1
|
Roy M, Sykora M, Aslam M. Chemical Aspects of Halide Perovskite Nanocrystals. Top Curr Chem (Cham) 2024; 382:9. [PMID: 38430313 DOI: 10.1007/s41061-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - Milan Sykora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - M Aslam
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
Zhang L, Zhou H, Chen Y, Zheng Z, Huang L, Wang C, Dong K, Hu Z, Ke W, Fang G. Spontaneous crystallization of strongly confined CsSn xPb 1-xI 3 perovskite colloidal quantum dots at room temperature. Nat Commun 2024; 15:1609. [PMID: 38383585 PMCID: PMC10881968 DOI: 10.1038/s41467-024-45945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The scalable and low-cost room temperature (RT) synthesis for pure-iodine all-inorganic perovskite colloidal quantum dots (QDs) is a challenge due to the phase transition induced by thermal unequilibrium. Here, we introduce a direct RT strongly confined spontaneous crystallization strategy in a Cs-deficient reaction system without polar solvents for synthesizing stable pure-iodine all-inorganic tin-lead (Sn-Pb) alloyed perovskite colloidal QDs, which exhibit bright yellow luminescence. By tuning the ratio of Cs/Pb precursors, the size confinement effect and optical band gap of the resultant CsSnxPb1-xI3 perovskite QDs can be well controlled. This strongly confined RT approach is universal for wider bandgap bromine- and chlorine-based all-inorganic and iodine-based hybrid perovskite QDs. The alloyed CsSn0.09Pb0.91I3 QDs show superior yellow emission properties with prolonged carrier lifetime and significantly increased colloidal stability compared to the pristine CsPbI3 QDs, which is enabled by strong size confinement, Sn2+ passivation and enhanced formation energy. These findings provide a RT size-stabilized synthesis pathway to achieve high-performance pure-iodine all-inorganic Sn-Pb mixed perovskite colloidal QDs for optoelectronic applications.
Collapse
Affiliation(s)
- Louwen Zhang
- International School of Microelectronics, Dongguan University of Technology, Dongguan, 523808, Guangdong, P. R. China
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hai Zhou
- International School of Microelectronics, Dongguan University of Technology, Dongguan, 523808, Guangdong, P. R. China.
| | - Yibo Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Zhimiao Zheng
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Lishuai Huang
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Wang
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Kailian Dong
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhongqiang Hu
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weijun Ke
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Guojia Fang
- Key Lab of Artifcial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
3
|
Geng Y, Hu H, Jia Y, Huang X, Yang T, Liang R, Chen Z, Yuan Z, Xu J. Synthesis of CsPbBr 3 in Micro Total Reaction System: Fast Operation Space Mapping and Subsecond Growth Process Monitoring. SMALL METHODS 2023; 7:e2300394. [PMID: 37428549 DOI: 10.1002/smtd.202300394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/28/2023] [Indexed: 07/11/2023]
Abstract
Lead halide perovskite nanocrystals (LHP NCs) have the characteristics of fast reaction kinetics and crystal instability due to the intrinsically highly ionic bonding between the respective ions, which bring challenges for revealing the growth kinetics and practical applications. Compared with conventional batch synthesis methods, the single-function microreactor can achieve precise and stable control of the NCs synthesis process, but it still has the shortcoming of not being able to obtain information about the growth process. In this study, a micro Total Reaction System (μTRS) with remote control, online detection, and rapid data analysis functions is designed. μTRS can sample the photoluminescence information of CsPbBr3 NCs growth in ligand-assisted reprecipitation method. CsPbBr3 NCs with an emission range of 435-492 nm are successfully detected, which breaks the record of the smallest size of CsPbBr3 NCs synthesized directly from precursors. The real-time feature of μTRS enables the construction of an automated close-loop synthesis system. Besides, the rapid acquisition and timely processing of product information enable the rapid mapping of the operation space for CsPbBr3 NCs preparation, which provides a reliable and learnable data set for designing a fully autonomous microreaction system capable of synthesizing NCs.
Collapse
Affiliation(s)
- Yuhao Geng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Haoyang Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongqi Jia
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xintong Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tian Yang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Runzhe Liang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhuo Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhihong Yuan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianhong Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Kostopoulou A, Konidakis I, Stratakis E. Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1643-1710. [PMID: 39634119 PMCID: PMC11501535 DOI: 10.1515/nanoph-2022-0797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 12/07/2024]
Abstract
Size- and shape-dependent unique properties of the metal halide perovskite nanocrystals make them promising building blocks for constructing various electronic and optoelectronic devices. These unique properties together with their easy colloidal synthesis render them efficient nanoscale functional components for multiple applications ranging from light emission devices to energy conversion and storage devices. Recently, two-dimensional (2D) metal halide perovskites in the form of nanosheets (NSs) or nanoplatelets (NPls) are being intensively studied due to their promising 2D geometry which is more compatible with the conventional electronic and optoelectronic device structures where film-like components are usually employed. In particular, 2D perovskites exhibit unique thickness-dependent properties due to the strong quantum confinement effect, while enabling the bandgap tuning in a wide spectral range. In this review the synthesis procedures of 2D perovskite nanostructures will be summarized, while the application-related properties together with the corresponding applications will be extensively discussed. In addition, perovskite nanocrystals/2D material heterostructures will be reviewed in detail. Finally, the wide application range of the 2D perovskite-based structures developed to date, including pure perovskites and their heterostructures, will be presented while the improved synergetic properties of the multifunctional materials will be discussed in a comprehensive way.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Ioannis Konidakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Emmanuel Stratakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| |
Collapse
|
5
|
Chen ZY, Huang NY, Xu Q. Metal halide perovskite materials in photocatalysis: Design strategies and applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Banerjee S, Bera S, Pradhan N. Chemically Sculpturing the Facets of CsPbBr 3 Perovskite Platelet Nanocrystals. ACS NANO 2023; 17:678-686. [PMID: 36577129 DOI: 10.1021/acsnano.2c10107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The facet chemistry of lead halide perovskite nanocrystals is critically important for determining their shape and interface ligand binding. In colloidal nanocrystals, these are mostly controlled by adopting specific synthetic strategies with a selection of the appropriate reactants. However, using selected ligands, the surface of preformed nanocrystals can be reconstructed without altering the crystal phase and lattice structure of their core. This has been shown here for hexagonal-shaped orthorhombic CsPbBr3 platelet nanocrystals. When oleylammonium bromide was added to these postsynthesized platelets, all six edges and two planar facets are transformed from flat to wavy structures. With a variation in concentration, the crest-to-crest distance of these wavy platelets are also tuned. These became possible because of the oleylammonium ions, which changed the {200}, {012} and {020} facets of orthorhombic phase of CsPbBr3 to the more compatible {110} and {002} facets simply by surface atom dissolution. This was also observed for multisegmented platelets having multiple junctions and even for platelets having a size of more than 200 nm. While shape modulations in ionic halide perovskite nanocrystals still face synthetic challenges, these results of surface reconstruction provide strong evidence of the possibility of sculpturing surface facets and shape changes in these nanostructures.
Collapse
Affiliation(s)
- Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
7
|
Besenhard MO, Pal S, Storozhuk L, Dawes S, Thanh NTK, Norfolk L, Staniland S, Gavriilidis A. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles. LAB ON A CHIP 2022; 23:115-124. [PMID: 36454245 DOI: 10.1039/d2lc00892k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the last decade flow reactors for material synthesis were firmly established, demonstrating advantageous operating conditions, reproducible and scalable production via continuous operation, as well as high-throughput screening of synthetic conditions. Reactor fouling, however, often restricts flow chemistry and the common fouling prevention via segmented flow comes at the cost of inflexibility. Often, the difficulty of feeding reagents into liquid segments (droplets or slugs) constrains flow syntheses using segmented flow to simple synthetic protocols with a single reagent addition step prior or during segmentation. Hence, the translation of fouling prone syntheses requiring multiple reagent addition steps into flow remains challenging. This work presents a modular flow reactor platform overcoming this bottleneck by fully exploiting the potential of three-phase (gas-liquid-liquid) segmented flow to supply reagents after segmentation, hence facilitating fouling free multi-step flow syntheses. The reactor design and materials selection address the operation challenges inherent to gas-liquid-liquid flow and reagent addition into segments allowing for a wide range of flow rates, flow ratios, temperatures, and use of continuous phases (no perfluorinated solvents needed). This "Lego®-like" reactor platform comprises elements for three-phase segmentation and sequential reagent addition into fluid segments, as well as temperature-controlled residence time modules that offer the flexibility required to translate even complex nanomaterial synthesis protocols to flow. To demonstrate the platform's versatility, we chose a fouling prone multi-step synthesis, i.e., a water-based partial oxidation synthesis of iron oxide nanoparticles. This synthesis required I) the precipitation of ferrous hydroxides, II) the addition of an oxidation agent, III) a temperature treatment to initiate magnetite/maghemite formation, and IV) the addition of citric acid to increase the colloidal stability. The platform facilitated the synthesis of colloidally stable magnetic nanoparticles reproducibly at well-controlled synthetic conditions and prevented fouling using heptane as continuous phase. The biocompatible particles showed excellent heating abilities in alternating magnetic fields (ILP values >3 nH m2 kgFe-1), hence, their potential for magnetic hyperthermia cancer treatment. The platform allowed for long term operation, as well as screening of synthetic conditions to tune particle properties. This was demonstrated via the addition of tetraethylenepentamine, confirming its potential to control particle morphology. Such a versatile reactor platform makes it possible to translate even complex syntheses into flow, opening up new opportunities for material synthesis.
Collapse
Affiliation(s)
- Maximilian O Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Sayan Pal
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Simon Dawes
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Laura Norfolk
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah Staniland
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
8
|
Zou S, Zhao X, Ouyang W, Xu S. Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. MICROMACHINES 2022; 13:1647. [PMID: 36296000 PMCID: PMC9610495 DOI: 10.3390/mi13101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Halide perovskites are increasingly exploited as semiconducting materials in diverse optoelectronic applications, including light emitters, photodetectors, and solar cells. The halide perovskite can be easily processed in solution, making microfluidic synthesis possible. This review introduces perovskite nanostructures based on micron fluidic channels in chemical reactions. We also briefly discuss and summarize several advantages of microfluidics, recent progress of doping strategies, and optoelectronic applications of light-sensitive nanostructured perovskite materials. The perspective of microfluidic synthesis of halide perovskite on optoelectronic applications and possible challenges are presented.
Collapse
Affiliation(s)
- Shuangyang Zou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoan Zhao
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Wenze Ouyang
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenghua Xu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
9
|
Bhatia H, Ghosh B, Debroye E. Colloidal FAPbBr 3 perovskite nanocrystals for light emission: what's going on? JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:13437-13461. [PMID: 36324302 PMCID: PMC9521414 DOI: 10.1039/d2tc01373h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Semiconducting nanomaterials have been widely explored in diverse optoelectronic applications. Colloidal lead halide perovskite nanocrystals (NCs) have recently been an excellent addition to the field of nanomaterials, promising an enticing building block in the field of light emission. In addition to the notable optoelectronic properties of perovskites, the colloidal NCs exhibit unique size-dependent optical properties due to the quantum size effect, which makes them highly attractive for light-emitting diodes (LEDs). In the past few years, perovskite-based LEDs (PeLEDs) have demonstrated a meteoritic rise in their external quantum efficiency (EQE) values, reaching over 20% so far. Among various halide perovskite compositions, FAPbBr3 and its variants remain one of the most interesting and sought-after compounds for green light emission. This review focuses on recent progress in the design and synthesis protocols of colloidal FAPbBr3 NCs and the emerging concepts in tailoring their surface chemistry. The structural and physicochemical features of lead halide perovskites along with a comprehensive discussion on their defect-tolerant properties are briefly outlined. Later, the prevalent synthesis, ligand, and compositional engineering strategies to boost the stability and photoluminescence quantum yield (PLQY) of FAPbBr3 NCs are extensively discussed. Finally, the fundamental concepts and recent progress on FAPbBr3-based LEDs, followed by a discussion of the challenges and prospects that are on the table for this enticing class of perovskites, are reviewed.
Collapse
Affiliation(s)
- Harshita Bhatia
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Biplab Ghosh
- cMACS, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Elke Debroye
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
10
|
Otero‐Martínez C, Imran M, Schrenker NJ, Ye J, Ji K, Rao A, Stranks SD, Hoye RLZ, Bals S, Manna L, Pérez‐Juste J, Polavarapu L. Fast A‐Site Cation Cross‐Exchange at Room Temperature: Single‐to Double‐ and Triple‐Cation Halide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2022; 61:e202205617. [PMID: 35748492 PMCID: PMC9540746 DOI: 10.1002/anie.202205617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/20/2022]
Abstract
We report here fast A‐site cation cross‐exchange between APbX3 perovskite nanocrystals (NCs) made of different A‐cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A‐cation cross‐exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A‐oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)‐ and triple (MACsFA)‐cation perovskite NCs with an optical band gap that is finely tunable by their A‐site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A‐cations do not phase‐segregate under light illumination.
Collapse
Affiliation(s)
- Clara Otero‐Martínez
- Department of Physical Chemistry, CINBIO Universidade de Vigo, Materials Chemistry and Physics Group Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
- Department of Physical Chemistry, CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| | - Muhammad Imran
- Nanochemistry Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Nadine J. Schrenker
- EMAT and Nanolab Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Junzhi Ye
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Kangyu Ji
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Akshay Rao
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Samuel D. Stranks
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB3 0AS UK
| | - Robert L. Z. Hoye
- Department of Materials Imperial College London Exhibition Road London SW7 2AZ UK
| | - Sara Bals
- EMAT and Nanolab Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Liberato Manna
- Nanochemistry Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Jorge Pérez‐Juste
- Department of Physical Chemistry, CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| | - Lakshminarayana Polavarapu
- Department of Physical Chemistry, CINBIO Universidade de Vigo, Materials Chemistry and Physics Group Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| |
Collapse
|
11
|
Tang X, Yang F. Kinetic analysis of the growth behavior of perovskite CsPbBr 3 nanocrystals in a microfluidic system. LAB ON A CHIP 2022; 22:2832-2843. [PMID: 35819027 DOI: 10.1039/d2lc00331g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the growth behavior of nanoparticles and semiconductor nanocrystals under dynamic environments is of profound importance in controlling the sizes and uniformity of the prepared nanoparticles and semiconductor nanocrystals. In this work, we develop a relation between the bandgap (the photoluminescence peak wavelength) of semiconductor nanocrystals and the total flow rate for the synthesis of semiconductor nanocrystals in microfluidic systems under the framework of the quantum confinement effect without the contribution of Coulomb interaction. Using this relation, we analyze the growth behavior of CsPbBr3 nanocrystals synthesized in a microfluidic system by an antisolvent method in the temperature range of 303 to 363 K. The results demonstrate that the square of the average size of the CsPbBr3 nanocrystals is inversely proportional to the total flow rate and support the developed relation. The activation energy for the rate process controlling the growth of the CsPbBr3 nanocrystals in the microfluidic system is 2.05 kJ mol-1. Increasing the synthesis temperature widens the size distribution of the CsPbBr3 NCs prepared in the microfluidic system. The method developed in this work provides a simple approach to use photoluminescent characteristics to in situ monitor and analyze the growth of semiconductor nanocrystals under dynamic environments.
Collapse
Affiliation(s)
- Xiaobing Tang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
12
|
Chang YT, Zhang L, Lai MJ, Chiang WC, Chen LC. High-Performance Quasi-Two-Dimensional CsPbBr 2.1Cl 0.9:PEABr Perovskite Sky-Blue LEDs with an Interface Modification Layer. NANOSCALE RESEARCH LETTERS 2022; 17:66. [PMID: 35867156 PMCID: PMC9307704 DOI: 10.1186/s11671-022-03703-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
This paper elucidates the increased luminescence efficiency of CsPbBr2.1Cl0.9 sky-blue perovskite light-emitting diodes (PeLEDs) achieved through the interface modification of 3,4 ethylenedioxythiophene (PEDOT):polystyrene sulfonic acid (PSS)/quasi-two-dimensional (QTD) perovskite using CsCl and CsBr materials, respectively. QTD films were fabricated using ratios of CsPbBr2.1Cl0.9 doped with phenethylamine hydrobromide (PEABr) at 60%, 80%, and 100%. The solvent dimethyl sulfide (C2H6OS) was employed under the excitation of ambient and 365-nm laser lights. The PeLED structure was composed of Al/LiF/2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/CsPbBr2.1Cl0.9:PEABr/interface modification layer/PEDOT:PSS/ITO glass. The optimized results revealed that the luminance, current efficiency, and external quantum efficiency of the QTD CsPbBr2.1Cl0.9:80% PEABr PeLED with the CsCl interface modification additive was 892 cd/m2, 3.87 cd/A, and 5.56%, respectively.
Collapse
Affiliation(s)
- Yi-Tsung Chang
- Department of Physics, School of Science, Jimei University, Xiamen, 361021, China
| | - Lingun Zhang
- Department of Physics, School of Science, Jimei University, Xiamen, 361021, China
| | - Mu-Jen Lai
- Jiangxi Litkconn Academy of Optical Research Co., Ltd, Longnan City, 341700, Jiangxi, China
| | - Wei-Chen Chiang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Lung-Chien Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
13
|
Otero-Martínez C, Imran M, Schrenker NJ, Ye J, Ji K, Rao A, Stranks SD, Hoye RLZ, Bals S, Manna L, Pérez-Juste J, Polavarapu L. Fast A‐Site Cation Cross‐exchange at Room Temperature: Single‐to Double‐ and Triple‐Cation Halide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Clara Otero-Martínez
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Physical Chemistry SPAIN
| | - Muhammad Imran
- IIT: Istituto Italiano di Tecnologia Nanochemistry ITALY
| | | | - Junzhi Ye
- University of Cambridge Cavendish Laboratory UNITED KINGDOM
| | - Kangyu Ji
- University of Cambridge Cavendish Laboratory UNITED KINGDOM
| | - Akshay Rao
- University of Cambridge Cavendish Laboratory UNITED KINGDOM
| | | | | | - Sara Bals
- University of Antwerp - City campus: Universiteit Antwerpen EMAT BELGIUM
| | - Liberato Manna
- IIT: Istituto Italiano di Tecnologia Nanochemistry ITALY
| | - Jorge Pérez-Juste
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Physical Chemistry SPAIN
| | - Lakshminarayana Polavarapu
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Department of Physics Lagoas-Marcosende 36310 Vigo SPAIN
| |
Collapse
|
14
|
Fang MH, Bao Z, Huang WT, Liu RS. Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chem Rev 2022; 122:11474-11513. [DOI: 10.1021/acs.chemrev.1c00952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mu-Huai Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Zhen Bao
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
15
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
16
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|
17
|
Bera S, Hudait B, Mondal D, Shyamal S, Mahadevan P, Pradhan N. Transformation of Metal Halides to Facet-Modulated Lead Halide Perovskite Platelet Nanostructures on A-Site Cs-Sublattice Platform. NANO LETTERS 2022; 22:1633-1640. [PMID: 35157475 DOI: 10.1021/acs.nanolett.1c04624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conversion of metal halides to lead halide perovskites with B-site metal ion diffusion has remained a convenient approach for obtaining shape-modulated perovskite nanocrystals. These transformations are typically observed for materials having a common A-site Cs-sublattice platform. However, due to the fast reactions, trapping the interconversion process has been difficult. In an exploration of the tetragonal phase of Cs7Cd3Br13 platelets as the parent material, herein, a slower diffusion of Pb(II) leading to facet-modulated CsPbBr3 platelets is reported. This was expected due to the presence of Cd(II) halide octahedra along with Cd(II) halide tetrahedra in the parent material. This helped in microscopically monitoring their phase transformation via an epitaxially related core/shell intermediate heterostructure. The transformation was also derived and predicted by density functional theory calculations. Further, when the reaction chemistry was tuned, core/shell platelets were transformed to different facet-modulated and hollow CsPbBr3 platelet nanostructures. These platelets having different facets were also explored for catalytic CO2 reduction, and their catalytic rates were compared.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Hudait
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
18
|
Volk AA, Campbell ZS, Ibrahim MYS, Bennett JA, Abolhasani M. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annu Rev Chem Biomol Eng 2022; 13:45-72. [PMID: 35259931 DOI: 10.1146/annurev-chembioeng-092120-024449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Zachary S Campbell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Malek Y S Ibrahim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| |
Collapse
|
19
|
Wilder LM, Thompson JR, Crooks RM. Electrochemical pH regulation in droplet microfluidics. LAB ON A CHIP 2022; 22:632-640. [PMID: 35018955 DOI: 10.1039/d1lc00952d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a method for electrochemical pH regulation in microdroplets generated in a microfluidic device. The key finding is that controlled quantities of reagents can be generated electrochemically in moving microdroplets confined within a microfluidic channel. Additionally, products generated at the anode and cathode can be isolated within descendant microdroplets. Specifically, ∼5 nL water-in-oil microdroplets are produced at a T-junction and then later split into two descendant droplets. During splitting, floor-patterned microelectrodes drive water electrolysis within the aqueous microdroplets to produce H+ and OH-. This results in a change in the pHs of the descendant droplets. The droplet pH can be regulated over a range of 5.9 to 7.7 by injecting controlled amounts of charge into the droplets. When the injected charge is between -6.3 and 54.5 nC nL-1, the measured pH of the resulting droplets is within ±0.1 pH units of that predicted based on the magnitude of the injected charge. This technique can likely be adapted to electrogeneration of other reagents within microdroplets.
Collapse
Affiliation(s)
- Logan M Wilder
- Department of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| | - Jonathan R Thompson
- Department of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| | - Richard M Crooks
- Department of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| |
Collapse
|
20
|
Tian F, Cai L, Liu C, Sun J. Microfluidic technologies for nanoparticle formation. LAB ON A CHIP 2022; 22:512-529. [PMID: 35048096 DOI: 10.1039/d1lc00812a] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional nanoparticles (NPs) hold immense promise in diverse fields due to their unique biological, chemical, and physical properties associated with size or morphology. Microfluidic technologies featuring precise fluid manipulation have become versatile toolkits for manufacturing NPs in a highly controlled manner with low batch-to-batch variability. In this review, we present the fundamentals of microfluidic fabrication strategies, including mixing-, droplet-, and multiple field-based microfluidic methods. We highlight the formation of functional NPs using these microfluidic reactors, with an emphasis on lipid NPs, polymer NPs, lipid-polymer hybrid NPs, supramolecular NPs, metal and metal-oxide NPs, metal-organic framework NPs, covalent organic framework NPs, quantum dots, perovskite nanocrystals, biomimetic NPs, etc. we discuss future directions in microfluidic fabrication for accelerated development of functional NPs, such as device parallelization for large-scale NP production, highly efficient optimization of NP formulations, and AI-guided design of multi-step microfluidic reactors.
Collapse
Affiliation(s)
- Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cai
- Department of Laboratory Medicine, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Koryakina IG, Afonicheva PK, Arabuli KV, Evstrapov AA, Timin AS, Zyuzin MV. Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Adv Colloid Interface Sci 2021; 298:102548. [PMID: 34757247 DOI: 10.1016/j.cis.2021.102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, nanomaterials demonstrating optical response under illumination, the so-called optically responsive nanoparticles (NPs), have found their broad application as optical switchers, gas adsorbents, data storage devices, and optical and biological sensors. Unique optical properties of such nanomaterials are strongly related to their chemical composition, geometrical parameters and morphology. Microfluidic approaches for NPs' synthesis allow overcoming the known critical stages in conventional synthesis of NPs due to a high rate of heat/mass transfer and precise regulation of synthesis conditions, which results in reproducible synthesis outcomes with the desired physico-chemical properties. Here, we review the recent advances in microfluidic approach for synthesis of optically responsive nanomaterials (plasmonic, photoluminescent, shape-changeable NPs), highlighting the general background of microfluidics, common considerations in the design of microfluidic chips (MFCs), and theoretical models of the NPs' formation mechanisms. Comparative analysis of microfluidic synthesis with conventional synthesis methods is provided further, along with the recent applications of optically responsive NPs in nano- and biophotonics.
Collapse
|
22
|
Dutta SK, Bera S, Behera RK, Hudait B, Pradhan N. Cs-Lattice Extension and Expansion for Inducing Secondary Growth of CsPbBr 3 Perovskite Nanocrystals. ACS NANO 2021; 15:16183-16193. [PMID: 34636535 DOI: 10.1021/acsnano.1c05053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increase of the stability of perovskite nanocrystals with respect to exposure to polar media, layers growth, or shelling with different materials is in demand. While these are widely studied for metal chalcogenide nanocrystals, it has yet to be explored for perovskite nanocrystals. Even growth of a single monolayer on any facet or on the entire surface of these nanocrystals could not be established yet. To address this, herein, a secondary growth approach leading to creation of a secondary lattice with subsequent expansion on preformed CsPbBr3 perovskite nanocrystals is reported. As direct layer growth by adding precursors was not successful, Cs-lattice extension to preformed CsPbBr3 nanocrystals was performed by coupling CsBr to these nanocrystals. Opening both {110}/{002} and {200} facets of parent CsPbBr3 nanocrystals, CsBr was observed to be connected with lattice matching to the {200} facets. Further with Pb(II) incorporation, the Cs-sublattices of CsBr were expanded to CsPbBr3 and led to cube-couple nanocrystals. However, as cubes in these nanostructures were differently oriented, these showed lattice mismatch at their junctions. This lattice mismatch though restricted complete shelling but successfully favored the secondary growth on specific facets of parent CsPbBr3 nanocrystals. Details of this secondary growth via lattice extension and expansion are microscopically analyzed and reported. These results further suggest that lead halide perovskite nanocrystals can be epitaxially grown under proper reaction design and more complex as well as heterostructures of these materials can be fabricated to meet the current demands.
Collapse
Affiliation(s)
- Sumit Kumar Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Biswajit Hudait
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| |
Collapse
|
23
|
Abstract
AbstractHigh mass transfer rate is a key advantage of microreactors however, under their characteristic laminar flow, it is dominated by slow diffusion rather than fast convection. In this paper, we demonstrate how the configuration of the inlet, i.e. mixers, can promote different flow patterns to greatly enhance mixing efficiency downstream. A systematic evaluation and comparison of different widely adopted mixers as well as advanced designs is presented using a combination of computational fluid dynamics (CFD) and backward particle tracking to accurately calculate diffusion, in the absence of numerical diffusion (false diffusion). In the method, the convection contributed concentration profile is obtained by tracking sampling points from a cross-sectional plane to the inlet point, and diffusion is estimated subsequently. In conventional T- and Y-mixers, the shape of channel, circular or square, is key with only the latter promoting engulfment flow. In cyclone mixers, the resulting average inlet velocity, independent of Reynolds number or geometry, is the dominating design parameter to predict mixing efficiency. This work will serve as a guideline for the design of efficient flow systems with predicted mixing as a way of maximising selectivity and product quality.
Collapse
|
24
|
Hills‐Kimball K, Yang H, Cai T, Wang J, Chen O. Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100214. [PMID: 34194945 PMCID: PMC8224438 DOI: 10.1002/advs.202100214] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Indexed: 05/09/2023]
Abstract
Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.
Collapse
Affiliation(s)
| | - Hanjun Yang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Tong Cai
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Junyu Wang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Ou Chen
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| |
Collapse
|
25
|
Breen CP, Nambiar AM, Jamison TF, Jensen KF. Ready, Set, Flow! Automated Continuous Synthesis and Optimization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Yoon YJ, Shin YS, Jang H, Son JG, Kim JW, Park CB, Yuk D, Seo J, Kim GH, Kim JY. Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. NANO LETTERS 2021; 21:3473-3479. [PMID: 33851850 DOI: 10.1021/acs.nanolett.1c00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To date, the light emitting diode (LED) based halide perovskite was rapidly developed due to the outstanding property of perovskite materials. However, the blue perovskite LEDs based on the bulk halide perovskites have been rarely researched and showed low efficiencies. The bulk blue perovskite LEDs suffered from insufficient coverage on the substrate due to the low solubility of the inorganic Cl sources or damaged by the structural instability with participation of organic cations. Here, we show the new method of fabricating stable inorganic bulk blue perovskite LEDs with the anion exchange approach to avoid use of insoluble Cl precursors. The devices showed nice operational spectral stability at the desired blue emission peak. The bulk perovskite blue LEDs showed a maximum luminance of 1468 and 494 cd m-2 for the 490 and 470 nm emission peaks, respectively.
Collapse
Affiliation(s)
- Yung Jin Yoon
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Yun Seop Shin
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hyungsu Jang
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Jung Geon Son
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Jae Won Kim
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Chan Beom Park
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Dohun Yuk
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Jongdeuk Seo
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Gi-Hwan Kim
- School of Materials Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Young Kim
- Perovtronics Research Center, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
27
|
Baker RW, Forfar L, Liang X, Cameron PJ. Using design of experiment to obtain a systematic understanding of the effect of synthesis parameters on the properties of perovskite nanocrystals. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00149j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of experiments was used to systematically investigate the synthesis of MAPbI3 nanoparticles in a flow reactor. By controlling the solvents and the ligands, we were able to tune the MAPbI3 photoluminescence peak between 614 and 737 nm.
Collapse
Affiliation(s)
- Robert W. Baker
- Centre for Sustainable and Circular Technologies
- University of Bath
- Bath
- UK
- Department of Chemistry
| | | | | | - Petra J. Cameron
- Centre for Sustainable and Circular Technologies
- University of Bath
- Bath
- UK
- Department of Chemistry
| |
Collapse
|
28
|
Volk AA, Epps RW, Abolhasani M. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004495. [PMID: 33289177 DOI: 10.1002/adma.202004495] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Indexed: 05/09/2023]
Abstract
In recent years, microfluidic technologies have emerged as a powerful approach for the advanced synthesis and rapid optimization of various solution-processed nanomaterials, including semiconductor quantum dots and nanoplatelets, and metal plasmonic and reticular framework nanoparticles. These fluidic systems offer access to previously unattainable measurements and synthesis conditions at unparalleled efficiencies and sampling rates. Despite these advantages, microfluidic systems have yet to be extensively adopted by the colloidal nanomaterial community. To help bridge the gap, this progress report details the basic principles of microfluidic reactor design and performance, as well as the current state of online diagnostics and autonomous robotic experimentation strategies, toward the size, shape, and composition-controlled synthesis of various colloidal nanomaterials. By discussing the application of fluidic platforms in recent high-priority colloidal nanomaterial studies and their potential for integration with rapidly emerging artificial intelligence-based decision-making strategies, this report seeks to encourage interdisciplinary collaborations between microfluidic reactor engineers and colloidal nanomaterial chemists. Full convergence of these two research efforts offers significantly expedited and enhanced nanomaterial discovery, optimization, and manufacturing.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| |
Collapse
|
29
|
Zhang A, Lv Q. Organic‐Inorganic Hybrid Perovskite Nanomaterials: Synthesis and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anni Zhang
- School of Science Beijing Jiaotong University Beijing 100044 China
| | - Qianrui Lv
- School of Science Beijing Jiaotong University Beijing 100044 China
| |
Collapse
|
30
|
Li GX, Li Q, Cheng R, Chen S. Synthesis of quantum dots based on microfluidic technology. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Chen K, Wang C, Peng Z, Qi K, Guo Z, Zhang Y, Zhang H. The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Lignos I, Utzat H, Bawendi MG, Jensen KF. Nanocrystal synthesis, μfluidic sample dilution and direct extraction of single emission linewidths in continuous flow. LAB ON A CHIP 2020; 20:1975-1980. [PMID: 32352465 DOI: 10.1039/d0lc00213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational design of semiconductor nanocrystal populations requires control of their emission linewidths, which are dictated by interparticle inhomogeneities and single-nanocrystal spectral linewidths. To date, research efforts have concentrated on minimizing the ensemble emission linewidths, however there is little knowledge about the synthetic parameters dictating single-nanocrystal linewidths. In this direction, we present a flow-based system coupled with an optical interferometry setup for the extraction of single nanocrystal properties. The platform has the ability to synthesize nanocrystals at high temperature <300 °C, adjust the particle concentration after synthesis and extract ensemble-averaged single nanocrystal emission linewidths using flow photon-correlation Fourier spectroscopy.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
33
|
Sui J, Yan J, Liu D, Wang K, Luo G. Continuous Synthesis of Nanocrystals via Flow Chemistry Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902828. [PMID: 31755221 DOI: 10.1002/smll.201902828] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/11/2019] [Indexed: 05/28/2023]
Abstract
Modern nanotechnologies bring humanity to a new age, and advanced methods for preparing functional nanocrystals are cornerstones. A considerable variety of nanomaterials has been created over the past decades, but few were prepared on the macro scale, even fewer making it to the stage of industrial production. The gap between academic research and engineering production is expected to be filled by flow chemistry technology, which relies on microreactors. Microreaction devices and technologies for synthesizing different kinds of nanocrystals are discussed from an engineering point of view. The advantages of microreactors, the important features of flow chemistry systems, and methods to apply them in the syntheses of salt, oxide, metal, alloy, and quantum dot nanomaterials are summarized. To further exhibit the scaling-up of nanocrystal synthesis, recent reports on using microreactors with gram per hour and larger production rates are highlighted. Finally, an industrial example for preparing 10 tons of CaCO3 nanoparticles per day is introduced, which shows the great potential for flow chemistry processes to transfer lab research to industry.
Collapse
Affiliation(s)
- Jinsong Sui
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyu Yan
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Di Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Wang H, Zhang X, Sui N, Hu Y, Colvin VL, Yu WW, Zhang Y. Photoluminescence Loss and Recovery of α-CsPbI 3 Quantum Dots Originated from Chemical Equilibrium Shift of Oleylammonium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11769-11777. [PMID: 32069392 DOI: 10.1021/acsami.9b23556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
α-CsPbI3 perovskite quantum dots (PQDs) have great potentials in red-emitting LED and solar cell applications. However, their instability with quick photoluminescence loss with time greatly limits their development. In this study, we found that the nonluminous aged α-CsPbI3 PQDs instantly regained fluorescence emission after a surface treatment with trioctylphosphine. Meanwhile, this surface treatment also worked on fresh α-CsPbI3 PQDs to enhance photoluminescence emission. The structures and compositions of fresh and aged PQDs before and after surface treatment were analyzed in detail. We demonstrated that a surface chemical equilibrium shift mechanism involving oleylammonium led to the PL loss and recovery of α-CsPbI3 PQDs. This chemical equilibrium shift also played an important role in other PQD stabilities against long-term storage, temperature, UV irradiation and ethanol, which were all significantly improved after treatment. The treated α-CsPbI3 PQDs were phase stable for more than 6 months. Oleic acid and oleylamine are common ligands used in PQD syntheses; this study shall promote the understanding of PQD surface chemistry and the preparation of stable α-CsPbI3 PQDs.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiangtong Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue Hu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Vicki L Colvin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - William W Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115, United States
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
35
|
Lu CH, Biesold-McGee GV, Liu Y, Kang Z, Lin Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem Soc Rev 2020; 49:4953-5007. [PMID: 32538382 DOI: 10.1039/c9cs00790c] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX3, where A is a monovalent cation (which can be either organic (e.g., CH3NH3+ (MA), CH(NH2)2+ (FA)) or inorganic (e.g., Cs+)), B is a divalent metal cation (usually Pb2+), and X is a halogen anion (Cl-, Br-, I-). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties (e.g., absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A', B', or X' site ions into the A, B, or X sites of ABX3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed.
Collapse
Affiliation(s)
- Cheng-Hsin Lu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill V Biesold-McGee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, P. R. China.
| | - Zhitao Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. and Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| |
Collapse
|
37
|
Shynkarenko Y, Bodnarchuk MI, Bernasconi C, Berezovska Y, Verteletskyi V, Ochsenbein ST, Kovalenko MV. Direct Synthesis of Quaternary Alkylammonium-Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes. ACS ENERGY LETTERS 2019; 4:2703-2711. [PMID: 31737780 PMCID: PMC6849336 DOI: 10.1021/acsenergylett.9b01915] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Cesium lead halide nanocrystals (CsPbX3 NCs) are new inorganic light sources covering the entire visible spectral range and exhibiting near-unity efficiencies. While the last years have seen rapid progress in green and red electroluminescence from CsPbX3 NCs, the development of blue counterparts remained rather stagnant. Controlling the surface state of CsPbX3 NCs had proven to be a major factor governing the efficiency of the charge injection and for diminishing the density of traps. Although didodecyldimethylammonium halides (DDAX; X = Br, Cl) had been known to improve the luminescence of CsPbX3 NCs when applied postsynthetically, they had not been used as the sole long-chain ammonium ligand directly in the synthesis of these NCs. Herein we report a facile, direct synthesis of DDAX-stabilized CsPbX3 NCs. We then demonstrate blue and green light-emitting diodes, characterized by the electroluminescence at 463-515 nm and external quantum efficiencies of 9.80% for green, 4.96% for sky-blue, and 1.03% for deep-blue spectral regions.
Collapse
Affiliation(s)
- Yevhen Shynkarenko
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Maryna I. Bodnarchuk
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Caterina Bernasconi
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Yuliia Berezovska
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Vladyslav Verteletskyi
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Stefan T. Ochsenbein
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Empa
− Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
38
|
Wang L, Fu K, Sun R, Lian H, Hu X, Zhang Y. Ultra-stable CsPbBr 3 Perovskite Nanosheets for X-Ray Imaging Screen. NANO-MICRO LETTERS 2019; 11:52. [PMID: 34138025 PMCID: PMC7770729 DOI: 10.1007/s40820-019-0283-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 05/14/2023]
Abstract
Wet chemistry methods, including hot-injection and precipitation methods, have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications. However, low chemical yield hinders their upscale production for practical use. Meanwhile, the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals. Herein, we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent, saving over 95% of the solvent for the unity mass nanocrystal production. The perovskite colloid exhibits record stability upon long-term storage for up to 8 months, preserving a photoluminescence quantum yield of 63% in solid state. Importantly, the colloidal nanosheets show self-assembly behavior upon slow solidification, generating a crack-free thin film in a large area. The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging. Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals, which may inspire the industrial optoelectronic application of large-area perovskite film.
Collapse
Affiliation(s)
- Liangling Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
- School of Physics and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Kaifang Fu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Ruijia Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Huqiang Lian
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
39
|
Ochsenbein ST, Krieg F, Shynkarenko Y, Rainò G, Kovalenko MV. Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21655-21660. [PMID: 31117429 DOI: 10.1021/acsami.9b02472] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanocrystalline lead halide perovskites are promising as emissive layers for light-emitting diodes due to their bright, tunable emission with very narrow linewidths. Blue perovskite light-emitting diodes, in the wavelength range useful for display applications (460-470 nm), could be made with CsPb(Br/Cl)3 nanocrystals (NCs). However, mixed halide perovskites suffer from color instability, foremost, due to the segregation of halide ions. In this study, we address this issue with several measures. First, we show that thinner CsPb(Br/Cl)3 NC layers are less prone to color instability. Additionally, inefficient hole injection due to the deep-lying valence band of CsPb(Br/Cl)3 NCs detrimentally affects the device performance, and we mitigate this problem by stepwise hole injection using two hole-transporting materials. Next, we employ NCs capped with zwitterionic ligands that allow for a more thorough washing of the NC solutions. Furthermore, our new device layout explores the use of polystyrene in the emitting layer to limit the current leakage. Undertaking these steps, we show light-emitting diodes with a stable electroluminescence peak wavelength of 463 nm over the lifetime of the device and a peak external quantum efficiency of over 1%. The results prove that perovskite NCs are a viable contender in the development of blue-emissive, active pixel displays.
Collapse
Affiliation(s)
- Stefan T Ochsenbein
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , CH-8093 Zürich , Switzerland
- Laboratory for Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Franziska Krieg
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , CH-8093 Zürich , Switzerland
- Laboratory for Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Yevhen Shynkarenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , CH-8093 Zürich , Switzerland
- Laboratory for Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , CH-8093 Zürich , Switzerland
- Laboratory for Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , CH-8093 Zürich , Switzerland
- Laboratory for Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| |
Collapse
|
40
|
Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin VL, Wang S, Zhang Y, Yu WW. Strong Blue Emission from Sb 3+-Doped Super Small CsPbBr 3 Nanocrystals. J Phys Chem Lett 2019; 10:1750-1756. [PMID: 30932497 DOI: 10.1021/acs.jpclett.9b00790] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal lead halide perovskite nanocrystals (NCs) have high tunability in the visible light region and high photoluminescence quantum yields (PL QYs) for green and red emissions, but bright blue emission is still a challenge. Super small CsPbBr3 perovskite NCs emit blue light around 460 nm with a narrow peak width, and they do not have the problem of phase separation like their Cl-Br counterparts. However, the blue emission from super small CsPbBr3 NCs easily becomes green over time, and their PL QY is still low. The doping of Sb3+ ions successfully reduced the surface energy, improved the lattice energy, passivated the defect states below the band gap, eventually boosted the PL QY of blue emission to 73.8%, and resulted in better spectral stability even at elevated temperatures in solution (40-100 °C). Its CIE coordinates were (0.14, 0.06), which are close to the primary blue color (0.155, 0.070) according to the NTSC TV color standard.
Collapse
Affiliation(s)
- Xiangtong Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering , Jilin University , Changchun 130012 , China
| | - Hua Wang
- Department of Chemistry and Physics , Louisiana State University , Shreveport , Louisiana 71115 , United States
| | - Yue Hu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Yixian Pei
- Institute for Micromanufacturing , Louisiana Tech University , Ruston , Louisiana 71270 , United States
| | - Shixun Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering , Jilin University , Changchun 130012 , China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and Engineering , Zhengzhou University , Zhengzhou 450052 , China
| | - Vicki L Colvin
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Shengnian Wang
- Institute for Micromanufacturing , Louisiana Tech University , Ruston , Louisiana 71270 , United States
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering , Jilin University , Changchun 130012 , China
| | - William W Yu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering , Jilin University , Changchun 130012 , China
- Department of Chemistry and Physics , Louisiana State University , Shreveport , Louisiana 71115 , United States
| |
Collapse
|
41
|
Liu H, Liu Z, Xu W, Yang L, Liu Y, Yao D, Zhang D, Zhang H, Yang B. Engineering the Photoluminescence of CsPbX 3 (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14256-14265. [PMID: 30924330 DOI: 10.1021/acsami.9b01930] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescent CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are compelling candidates for illumination and display applications because of the high photoluminescence quantum yields (PLQYs) narrow PL emission spectra, and in particular, the potential to tune the emission spectra in the entire visible range. However, limited by the current preparation strategy, the successive adjustment of PL emission across the full visible spectral range with very small interval, like conventional semiconductor quantum dots, is still challenging. In this work, we demonstrate the capability to tune the PL emission of CsPbX3 NCs in the full visible range with the interval of 1 nm on the basis of a modified anion-exchange route. Highly luminescent CsPbCl3 NCs with PLQY up to 34.2% are foremost prepared using alkanoyl chlorides as the chlorine source and further employed to perform anion exchange. A successive and accurate adjustment of the PL emission is achieved with the addition of ZnX2 (X = Br and I) aqueous solution and assisted by ultrasound to improve the reactivity of halogens in the anion exchange. Besides the accurately tunable PL emission position, the as-prepared CsPbX3 NCs exhibit good phase/chemical stability, high PLQY, and narrow PL emission spectra.
Collapse
Affiliation(s)
- Huiwen Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Zhaoyu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Wenzhe Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Liting Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Daqi Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital , Jilin University , Changchun 130033 , P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
42
|
Shamsi J, Urban AS, Imran M, De Trizio L, Manna L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem Rev 2019; 119:3296-3348. [PMID: 30758194 PMCID: PMC6418875 DOI: 10.1021/acs.chemrev.8b00644] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 01/17/2023]
Abstract
Metal halide perovskites represent a flourishing area of research, which is driven by both their potential application in photovoltaics and optoelectronics and by the fundamental science behind their unique optoelectronic properties. The emergence of new colloidal methods for the synthesis of halide perovskite nanocrystals, as well as the interesting characteristics of this new type of material, has attracted the attention of many researchers. This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed. We will examine the chemistry and the capability of different colloidal synthetic routes with regard to controlling the shape, size, and optical properties of the resulting nanocrystals. We will also provide an up-to-date overview of their postsynthesis transformations, and summarize the various solution processes that are aimed at fabricating halide perovskite-based nanocomposites. Furthermore, we will review the fundamental optical properties of halide perovskite nanocrystals by focusing on their linear optical properties, on the effects of quantum confinement, and on the current knowledge of their exciton binding energies. We will also discuss the emergence of nonlinear phenomena such as multiphoton absorption, biexcitons, and carrier multiplication. Finally, we will discuss open questions and possible future directions.
Collapse
Affiliation(s)
- Javad Shamsi
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alexander S. Urban
- Nanospectroscopy
Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Amalienstaße 54, 80799 Munich, Germany
| | - Muhammad Imran
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Luca De Trizio
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Kavli
Institute of Nanoscience and Department of Chemical Engineering, Delft University of Technology, PO Box 5, 2600AA Delft, The Netherlands
| |
Collapse
|
43
|
Wang Y, Chen K, Hao H, Yu G, Zeng B, Wang H, Zhang F, Wu L, Li J, Xiao S, He J, Zhang Y, Zhang H. Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. NANOSCALE 2019; 11:2637-2643. [PMID: 30698602 DOI: 10.1039/c9nr00058e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, 0-dimensional (0D) CsPbBr3 QDs were integrated with 2D bismuthene having ultrafast carrier mobility, to obtain a 0D/2D nanohybrid. Moreover, an excellent charge transfer efficiency (0.53) and an appreciable quenching constant of 2.3 × 105 M-1 were observed. Tuning the ratio of bismuthene in the Bi/perovskite nanohybrid achieved the quantified control of charge transfer efficiency and quenching performance at the interface.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology and college of optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ghosh S, Manna L. The Many "Facets" of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals. Chem Rev 2018; 118:7804-7864. [PMID: 30062881 PMCID: PMC6107855 DOI: 10.1021/acs.chemrev.8b00158] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Over the years, scientists have identified various synthetic "handles" while developing wet chemical protocols for achieving a high level of shape and compositional complexity in colloidal nanomaterials. Halide ions have emerged as one such handle which serve as important surface active species that regulate nanocrystal (NC) growth and concomitant physicochemical properties. Halide ions affect the NC growth kinetics through several means, including selective binding on crystal facets, complexation with the precursors, and oxidative etching. On the other hand, their presence on the surfaces of semiconducting NCs stimulates interesting changes in the intrinsic electronic structure and interparticle communication in the NC solids eventually assembled from them. Then again, halide ions also induce optoelectronic tunability in NCs where they form part of the core, through sheer composition variation. In this review, we describe these roles of halide ions in the growth of nanostructures and the physical changes introduced by them and thereafter demonstrate the commonality of these effects across different classes of nanomaterials.
Collapse
Affiliation(s)
- Sandeep Ghosh
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Liberato Manna
- Department
of Nanochemistry, Istituto Italiano di Tecnologia
(IIT), via Morego 30, I-16163 Genova, Italy
- Kavli Institute
of Nanoscience and Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
45
|
Bohn BJ, Tong Y, Gramlich M, Lai ML, Döblinger M, Wang K, Hoye RLZ, Müller-Buschbaum P, Stranks SD, Urban AS, Polavarapu L, Feldmann J. Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. NANO LETTERS 2018; 18:5231-5238. [PMID: 29990435 DOI: 10.1021/acs.nanolett.8b02190] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The easily tunable emission of halide perovskite nanocrystals throughout the visible spectrum makes them an extremely promising material for light-emitting applications. Whereas high quantum yields and long-term colloidal stability have already been achieved for nanocrystals emitting in the red and green spectral range, the blue region currently lags behind with low quantum yields, broad emission profiles, and insufficient colloidal stability. In this work, we present a facile synthetic approach for obtaining two-dimensional CsPbBr3 nanoplatelets with monolayer-precise control over their thickness, resulting in sharp photoluminescence and electroluminescence peaks with a tunable emission wavelength between 432 and 497 nm due to quantum confinement. Subsequent addition of a PbBr2-ligand solution repairs surface defects likely stemming from bromide and lead vacancies in a subensemble of weakly emissive nanoplatelets. The overall photoluminescence quantum yield of the blue-emissive colloidal dispersions is consequently enhanced up to a value of 73 ± 2%. Transient optical spectroscopy measurements focusing on the excitonic resonances further confirm the proposed repair process. Additionally, the high stability of these nanoplatelets in films and to prolonged ultraviolet light exposure is shown.
Collapse
Affiliation(s)
- Bernhard J Bohn
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Yu Tong
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Moritz Gramlich
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - May Ling Lai
- Cavendish Laboratory , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Markus Döblinger
- Department of Chemistry , Ludwig-Maximilians-Universität München , Butenandtstrasse 5-13 (E) , 81377 Munich , Germany
| | - Kun Wang
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Robert L Z Hoye
- Cavendish Laboratory , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Samuel D Stranks
- Cavendish Laboratory , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Alexander S Urban
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Lakshminarayana Polavarapu
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| |
Collapse
|
46
|
Lignos I, Morad V, Shynkarenko Y, Bernasconi C, Maceiczyk RM, Protesescu L, Bertolotti F, Kumar S, Ochsenbein ST, Masciocchi N, Guagliardi A, Shih CJ, Bodnarchuk MI, deMello AJ, Kovalenko MV. Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. ACS NANO 2018; 12:5504-5517. [PMID: 29754493 PMCID: PMC6024237 DOI: 10.1021/acsnano.8b01122] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/12/2018] [Indexed: 05/18/2023]
Abstract
Hybrid organic-inorganic and fully inorganic lead halide perovskite nanocrystals (NCs) have recently emerged as versatile solution-processable light-emitting and light-harvesting optoelectronic materials. A particularly difficult challenge lies in warranting the practical utility of such semiconductor NCs in the red and infrared spectral regions. In this context, all three archetypal A-site monocationic perovskites-CH3NH3PbI3, CH(NH2)2PbI3, and CsPbI3-suffer from either chemical or thermodynamic instabilities in their bulk form. A promising approach toward the mitigation of these challenges lies in the formation of multinary compositions (mixed cation and mixed anion). In the case of multinary colloidal NCs, such as quinary Cs xFA1- xPb(Br1- yI y)3 NCs, the outcome of the synthesis is defined by a complex interplay between the bulk thermodynamics of the solid solutions, crystal surface energies, energetics, dynamics of capping ligands, and the multiple effects of the reagents in solution. Accordingly, the rational synthesis of such NCs is a formidable challenge. Herein, we show that droplet-based microfluidics can successfully tackle this problem and synthesize Cs xFA1- xPbI3 and Cs xFA1- xPb(Br1- yI y)3 NCs in both a time- and cost-efficient manner. Rapid in situ photoluminescence and absorption measurements allow for thorough parametric screening, thereby permitting precise optical engineering of these NCs. In this showcase study, we fine-tune the photoluminescence maxima of such multinary NCs between 700 and 800 nm, minimize their emission line widths (to below 40 nm), and maximize their photoluminescence quantum efficiencies (up to 89%) and phase/chemical stabilities. Detailed structural analysis revealed that the Cs xFA1- xPb(Br1- yI y)3 NCs adopt a cubic perovskite structure of FAPbI3, with iodide anions partially substituted by bromide ions. Most importantly, we demonstrate the excellent transference of reaction parameters from microfluidics to a conventional flask-based environment, thereby enabling up-scaling and further implementation in optoelectronic devices. As an example, Cs xFA1- xPb(Br1- yI y)3 NCs with an emission maximum at 735 nm were integrated into light-emitting diodes, exhibiting a high external quantum efficiency of 5.9% and a very narrow electroluminescence spectral bandwidth of 27 nm.
Collapse
Affiliation(s)
- Ioannis Lignos
- Institute for Chemical
and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Viktoriia Morad
- Institute for Chemical
and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Yevhen Shynkarenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Caterina Bernasconi
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Richard M. Maceiczyk
- Institute for Chemical
and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Loredana Protesescu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia
and To.Sca.Lab, Università dell’Insubria, Via Valleggio 11, I-22100 Como, Italy
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| | - Sudhir Kumar
- Institute for Chemical
and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Stefan T. Ochsenbein
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia
and To.Sca.Lab, Università dell’Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Antonietta Guagliardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, and To.Sca.Lab, via Valleggio 11, I-22100 Como, Italy
| | - Chih-Jen Shih
- Institute for Chemical
and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Maryna I. Bodnarchuk
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
- E-mail:
| | - Andrew J. deMello
- Institute for Chemical
and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- E-mail:
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland
- E-mail:
| |
Collapse
|
47
|
Dong Y, Qiao T, Kim D, Parobek D, Rossi D, Son DH. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. NANO LETTERS 2018; 18:3716-3722. [PMID: 29727576 DOI: 10.1021/acs.nanolett.8b00861] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cesium lead halide (CsPbX3) nanocrystals have emerged as a new family of materials that can outperform the existing semiconductor nanocrystals due to their superb optical and charge-transport properties. However, the lack of a robust method for producing quantum dots with controlled size and high ensemble uniformity has been one of the major obstacles in exploring the useful properties of excitons in zero-dimensional nanostructures of CsPbX3. Here, we report a new synthesis approach that enables the precise control of the size based on the equilibrium rather than kinetics, producing CsPbX3 quantum dots nearly free of heterogeneous broadening in their exciton luminescence. The high level of size control and ensemble uniformity achieved here will open the door to harnessing the benefits of excitons in CsPbX3 quantum dots for photonic and energy-harvesting applications.
Collapse
Affiliation(s)
- Yitong Dong
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Tian Qiao
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Doyun Kim
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David Parobek
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Daniel Rossi
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Dong Hee Son
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| |
Collapse
|
48
|
Bezinge L, Maceiczyk RM, Lignos I, Kovalenko MV, deMello AJ. Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18869-18878. [PMID: 29766716 DOI: 10.1021/acsami.8b03381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent advances in the development of hybrid organic-inorganic lead halide perovskite (LHP) nanocrystals (NCs) have demonstrated their versatility and potential application in photovoltaics and as light sources through compositional tuning of optical properties. That said, due to their compositional complexity, the targeted synthesis of mixed-cation and/or mixed-halide LHP NCs still represents an immense challenge for traditional batch-scale chemistry. To address this limitation, we herein report the integration of a high-throughput segmented-flow microfluidic reactor and a self-optimizing algorithm for the synthesis of NCs with defined emission properties. The algorithm, named Multiparametric Automated Regression Kriging Interpolation and Adaptive Sampling (MARIA), iteratively computes optimal sampling points at each stage of an experimental sequence to reach a target emission peak wavelength based on spectroscopic measurements. We demonstrate the efficacy of the method through the synthesis of multinary LHP NCs, (Cs/FA)Pb(I/Br)3 (FA = formamidinium) and (Rb/Cs/FA)Pb(I/Br)3 NCs, using MARIA to rapidly identify reagent concentrations that yield user-defined photoluminescence peak wavelengths in the green-red spectral region. The procedure returns a robust model around a target output in far fewer measurements than systematic screening of parametric space and additionally enables the prediction of other spectral properties, such as, full-width at half-maximum and intensity, for conditions yielding NCs with similar emission peak wavelength.
Collapse
Affiliation(s)
| | | | | | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics , Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
| | | |
Collapse
|
49
|
Tong Y, Yao EP, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban AS, Polavarapu L, Feldmann J. Spontaneous Self-Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801117. [PMID: 29870579 DOI: 10.1002/adma.201801117] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/14/2018] [Indexed: 05/21/2023]
Abstract
Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at ≈530-535 nm, while the individual nanocubes emit a cyan-green color (≈512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties.
Collapse
Affiliation(s)
- Yu Tong
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799, Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
| | - En-Ping Yao
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799, Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
| | - Aurora Manzi
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799, Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
| | - Eva Bladt
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Kun Wang
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748, Garching, Germany
| | - Markus Döblinger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377, Munich, Germany
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Peter Müller-Buschbaum
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748, Garching, Germany
| | - Alexander S Urban
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799, Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
| | - Lakshminarayana Polavarapu
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799, Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799, Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799, Munich, Germany
| |
Collapse
|
50
|
Askar AM, Karmakar A, Bernard GM, Ha M, Terskikh VV, Wiltshire BD, Patel S, Fleet J, Shankar K, Michaelis VK. Composition-Tunable Formamidinium Lead Mixed Halide Perovskites via Solvent-Free Mechanochemical Synthesis: Decoding the Pb Environments Using Solid-State NMR Spectroscopy. J Phys Chem Lett 2018; 9:2671-2677. [PMID: 29715040 DOI: 10.1021/acs.jpclett.8b01084] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mixed-halide lead perovskites are becoming of paramount interest in the optoelectronic and photovoltaic research fields, offering band gap tunability, improved efficiency, and enhanced stability compared to their single halide counterparts. Formamidinium-based mixed halide perovskites (FA-MHPs) are critical to obtaining optimum solar cell performance. Here, we report a solvent-free mechanochemical synthesis (MCS) method to prepare FA-MHPs, starting with their parent compounds (FAPbX3; X = Cl, Br, I), achieving compositions not previously accessible through the solvent synthesis (SS) technique. By probing local Pb environments in MCS FA-MHPs using solid-state nuclear magnetic resonance spectroscopy, along with powder X-ray diffraction for long-range crystallinity and reflectance measurements to determine the optical band gap, we show that MCS FA-MHPs form atomic-level solid solutions between Cl/Br and Br/I MHPs. Our results pave the way for advanced methods in atomic-level structural understanding while offering a one-pot synthetic approach to prepare MHPs with superior control of stoichiometry.
Collapse
Affiliation(s)
- Abdelrahman M Askar
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta , Canada T6G 1H9
| | - Abhoy Karmakar
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Guy M Bernard
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Michelle Ha
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| | - Victor V Terskikh
- Department of Chemistry , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5
| | - Benjamin D Wiltshire
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta , Canada T6G 1H9
| | - Sahil Patel
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta , Canada T6G 1H9
| | - Jonathan Fleet
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta , Canada T6G 1H9
| | - Karthik Shankar
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta , Canada T6G 1H9
| | - Vladimir K Michaelis
- Department of Chemistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G2
| |
Collapse
|