1
|
Feng S, Wang D, Yang W, Shen J, Zhu Y, Ni S, Zhou Y, Ye M, Jiang S, Dai H, Xiao H, Han J. Carbonized wood loading sustainable tannin used as free-standing electrodes for assembling heavy metal-free supercapacitors. Int J Biol Macromol 2024; 285:138381. [PMID: 39643191 DOI: 10.1016/j.ijbiomac.2024.138381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The design of heavy metal-free thick supercapacitor electrodes with excellent energy storage performance through a novel and effective strategy represents an attractive yet challenging area of research. In this study, a sustainable redox-active tannic acid (TA) is loaded on the carbonized wood (CW) collector to construct a low-curvature, high-capacity, heavy metal-free supercapacitor electrode. The uniform loading of TA on the surface of the CW cell wall is achieved through the combined action of mutually stable hydrogen bonding and π-π interactions, which constructs a fast electron transport channel in the collector. The rapid and reversible redox reaction between the phenol and quinone groups of TA allows the CW-TA electrode to exhibit a high specific capacitance of 1321.25 mF cm-2 at 0.5 mA cm-2 and a superior rate capability of 761.90 mF cm-2 at 50 mA cm-2. The symmetric supercapacitors (SSCs) assembled from CW-TA achieve an areal energy density of 0.12 mWh cm-2at a power density of 0.30 mW cm-2, with excellent rate performance and cyclic stability. This simple and environmentally friendly synthesis strategy provides a new avenue for research into the construction of low-cost, heavy metal-free, high energy density, and highly stable electrode materials for energy storage applications.
Collapse
Affiliation(s)
- Shu Feng
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Danning Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weisheng Yang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiamei Shen
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yi Zhu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shuzhen Ni
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yihui Zhou
- Hunan Automotive Engineering Vocational University, Zhuzhou 412001, China
| | - Mingqiang Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Shaohua Jiang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hongqi Dai
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Huining Xiao
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingquan Han
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Liu C, Li Y, Gai X, Xiang Z, Jiang W, He S, Liu Y, Xiao H. Advances in green materials derived from wood for detecting and removing mercury ions in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122351. [PMID: 37567404 DOI: 10.1016/j.envpol.2023.122351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The issue of mercury pollution in environmental remediation has garnered significant attention due to its severe health hazards to humans. Various strategies have been devised to mitigate the impact of toxic mercury ions, including coagulation, ion exchange, adsorption, membrane technology, and electrochemical treatment. Among these approaches, adsorption has emerged as an efficient and widely employed method for the uptake of low concentrations of mercury ions. It offers convenient operation, high removal efficiency, and facile regeneration of the adsorbent. Wood, being the most abundant renewable and sustainable bioresource, has garnered attention as a promising material for treating heavy metal wastewater. This is attributed to its unique physical and chemical characteristics, encompassing hierarchical pores, aligned channels, active functional groups, biodegradability, and cost-effectiveness. However, a comprehensive examination of the cutting-edge applications of wood and wood-derived biopolymers in the detection and removal of mercury ions from wastewater has yet to be undertaken. Consequently, this article presents a chronological overview of recent advancements in materials and structures derived from bulk wood and its constituents, including cellulose, lignin, hemicellulose, and tannin, with a specific focus on their utility in detecting and eliminating mercury from water sources. Subsequently, the most promising techniques and strategies involving wood and wood-derived biopolymers in addressing the predicament of mercury pollution are explored. Furthermore, this piece offers insights into the existing challenges and future prospects concerning environmentally friendly materials derived from wood, aiming to foster the development of cost-effective mercury adsorbents and detection devices.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yu Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoqian Gai
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B5A3, Canada
| |
Collapse
|
3
|
Wang F, Lee J, Chen L, Zhang G, He S, Han J, Ahn J, Cheong JY, Jiang S, Kim ID. Inspired by Wood: Thick Electrodes for Supercapacitors. ACS NANO 2023; 17:8866-8898. [PMID: 37126761 DOI: 10.1021/acsnano.3c01241] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The emergence and development of thick electrodes provide an efficient way for the high-energy-density supercapacitor design. Wood is a kind of biomass material with porous hierarchical structure, which has the characteristics of a straight channel, uniform pore structure, good mechanical strength, and easy processing. The wood-inspired low-tortuosity and vertically aligned channel architecture are highly suitable for the construction of thick electrochemical supcapacitor electrodes with high energy densities. This review summarizes the design concepts and processing parameters of thick electrode supercapacitors inspired by natural woods, including wood-based pore structural design regulation, electric double layer capacitances (EDLCs)/pseudocapacitance construction, and electrical conductivity optimization. In addition, the optimization strategies for preparing thick electrodes with wood-like structures (e.g., 3D printing, freeze-drying, and aligned-low tortuosity channels) are also discussed in detail. Further, this review presents current challenges and future trends in the design of thick electrodes for supercapacitors with wood-inspired pore structures. As a guideline, the brilliant blueprint optimization will promote sustainable development of wood-inspired structure design for thick electrodes and broaden the application scopes.
Collapse
Affiliation(s)
- Feng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Bavarian Center for Battery Technology (BayBatt) and Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Gouda A, Masson A, Hoseinizadeh M, Soavi F, Santato C. Biosourced quinones for high-performance environmentally benign electrochemical capacitors via interface engineering. Commun Chem 2022; 5:98. [PMID: 36697677 PMCID: PMC9814668 DOI: 10.1038/s42004-022-00719-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Biosourced and biodegradable organic electrode materials respond to the need for sustainable storage of renewable energy. Here, we report on electrochemical capacitors based on electrodes made up of quinones, such as Sepia melanin and catechin/tannic acid (Ctn/TA), solution-deposited on carbon paper engineered to create high-performance interfaces. Sepia melanin and Ctn/TA on TCP electrodes exhibit a capacitance as high as 1355 mF cm-2 (452 F g-1) and 898 mF cm-2 (300 F g-1), respectively. Sepia melanin and Ctn/TA symmetric electrochemical capacitors operating in aqueous electrolytes exhibit up to 100% capacitance retention and 100% coulombic efficiency over 50,000 and 10,000 cycles at 150 mA cm-2 (10 A g-1), respectively. Maximum power densities as high as 1274 mW cm-2 (46 kW kg-1) and 727 mW cm-2 (26 kW kg-1) with maximum energy densities of 0.56 mWh cm-2 (20 Wh kg-1) and 0.65 mWh cm-2 (23 Wh kg-1) are obtained for Sepia melanin and Ctn/TA.
Collapse
Affiliation(s)
- Abdelaziz Gouda
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada.
- Now at, Solar Fuels Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.
| | - Alexandre Masson
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada
| | - Molood Hoseinizadeh
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via Selmi, 2, Bologna, 40126, Italy
| | - Clara Santato
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada.
| |
Collapse
|
5
|
Xu T, Wang D, Li Z, Chen Z, Zhang J, Hu T, Zhang X, Shen L. Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. NANO-MICRO LETTERS 2022; 14:126. [PMID: 35699769 PMCID: PMC9198198 DOI: 10.1007/s40820-022-00864-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage. According to the different charge storage mechanisms, the surface redox, intercalation, and conversion materials are classified and introduced in detail, where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified. Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage. Finally, this review provides a framework for research directions of charge storage mechanism, basic principles of material structure design, construction strategies of full cell device, and goals of practical application for electrochemical proton storage.
Collapse
Affiliation(s)
- Tiezhu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Di Wang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Ziyang Chen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Jinhui Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Tingsong Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| | - Laifa Shen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| |
Collapse
|
6
|
Heng Y, Teng G, Chi Y, Hu D. Construction of Biomass-Derived Hybrid Organogel Electrodes with a Cross-Linking Conductive Network for High-Performance All-Solid-State Supercapacitors. Biomacromolecules 2021; 23:913-925. [PMID: 34967615 DOI: 10.1021/acs.biomac.1c01346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biomass-based inter-transmission network architecture is expected to act on all-solid-state supercapacitors (ASSSCs) by building excellent conductive paths and achieving high ionic conductivity to promote their development as future electronic devices. Here, biomass-derived hybrid organogel electrodes constructed by incorporating polyaniline (PANI) into cellulose/dealkaline lignin (C/DL) film architectures exhibit an impressive specific capacitance (582 F g-1 at 1 A g-1) due to the effective dispersion and doping of PANI. Moreover, the specific capacitance of the best C/DL-PANI electrode is nearly 19 times higher than that of a cellulose-PANI electrode, which is attributed to the contribution of DL to the pseudocapacitance. ASSSCs assembled using the C/DL-PANI electrodes and the DL gel electrolyte exhibit excellent specific capacitance (344 F g-1 at 1 A g-1), Coulombic efficiency (∼100% for 5000 cycles), cycle stability (85.7% for 5000 cycles at 1 A g-1), and energy density (58.1 W h kg-1 at 0.5 kW kg-1). The ASSSCs showed a comparable or even higher electrochemical performance than the reported PANI-based or biomass-based ASSSCs, which can be due to the conductive network of the biomass-derived electrodes, the migration of ions between the electrodes through the gel electrolyte ion pathway, and the interfacial synergy. This innovative work paves the way for the development of ASSSC applications based on biomass materials.
Collapse
Affiliation(s)
- Yingqi Heng
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.,Ministry of Education Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi University, Nanning 530004, China.,School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Genhui Teng
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.,Ministry of Education Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi University, Nanning 530004, China.,School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yang Chi
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.,Ministry of Education Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi University, Nanning 530004, China.,School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dongying Hu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.,Ministry of Education Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi University, Nanning 530004, China.,School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Liu C, Luan P, Li Q, Cheng Z, Xiang P, Liu D, Hou Y, Yang Y, Zhu H. Biopolymers Derived from Trees as Sustainable Multifunctional Materials: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001654. [PMID: 32864821 DOI: 10.1002/adma.202001654] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/15/2020] [Indexed: 05/22/2023]
Abstract
The world is currently transitioning from a fossil-fuel-driven energy economy to one that is supplied by more renewable and sustainable materials. Trees as the most abundant renewable bioresource have attracted significant attention for advanced materials and manufacturing in this epochal transition. Trees are composed with complex structures and components such as trunk (stem and bark), leaf, flower, seed, and root. Although many excellent reviews have been published regarding advanced applications of wood and wood-derived biopolymers in different fields, such as energy, electronics, biomedical, and water treatment, no reviews have revisited and systematically discussed functional materials and even devices derived from trees in a full scope yet. Therefore, a timely summary of the recent development of materials and structures derived from different parts of trees for sustainability is prsented here. A concise introduction to the different parts of the trees is given first, which is followed by the corresponding chemistry and preparation of functional materials using various biopolymers from trees. The most promising applications of biopolymer-based materials are discussed subsequently. A comprehensive review of the different parts of trees as sustainable functional materials and devices for critical applications is thus provided.
Collapse
Affiliation(s)
- Chao Liu
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Pengcheng Luan
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Qiang Li
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Pengyang Xiang
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yang Yang
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Hongli Zhu
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
9
|
Gouda A, Soavi F, Santato C. Eumelanin electrodes in buffered aqueous media at different pH values. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chen C, Li Z, Mi R, Dai J, Xie H, Pei Y, Li J, Qiao H, Tang H, Yang B, Hu L. Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS NANO 2020; 14:5194-5202. [PMID: 32275131 DOI: 10.1021/acsnano.9b08747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lightweight structural materials are critical in construction and automobile applications. In past centuries, there has been great success in developing strong structural materials, such as steels, concrete, and petroleum-based composites, most of which, however, are either too heavy, high cost, or nonrenewable. Biosourced composites are attractive alternatives to conventional structural materials, especially when high mechanical strength is presented. Here we demonstrate a strong, lightweight bio-based structural material derived from bamboo via a two-step manufacturing process involving partial delignification followed by microwave heating. Partial delignification is a critical step prior to microwave heating as it makes the cell walls of bamboo softer and exposes more cellulose nanofibrils, which enables superior densification of the bamboo structure via heat-driven shrinkage. Additionally, microwave heating, as a fast and uniform heating method, can drive water out of the bamboo structure, yet without destroying the material's structural integrity, even after undergoing a large volume reduction of 28.9%. The resulting microwave-heated delignified bamboo structure demonstrates outstanding mechanical properties with a nearly 2-times improved tensile strength, 3.2-times enhanced toughness, and 2-times increased bending strength compared to natural bamboo. Additionally, the specific tensile strength of the modified bamboo structure reaches 560 MPa cm3 g-1, impressive given that its density is low (1.0 g cm-3), outperforming common structural materials, such as steels, metal alloys, and petroleum-based composites. These excellent mechanical properties combined with the resource abundance, renewable and sustainable features of bamboo, as well as the rapid, scalable manufacturing process, make this strong microwave-processed bamboo structure attractive for lightweight, energy-efficient engineering applications.
Collapse
Affiliation(s)
- Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ruiyu Mi
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jiaqi Dai
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hua Xie
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yong Pei
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jianguo Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Haiyu Qiao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hu Tang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bao Yang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Liedel C. Sustainable Battery Materials from Biomass. CHEMSUSCHEM 2020; 13:2110-2141. [PMID: 32212246 PMCID: PMC7318311 DOI: 10.1002/cssc.201903577] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Indexed: 05/22/2023]
Abstract
Sustainable sources of energy have been identified as a possible way out of today's oil dependency and are being rapidly developed. In contrast, storage of energy to a large extent still relies on heavy metals in batteries. Especially when built from biomass-derived organics, organic batteries are promising alternatives and pave the way towards truly sustainable energy storage. First described in 2008, research on biomass-derived electrodes has been taken up by a multitude of researchers worldwide. Nowadays, in principle, electrodes in batteries could be composed of all kinds of carbonized and noncarbonized biomass: On one hand, all kinds of (waste) biomass may be carbonized and used in anodes of lithium- or sodium-ion batteries, cathodes in metal-sulfur or metal-oxygen batteries, or as conductive additives. On the other hand, a plethora of biomolecules, such as quinones, flavins, or carboxylates, contain redox-active groups that can be used as redox-active components in electrodes with very little chemical modification. Biomass-based binders can replace toxic halogenated commercial binders to enable a truly sustainable future of energy storage devices. Besides the electrodes, electrolytes and separators may also be synthesized from biomass. In this Review, recent research progress in this rapidly emerging field is summarized with a focus on potentially fully biowaste-derived batteries.
Collapse
Affiliation(s)
- Clemens Liedel
- Department Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
12
|
Ilic IK, Perovic M, Liedel C. Interplay of Porosity, Wettability, and Redox Activity as Determining Factors for Lithium-Organic Electrochemical Energy Storage Using Biomolecules. CHEMSUSCHEM 2020; 13:1856-1863. [PMID: 32026541 PMCID: PMC7186837 DOI: 10.1002/cssc.201903156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Indexed: 05/29/2023]
Abstract
Although several recent publications describe cathodes for electrochemical energy storage materials made from regrown biomass in aqueous electrolytes, their transfer to lithium-organic batteries is challenging. To gain a deeper understanding, we investigate the influences on charge storage in model systems based on biomass-derived, redox-active compounds and comparable structures. Hybrid materials from these model polymers and porous carbon are compared to determine precisely the causes of exceptional capacity in lithium-organic systems. Besides redox activity, particularly, wettability influences capacity of the composites greatly. Furthermore, in addition to biomass-derived molecules with catechol functionalities, which are described commonly as redox-active species in lithium-bio-organic systems, we further describe guaiacol groups as a promising alternative for the first time and compare the performance of the respective compounds.
Collapse
Affiliation(s)
- Ivan K. Ilic
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Milena Perovic
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Clemens Liedel
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
13
|
Heteroatom-doped hollow carbon micro-tube derived from platanus catkins fiber for sodium ion supercapacitor. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ajjan FN, Mecerreyes D, Inganäs O. Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes. Biotechnol J 2019; 14:e1900062. [DOI: 10.1002/biot.201900062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Fatima Nadia Ajjan
- Laboratory of Organic Electronics (ITN)Linköping University Linköping SE‐581 83 Sweden
| | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHU Donostia‐San Sebastian 20018 Spain
| | - Olle Inganäs
- Biomolecular and organic electronics (IFM)Linköping University Linköping SE‐581 83 Sweden
| |
Collapse
|
15
|
Xu R, Gouda A, Caso MF, Soavi F, Santato C. Melanin: A Greener Route To Enhance Energy Storage under Solar Light. ACS OMEGA 2019; 4:12244-12251. [PMID: 31460340 PMCID: PMC6682057 DOI: 10.1021/acsomega.9b01039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 05/28/2023]
Abstract
The development of technologies integrating solar energy conversion and energy storage functions is critical for limiting the anthropogenic effects on climate change and preventing possible energy shortages related to the increase of the world population. In our work, we explored the possibility to integrate the conversion and storage functions within the same multifunctional biosourced material. We identified the redox-active, quinone-based, melanin pigment, featuring a broadband absorption in the UV-vis region, as the ideal candidate for such an exploration. Electrodes of melanin on carbon paper were investigated for their morphological, optical, and voltammetric characteristics prior to being assembled into symmetric supercapacitors operating in aqueous electrolytes. We observed that, under solar light, the capacity and capacitance of melanin electrodes significantly increase with respect to the dark conditions (by 22 and 39%, respectively). Once in a supercapacitor configuration, besides featuring a Coulombic efficiency close to 100% after 5000 cycles, the capacitance and capacity of the electrodes, rated by the initial values, improve after prolonged illumination, as it is the case for the energy and power density.
Collapse
Affiliation(s)
- Ri Xu
- Department
of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Abdelaziz Gouda
- Department
of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Maria Federica Caso
- Nanofaber
Spin-Off at ENEA, Casaccia Research Centre, Via Anguillarese 301, Roma 00123, Italy
| | - Francesca Soavi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Clara Santato
- Department
of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
16
|
Xiong C, Zou Y, Peng Z, Zhong W. Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors. NANOSCALE 2019; 11:7304-7316. [PMID: 30938393 DOI: 10.1039/c9nr00659a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tannic acid (TA) is a natural polyphenolic biomass, which shows high electro-activity and can be considered for supercapacitor applications. However, the negligible electronic conductivity of TA hinders its direct use as an electrode. In order to achieve the electrochemical activity of TA, herein, a three-dimensional porous TA/graphene composite (TAG) is prepared by mixing TA with graphene oxide (GO) via hydrothermal assembly, and various structural composites are realized by adding metal ions into the system before hydrothermal treatment. Metal ions can chelate with TA molecules and coordinate with GO via electrostatic interactions. As a result, a uniform and well-defined three-dimensional porous network (TAGNi), a regularly arranged scale-like microstructure (TAGCu) and a flower-like structure (TAGFe) are achieved by introducing Ni2+, Cu2+ and Fe3+, respectively. The as-prepared TAG, TAGNi, TAGCu and TAGFe electrodes exhibit a high specific capacitance of 373.6, 412.4, 460.4 and 429.4 F g-1 at 1 A g-1, respectively, and excellent cycling stability. The TAG, TAGNi, TAGCu and TAGFe assembled symmetric supercapacitors display a favorable energy density of 14.76, 16.76, 19.13 and 17.6 W h kg-1 at 300 W kg-1, respectively. The morphology-tunable TA/graphene composites with excellent electrochemical performance are promising for renewable energy storage device applications.
Collapse
Affiliation(s)
- Changlun Xiong
- College of Materials Science and Engineering, Hunan University, Changsha, China.
| | | | | | | |
Collapse
|
17
|
Peng Z, Zou Y, Xu S, Zhong W, Yang W. High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22190-22200. [PMID: 29882652 DOI: 10.1021/acsami.8b05171] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Employing renewable, earth-abundant, environmentally friendly, low-cost natural materials to design flexible supercapacitors (FSCs) as energy storage devices in wearable/portable electronics represents the global perspective to build sustainable and green society. Chemically stable and flexible cellulose and electroactive lignin have been employed to construct a biomass-based FSC for the first time. The FSC was assembled using lignosulfonate/single-walled carbon nanotubeHNO3 (Lig/SWCNTHNO3) pressure-sensitive hydrogels as electrodes and cellulose hydrogels as an electrolyte separator. The assembled biomass-based FSC shows high specific capacitance (292 F g-1 at a current density of 0.5 A g-1), excellent rate capability, and an outstanding energy density of 17.1 W h kg-1 at a power density of 324 W kg-1. Remarkably, the FSC presents outstanding electrochemical stability even suffering 1000 bending cycles. Such excellent flexibility, stability, and electrochemical performance enable the designed biomass-based FSCs as prominent candidates in applications of wearable electronic devices.
Collapse
Affiliation(s)
- Zhiyuan Peng
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Yubo Zou
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Shiqi Xu
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Wenbin Zhong
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Wantai Yang
- Department of Polymer Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| |
Collapse
|
18
|
Wu J, Yu D, Wang G, Yang J, Wang H, Liu X, Guo L, Han X. Flexible Micro-Supercapacitors Based on Naturally Derived Juglone. Chempluschem 2018; 83:423-430. [PMID: 31957350 DOI: 10.1002/cplu.201800121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/05/2018] [Indexed: 11/09/2022]
Abstract
Recently, great efforts have been devoted to designing and fabricating flexible, lightweight, wearable, and miniaturized supercapacitors. At the same time, the exploration of green, renewable, and biocompatible energy-storage materials has been attracting intensive attention. By taking fabrication and configuration design into consideration, the naturally derivable juglone molecule was exploited as an active charge-storage material, and integrated into flexible and micro-supercapacitor devices. The polypyrrole/juglone-composite-based supercapacitors exhibit significant energy-storage capabilities with high specific capacitance and long cyclability, which are comparable to that of conventional electrode materials. This study presents a new way for developing flexible, lightweight, portable, and/or wearable electronic devices with biocompatible and environmentally friendly attributes.
Collapse
Affiliation(s)
- Jiapeng Wu
- Beijing Key Laboratory of Microstructure and Property of Advanced, Materials, Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dandan Yu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Guangzhen Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jie Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Hua Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoyu Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced, Materials, Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|