn
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tao Feng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Si Lan
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Center of Neutron Scattering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Zhang F, Ji R, Zhu X, Li H, Wang Y, Wang J, Wang F, Lan H. Strain-Regulated Pt-NiO@Ni Sub-Micron Particles Achieving Bifunctional Electrocatalysis for Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301640. [PMID: 37093205 DOI: 10.1002/smll.202301640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Highly active bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have always been the key factors to affect the performance of zinc-air batteries. However, integrating the independent reaction sites of ORR and OER in a catalyst remains a major challenge. Herein, a collaborative strategy based on defect induction and doping is proposed to prepare the strain-regulated Pt-NiO@Ni sub-micron particles (Pt-NiO@Ni SP). Benefiting from the synergistic effect of tensile strain and Pt-doped, the metallic Ni-based sub-micron particles with tensile strain as the catalyst carriers can effectively optimize the electronic distribution of atomic structures in Pt and NiO on the surface of particles, leading to reduce the energy barrier of intermediates for ORR and OER. Consequently, the Pt-NiO@Ni SP exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V under a low Pt loading, outperforming that of the benchmark Pt/C+IrO2 catalysts (0.76 V). Impressively, the Pt-NiO@Ni SP-based liquid zinc-air battery develops a high open-circuit potential (1.47 V), excellent energy density (188.2 mW cm-2 ), and favorable cyclic charge-discharge cycling durability (200 h at 20 mA cm-2 ). This work provides an innovative avenue for the rational construction of highly active bifunctional electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Renjie Ji
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaoyang Zhu
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Hongke Li
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Yating Wang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jingpeng Wang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Fei Wang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Hongbo Lan
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| |
Collapse
|
9
|
Li Q, Zhu H, Chen X, Liu H, Ren Y, Chen Y, Ohara K, Zhou L, Chen J, Deng J, Miao J, Lin K, Kuang X, Xing X. Local Structure Insight into Hydrogen Evolution Reaction with Bimetal Nanocatalysts. J Am Chem Soc 2022; 144:20298-20305. [DOI: 10.1021/jacs.2c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - He Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Koji Ohara
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5148, Japan
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaojun Kuang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Xing J, Wang W, Huang S, Du M, Huang B, Liu Y, He S, Yao T, Li S, Liu Y. Effects of Grain Refinement and Thermal Aging on Atomic Scale Local Structures of Ultra-Fine Explosives by X-ray Total Scattering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6835. [PMID: 36234175 PMCID: PMC9572120 DOI: 10.3390/ma15196835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The atomic scale local structures affect the initiation performance of ultra-fine explosives according to the stimulation results of hot spot formation. However, the experimental characterization of local structures in ultra-fine explosives has been rarely reported, due to the difficulty in application of characterization methods having both high resolution in and small damage to unstable organic explosive materials. In this work, X-ray total scattering was explored to investigate the atomic scale local distortion of two widely applicable ultra-fine explosives, LLM-105 and HNS. The experimental spectra of atomic pair distribution function (PDF) derived from scattering results were fitted by assuming rigid ring structures in molecules. The effects of grain refinement and thermal aging on the atomic scale local structure were investigated, and the changes in both the length of covalent bonds have been identified. Results indicate that by decreasing the particle size of LLM-105 and HNS from hundreds of microns to hundreds of nanometers, the crystal structures remain, whereas the molecular configuration slightly changes and the degree of structural disorder increases. For example, the average length of covalent bonds in LLM-105 reduces from 1.25 Å to 1.15 Å, whereas that in HNS increases from 1.25 Å to 1.30 Å, which is possibly related to the incomplete crystallization process and internal stress. After thermal aging of ultra-fine LLM-105 and HNS, the degree of structural disorder decreases, and the distortion in molecules formed in the synthesis process gradually healed. The average length of covalent bonds in LLM-105 increases from 1.15 Å to 1.27 Å, whereas that in HNS reduces from 1.30 Å to 1.20 Å. The possible reason is that the atomic vibration in the molecule intensifies during the heat aging treatment, and the internal stress was released through changes in molecular configuration, and thus the atomic scale distortion gradually heals. The characterization method and findings in local structures obtained in this work may pave the path to deeply understand the relationship between the defects and performance of ultra-fine explosives.
Collapse
Affiliation(s)
- Jiangtao Xing
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Weili Wang
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Shiliang Huang
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Maohua Du
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Bing Huang
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Yousong Liu
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Shanshan He
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Tianle Yao
- Navy Research Institute, Beijing 100072, China
| | - Shichun Li
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| | - Yu Liu
- China Academy of Engineering Physics, Institute of Chemical Materials, Mianyang 621900, China
| |
Collapse
|
11
|
Li Q, Ren Y, Zhang Q, Gu L, Huang Q, Wu H, Sun J, Cao Y, Lin K, Xing X. Chemical order-disorder nanodomains in Fe 3Pt bulk alloy. Natl Sci Rev 2022; 9:nwac053. [PMID: 36778106 PMCID: PMC9905646 DOI: 10.1093/nsr/nwac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chemical ordering is a common phenomenon and highly correlated with the properties of solid materials. By means of the redistribution of atoms and chemical bonds, it invokes an effective lattice adjustment and tailors corresponding physical properties. To date, however, directly probing the 3D interfacial interactions of chemical ordering remains a big challenge. In this work, we deciphered the interlaced distribution of nanosized domains with chemical order/disorder in Fe3Pt bulk alloy. HAADF-STEM images evidence the existence of such nanodomains. The reverse Monte Carlo method with the X-ray pair distribution function data reveal the 3D distribution of local structures and the tensile effect in the disordered domains at the single-atomic level. The chemical bonding around the domain boundary changes the bonding feature in the disordered side and reduces the local magnetic moment of Fe atoms. This results in a suppressed negative thermal expansion and extended temperature range in Fe3Pt bulk alloy with nanodomains. Our study demonstrates a local revelation for the chemical order/disorder nanodomains in bulk alloy. The understanding gained from atomic short-range interactions within the domain boundaries provides useful insights with regard to designing new functional compounds.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Ren
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingzhen Huang
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Jing Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | | |
Collapse
|
12
|
Li Q, Lin K, Liu Z, Hu L, Cao Y, Chen J, Xing X. Chemical Diversity for Tailoring Negative Thermal Expansion. Chem Rev 2022; 122:8438-8486. [PMID: 35258938 DOI: 10.1021/acs.chemrev.1c00756] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Negative thermal expansion (NTE), referring to the lattice contraction upon heating, has been an attractive topic of solid-state chemistry and functional materials. The response of a lattice to the temperature field is deeply rooted in its structural features and is inseparable from the physical properties. For the past 30 years, great efforts have been made to search for NTE compounds and control NTE performance. The demands of different applications give rise to the prominent development of new NTE systems covering multifarious chemical substances and many preparation routes. Even so, the intelligent design of NTE structures and efficient tailoring for lattice thermal expansion are still challenging. However, the diverse chemical routes to synthesize target compounds with featured structures provide a large number of strategies to achieve the desirable NTE behaviors with related properties. The chemical diversity is reflected in the wide regulating scale, flexible ways of introduction, and abundant structure-function insights. It inspires the rapid growth of new functional NTE compounds and understanding of the physical origins. In this review, we provide a systematic overview of the recent progress of chemical diversity in the tailoring of NTE. The efficient control of lattice and deep structural deciphering are carefully discussed. This comprehensive summary and perspective for chemical diversity are helpful to promote the creation of functional zero-thermal-expansion (ZTE) compounds and the practical utilization of NTE.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhanning Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
13
|
Zhu H, Tang Y, Wiaderek KM, Borkiewicz OJ, Ren Y, Zhang J, Ren J, Fan L, Li CC, Li D, Wang XL, Liu Q. Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode. NANO LETTERS 2021; 21:9997-10005. [PMID: 34813330 DOI: 10.1021/acs.nanolett.1c03613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The capacity degredation in layered Ni-rich LiNixCoyMnzO2 (x ≥ 0.8) cathode largely originated from drastic surface reactions and intergranular cracks in polycrystalline particles. Herein, we report a highly stable single-crystal LiNi0.83Co0.12Mn0.05O2 cathode material, which can deliver a high specific capacity (∼209 mAh g-1 at 0.1 C, 2.8-4.3 V) and meanwhile display excellent cycling stability (>96% retention for 100 cycles and >93% for 200 cycles). By a combination of in situ X-ray diffraction and in situ pair distribution function analysis, an intermediate monoclinic distortion and irregular H3 stack are revealed in the single crystals upon charging-discharging processes. These structural changes might be driven by unique Li-intercalation kinetics in single crystals, which enables an additional strain buffer to reduce the cracks and thereby ensure the high cycling stability.
Collapse
Affiliation(s)
- He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
| | - Yu Tang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
| | - Kamila M Wiaderek
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Olaf J Borkiewicz
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
- Center for Neutron Scattering, City University of Hong Kong, Hong Kong 999077, P.R. China
| | - Jian Zhang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
| | - Jincan Ren
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
| | - Longlong Fan
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Danfeng Li
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
| | - Xun-Li Wang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
- Center for Neutron Scattering, City University of Hong Kong, Hong Kong 999077, P.R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P.R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P.R. China
- Center for Neutron Scattering, City University of Hong Kong, Hong Kong 999077, P.R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P.R. China
| |
Collapse
|
14
|
Zhu H, Huang Y, Ren J, Zhang B, Ke Y, Jen AK, Zhang Q, Wang X, Liu Q. Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003534. [PMID: 33747741 PMCID: PMC7967088 DOI: 10.1002/advs.202003534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/19/2023]
Abstract
The correlation between structure and function lies at the heart of materials science and engineering. Especially, modern functional materials usually contain inhomogeneities at an atomic level, endowing them with interesting properties regarding electrons, phonons, and magnetic moments. Over the past few decades, many of the key developments in functional materials have been driven by the rapid advances in short-range crystallographic techniques. Among them, pair distribution function (PDF) technique, capable of utilizing the entire Bragg and diffuse scattering signals, stands out as a powerful tool for detecting local structure away from average. With the advent of synchrotron X-rays, spallation neutrons, and advanced computing power, the PDF can quantitatively encode a local structure and in turn guide atomic-scale engineering in the functional materials. Here, the PDF investigations in a range of functional materials are reviewed, including ferroelectrics/thermoelectrics, colossal magnetoresistance (CMR) magnets, high-temperature superconductors (HTSC), quantum dots (QDs), nano-catalysts, and energy storage materials, where the links between functions and structural inhomogeneities are prominent. For each application, a brief description of the structure-function coupling will be given, followed by selected cases of PDF investigations. Before that, an overview of the theory, methodology, and unique power of the PDF method will be also presented.
Collapse
Affiliation(s)
- He Zhu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yalan Huang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Jincan Ren
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Binghao Zhang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of ScienceDongguan523000P. R. China
| | - Alex K.‐Y. Jen
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xun‐Li Wang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Qi Liu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
15
|
Liu Z, Yang J, Yang L, Li X, Ma R, Wang R, Xing X, Sun D. Argentophilicity induced anomalous thermal expansion behavior in a 2D silver squarate. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01166e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2D bilayer coordination polymer has been found to exhibit colossal interlayer PTE and in-plane NTE owing to argentophilic interactions.
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Jianjian Yang
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Lilong Yang
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xuan Li
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Rui Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Institute of Solid State Chemistry
- University of Science and Technology Beijing
- Beijing
- China
| | - Rongming Wang
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Institute of Solid State Chemistry
- University of Science and Technology Beijing
- Beijing
- China
| | - Daofeng Sun
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
16
|
Yang T, Lin K, Li Q, Wang Y, Gu L, Wang N, Deng J, Chen J, Xing X. Evidence of the enhanced negative thermal expansion in (1 − x)PbTiO 3- xBi(Zn 2/3Ta 1/3)O 3. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01694e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced polarization displacement in (1 − x)PbTiO3-xBi(Zn2/3Ta1/3)O3 solutions has been reported.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Kun Lin
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Qiang Li
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Yilin Wang
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Na Wang
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Jinxia Deng
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Jun Chen
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| | - Xianran Xing
- Institute of Solid State Chemistry
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Department of Physical Chemistry
- and University of Science and Technology Beijing
- Beijing 100083
| |
Collapse
|
17
|
Harada M, Ikegami R, Kumara LSR, Kohara S, Sakata O. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS. RSC Adv 2019; 9:29511-29521. [PMID: 35531547 PMCID: PMC9071934 DOI: 10.1039/c9ra06519a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse Monte Carlo (RMC) modeling based on the total structure factor S(Q) obtained from high-energy X-ray diffraction (HEXRD) and the k 3 χ(k) obtained from extended X-ray absorption fine structure (EXAFS) measurements was employed to determine the 3-dimensional (3D) atomic-scale structure of Pt, Pd, and Rh nanoparticles, with sizes less than 5 nm, synthesized by photoreduction. The total structure factor and Fourier-transformed PDF showed that the first nearest neighbor peak is in accordance with that obtained from conventional EXAFS analysis. RMC constructed 3D models were analyzed in terms of prime structural characteristics such as metal-to-metal bond lengths, first-shell coordination numbers and bond angle distributions. The first-shell coordination numbers and bond angle distributions for the RMC-simulated metal nanoparticles indicated a face-centered cubic (fcc) structure with appropriate number density. Modeling disorder effects in these RMC-simulated metal nanoparticles also revealed substantial differences in bond-length distributions for respective nanoparticles.
Collapse
Affiliation(s)
- Masafumi Harada
- Department of Health Science and Clothing Environment, Faculty of Human Life and Environment, Nara Women's University Nara 630-8506 Japan +81-742-20-3466 +81-742-20-3466
| | - Risa Ikegami
- Department of Health Science and Clothing Environment, Faculty of Human Life and Environment, Nara Women's University Nara 630-8506 Japan +81-742-20-3466 +81-742-20-3466
| | - Loku Singgappulige Rosantha Kumara
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Shinji Kohara
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Osami Sakata
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| |
Collapse
|
18
|
Abstract
Nanosolids usually exhibit a variety of peculiar physical features due to the size effect. The unique surface electronic states and coordination structures of nanosolids make them particularly important as promising functional materials. After several decades of research effort on the preparation processes and formation mechanisms of nanomaterials, the attention of nanoscience has been shifted to their functionalization and utilization. In the development of nanodevices, the thermal expansion matching between nanosized components is becoming increasingly important for the selection of units and design of nanodevices. In nanosolids, particularities of bonding features and coordination environments lead to size-dependent thermal expansion behavior that is significantly different from the behavior of their bulk counterparts. Thus, size tuning becomes one of the most efficient techniques in tailoring lattice thermal expansion. Unlike the traditional tailoring methods like chemical doping, the modification of chemical bonds and lattice vibration modes mainly contributing to the abnormal thermal expansion of nanosolids can be realized by adjustment of local coordination on the surface and surface/interface lattice strain. With the introduction of the nanosizing effect, the functional properties of nanosolids can be thoroughly remolded, which provides a huge space for functional applications of negative thermal expansion (NTE) nanosolids. However, understanding the origin of novel thermal expansion in nanosolids remains a challenging issue because of the lack of knowledge of precise atomic arrangements at both long-range and local structure levels. In this Account, by virtue of various advanced characterization techniques, we provide a comprehensive understanding at the atomic level of the abnormal thermal expansion behaviors in nanosized PbTiO3-based compounds, oxides, fluorides, and bimetallic alloys. Our results demonstrate that nanoscale structural features can be used to alter the spontaneous polarization, surficial/interfacial coordination, local lattice symmetry, and elemental distribution, resulting in the crossover of thermal expansion from the bulk and the generation of zero thermal expansion (ZTE). Furthermore, structural peculiarities in nanosolids, e.g., the lack of long-range coherence, abnormal surficial/interfacial bonding, lattice imperfection, and distribution of local phases, open the door for local-scale manipulations of the physical properties of electronic structure and lattice vibration during adjustment of thermal expansion. For the development of nanodevices with high thermostability, atomic-level information on the nanostructure thermal evolution provides a guideline for intelligent designs of the functional components and matrix. Understanding of the structural transformation in nanosolids will help future exploration of functional nanomaterials based on short-range atomistic design and optimization.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - He Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
One-Pot Synthesis of Highly Efficient Carbon-Supported Polyhedral Pt3Ni Alloy Nanoparticles for Oxygen Reduction Reaction. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00547-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Ren Q, Hutchison W, Wang J, Studer A, Wang G, Zhou H, Ma J, Campbell SJ. Negative Thermal Expansion of Ni-Doped MnCoGe at Room-Temperature Magnetic Tuning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17531-17538. [PMID: 31056896 DOI: 10.1021/acsami.9b02772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Compounds that exhibit the unique behavior of negative thermal expansion (NTE)-the physical property of contraction of the lattice parameters on warming-can be applied widely in modern technologies. Consequently, the search for and design of an NTE material with operational and controllable qualities at room temperature are important topics in both physics and materials science. In this work, we demonstrate a new route to achieve magnetic manipulation of a giant NTE in (Mn0.95Ni0.05)CoGe via strong magnetostructural (MS) coupling around room temperature (∼275 to ∼345 K). The MS coupling is realized through the weak bonding between the nonmagnetic CoGe-network and the magnetic Mn-sublattice. Application of a magnetic field changes the NTE in (Mn0.95Ni0.05)CoGe significantly: in particular, a change of Δ L/ L along the a axis of absolute value 15290(60) × 10-6-equivalent to a -31% reduction in NTE-is obtained at 295 K in response to a magnetic field of 8 T.
Collapse
Affiliation(s)
- Qingyong Ren
- School of Physics and Astronomy and Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy , Shanghai Jiao Tong University , Shanghai 200240 , China
- School of Science , The University of New South Wales at the Australian Defence Force Academy , Canberra , Australian Capital Territory 2600 , Australia
| | - Wayne Hutchison
- School of Science , The University of New South Wales at the Australian Defence Force Academy , Canberra , Australian Capital Territory 2600 , Australia
| | - Jianli Wang
- College of Physics , Jilin University , Changchun 130012 , China
- Institute for Superconductivity and Electronic Materials , University of Wollongong , Wollongong , New South Wales 2500 , Australia
| | - Andrew Studer
- Australian Centre for Neutron Scattering , Locked Bag 2001 , Kirrawee DC , New South Wales 2232 , Australia
| | - Guohua Wang
- School of Physics and Astronomy and Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Haidong Zhou
- School of Physics and Astronomy and Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy , Shanghai Jiao Tong University , Shanghai 200240 , China
- Department of Physics and Astronomy , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Jie Ma
- School of Physics and Astronomy and Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Stewart J Campbell
- School of Science , The University of New South Wales at the Australian Defence Force Academy , Canberra , Australian Capital Territory 2600 , Australia
| |
Collapse
|
21
|
Zhu H, Li Q, Yang C, Zhang Q, Ren Y, Gao Q, Wang N, Lin K, Deng J, Chen J, Gu L, Hong J, Xing X. Twin Crystal Induced near Zero Thermal Expansion in SnO 2 Nanowires. J Am Chem Soc 2018; 140:7403-7406. [PMID: 29865794 DOI: 10.1021/jacs.8b03232] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Knowledge of controllable thermal expansion is a fundamental issue in the field of materials science and engineering. Direct blocking of the thermal expansions in positive thermal expansion materials is a challenging but fascinating task. Here we report a near zero thermal expansion (ZTE) of SnO2 achieved from twin crystal nanowires, which is highly correlated to the twin boundaries. Local structural evolutions followed by pair distribution function revealed a remarkable thermal local distortion along the twin boundary. Lattice dynamics investigated by Raman scattering evidenced the hardening of phonon frequency induced by the twin crystal compressing, giving rise to the ZTE of SnO2 nanowires. Further DFT calculation of Grüneisen parameters confirms the key role of compressive stress on ZTE. Our results provide an insight into the thermal expansion behavior regarding to twin crystal boundaries, which could be beneficial to the applications.
Collapse
Affiliation(s)
- He Zhu
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Qiang Li
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Chao Yang
- School of Aerospace Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yang Ren
- X-Ray Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Qilong Gao
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Na Wang
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Kun Lin
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jinxia Deng
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jun Chen
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jiawang Hong
- School of Aerospace Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xianran Xing
- Department of Physical Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|