1
|
Coherent correlation imaging for resolving fluctuating states of matter. Nature 2023; 614:256-261. [PMID: 36653456 PMCID: PMC9908557 DOI: 10.1038/s41586-022-05537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5-8 and topology9-12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.
Collapse
|
2
|
Malm E, Pfau B, Schneider M, Günther CM, Hessing P, Büttner F, Mikkelsen A, Eisebitt S. Reference shape effects on Fourier transform holography. OPTICS EXPRESS 2022; 30:38424-38438. [PMID: 36258408 DOI: 10.1364/oe.463338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Soft-x-ray holography which utilizes an optics mask fabricated in direct contact with the sample, is a widely applied x-ray microscopy method, in particular, for investigating magnetic samples. The optics mask splits the x-ray beam into a reference wave and a wave to illuminate the sample. The reconstruction quality in such a Fourier-transform holography experiment depends primarily on the characteristics of the reference wave, typically emerging from a small, high-aspect-ratio pinhole in the mask. In this paper, we study two commonly used reference geometries and investigate how their 3D structure affects the reconstruction within an x-ray Fourier holography experiment. Insight into these effects is obtained by imaging the exit waves from reference pinholes via high-resolution coherent diffraction imaging combined with three-dimensional multislice simulations of the x-ray propagation through the reference pinhole. The results were used to simulate Fourier-transform holography experiments to determine the spatial resolution and precise location of the reconstruction plane for different reference geometries. Based on our findings, we discuss the properties of the reference pinholes with view on application in soft-x-ray holography experiments.
Collapse
|
3
|
Microstructure effects on the phase transition behavior of a prototypical quantum material. Sci Rep 2022; 12:10464. [PMID: 35729245 PMCID: PMC9213476 DOI: 10.1038/s41598-022-13872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
Materials with insulator-metal transitions promise advanced functionalities for future information technology. Patterning on the microscale is key for miniaturized functional devices, but material properties may vary spatially across microstructures. Characterization of these miniaturized devices requires electronic structure probes with sufficient spatial resolution to understand the influence of structure size and shape on functional properties. The present study demonstrates the use of imaging soft X-ray absorption spectroscopy with a spatial resolution better than 2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm to study the insulator-metal transition in vanadium dioxide thin-film microstructures. This novel technique reveals that the transition temperature for the conversion from insulating to metallic vanadium dioxide is lowered by 1.2 K ± 0.4 K close to the structure edges compared to the center. Facilitated strain release during the phase transition is discussed as origin of the observed behavior. The experimental approach enables a detailed understanding of how the electronic properties of quantum materials depend on their patterning at the micrometer scale.
Collapse
|
4
|
Perez-Salinas D, Johnson AS, Prabhakaran D, Wall S. Multi-mode excitation drives disorder during the ultrafast melting of a C4-symmetry-broken phase. Nat Commun 2022; 13:238. [PMID: 35017507 PMCID: PMC8752725 DOI: 10.1038/s41467-021-27819-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Spontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.
Collapse
Affiliation(s)
- Daniel Perez-Salinas
- ICFO - The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Allan S Johnson
- ICFO - The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | | | - Simon Wall
- ICFO - The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Johnson AS, Conesa JV, Vidas L, Perez-Salinas D, Günther CM, Pfau B, Hallman KA, Haglund RF, Eisebitt S, Wall S. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. SCIENCE ADVANCES 2021; 7:eabf1386. [PMID: 34380611 PMCID: PMC8357230 DOI: 10.1126/sciadv.abf1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L 2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.
Collapse
Affiliation(s)
- Allan S Johnson
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jordi Valls Conesa
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciana Vidas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Perez-Salinas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christian M Günther
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Kent A Hallman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Richard F Haglund
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Stefan Eisebitt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Max-Born-Institut, 12489 Berlin, Germany
| | - Simon Wall
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Abstract
Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.
Collapse
|
7
|
Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy. Nat Commun 2020; 11:5770. [PMID: 33188192 PMCID: PMC7666229 DOI: 10.1038/s41467-020-19636-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO2 nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10−21 m ∙ s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO2, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution. The fs control of an insulator-to-metal transition down to a few nanometers and its real-time/real space observation remain a challenge. Here, the authors demonstrate a method based on ultrafast electron microscopy to provide a nm/fs resolved view of the electronic dynamics in a single VO2 nanowire.
Collapse
|
8
|
Geilhufe J, Pfau B, Günther CM, Schneider M, Eisebitt S. Achieving diffraction-limited resolution in soft-X-ray Fourier-transform holography. Ultramicroscopy 2020; 214:113005. [PMID: 32416436 DOI: 10.1016/j.ultramic.2020.113005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
The spatial resolution of microscopic images acquired via X-ray Fourier-transform holography is limited by the source size of the reference wave and by the numerical aperture of the detector. We analyze the interplay between both influences and show how they are matched in practice. We further identify, how high spatial frequencies translate to imaging artifacts in holographic reconstructions where mainly the reference beam limits the spatial resolution. As a solution, three methods are introduced based on numerical post-processing of the reconstruction. The methods comprise apodization of the hologram, refocusing via wave propagation, and deconvolution using the transfer function of the imaging system. In particular for the latter two, we demonstrate that image details smaller than the source size of the reference beam can be recovered up to the diffraction limit of the hologram. Our findings motivate the intentional application of a large reference-wave source enhancing the image contrast in applications with low photon numbers such as single-shot experiments at free-electron lasers or imaging at laboratory sources.
Collapse
Affiliation(s)
- Jan Geilhufe
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, Berlin 12489, Germany
| | - Bastian Pfau
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, Berlin 12489, Germany.
| | - Christian M Günther
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, Berlin 10623, Germany; Technische Universität Berlin, Zentraleinrichtung Elektronenmikroskopie (ZELMI), Straße des 17. Juni 135, Berlin 10623, Germany
| | - Michael Schneider
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, Berlin 12489, Germany
| | - Stefan Eisebitt
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, Berlin 12489, Germany; Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, Berlin 10623, Germany
| |
Collapse
|
9
|
Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is generally accepted that high temperature superconductors emerge when extra carriers are introduced in the parent state, which looks like a Mott insulator. Competition of the order parameters drives the system into a poorly defined pseudogap state before acquiring the normal Fermi liquid behavior with further doping. Within the low doping level, the system has the tendency for mesoscopic phase separation, which seems to be a general characteristic in all high Tc compounds, but also in the materials of colossal magnetoresistance or the relaxor ferroelectrics. In all these systems, metastable phases can be created by tuning physical variables, such as doping or pressure, and the competing order parameters can drive the compound to various states. Structural instabilities are expected at critical points and Raman spectroscopy is ideal for detecting them, since it is a very sensitive technique for detecting small lattice modifications and instabilities. In this article, phase separation and lattice distortions are examined on the most characteristic family of high temperature superconductors, the cuprates. The effect of doping or atomic substitutions on cuprates is examined concerning the induced phase separation and hydrostatic pressure for activating small local lattice distortions at the edge of lattice instability.
Collapse
|
10
|
Johnson AS, Avni T, Larsen EW, Austin DR, Marangos JP. Attosecond soft X-ray high harmonic generation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170468. [PMID: 30929634 PMCID: PMC6452054 DOI: 10.1098/rsta.2017.0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses. Here, we examine the challenges and opportunities of soft X-ray HHG, and we use simulations to examine the optimal generating conditions for the development of high-flux, attosecond-duration pulses in the soft X-ray spectral range. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Allan S. Johnson
- ICFO - The Institute of Photonic Sciences, Castelldefels (Barcelona) 08860, Spain
- e-mail:
| | - Timur Avni
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Esben W. Larsen
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Dane R. Austin
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Jon P. Marangos
- Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| |
Collapse
|