1
|
Kotoulas NK, Sen T, Goh MC. Low-cost, real-time detection of bacterial growth via diffraction-based sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8366-8371. [PMID: 39541208 DOI: 10.1039/d4ay01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The emergence of antibacterial resistance impacts healthcare networks globally, with mortality rates and linked burdens of infection disproportionately affecting the developing world. Rapid alternatives to antibiotic susceptibility testing (AST) allow for swifter, more effective treatment, though they are limited in use in low-resource settings due to significant cost barriers. Herein we demonstrate a simple, cost-effective diffraction sensing-based approach for rapidly detecting bacterial growth (a precursor to AST). Diffraction gratings (1D, lined) directly comprised of our test bacteria (Escherichia coli DH5α) were produced using soft agar-based gel templates designed to direct bacterial attachment and produce a near-zero background signal. The diffraction spot intensities from the live bacterial gratings were monitored in growth and no growth (ampicillin) conditions at room temperature, using a simple fixed laser and photodetector setup. Growth-induced differences in signal were observed within 10-20 minutes, highlighting the sensitivity of this approach and its potential to be adapted as a rapid and accessible AST alternative.
Collapse
Affiliation(s)
- Nicholas K Kotoulas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Tomoyuki Sen
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - M Cynthia Goh
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
2
|
Jiang X, Borkum T, Shprits S, Boen J, Arshavsky-Graham S, Rofman B, Strauss M, Colodner R, Sulam J, Halachmi S, Leonard H, Segal E. Accurate Prediction of Antimicrobial Susceptibility for Point-of-Care Testing of Urine in Less than 90 Minutes via iPRISM Cassettes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303285. [PMID: 37587020 PMCID: PMC10625094 DOI: 10.1002/advs.202303285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Talya Borkum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sagi Shprits
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Joseph Boen
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Baruch Rofman
- Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Merav Strauss
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
3
|
Fitzpatrick KJ, Rohlf HJ, Sutherland TD, Koo KM, Beckett S, Okelo WO, Keyburn AL, Morgan BS, Drigo B, Trau M, Donner E, Djordjevic SP, De Barro PJ. Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains. ACS Sens 2021; 6:4283-4296. [PMID: 34874700 DOI: 10.1021/acssensors.1c01973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare. For effective AMR management, an evolution of innovative sensing technologies is needed for tackling the unique challenges of interconnected AMR across various and different health domains. This review comprehensively discusses the modern state-of-play for innovative commercial and emerging AMR sensing technologies, including sequencing, microfluidic, and miniaturized point-of-need platforms. With a unique view toward the future of One Health, we also provide our perspectives and outlook on the constantly changing landscape of AMR sensing technologies beyond the human health domain.
Collapse
Affiliation(s)
- Kira J. Fitzpatrick
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
| | - Hayden J. Rohlf
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
| | - Tara D. Sutherland
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Kevin M. Koo
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Queensland 4029, Australia
| | - Sam Beckett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Walter O. Okelo
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Anthony L. Keyburn
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), Geelong, Victoria 3220, Australia
| | - Branwen S. Morgan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Steven P. Djordjevic
- Ithree Institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Paul J. De Barro
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health & Biosecurity, EcoSciences Precinct, Brisbane, Queensland 4001, Australia
| |
Collapse
|
4
|
Azizi M, Nguyen AV, Dogan B, Zhang S, Simpson KW, Abbaspourrad A. Antimicrobial Susceptibility Testing in a Rapid Single Test via an Egg-like Multivolume Microchamber-Based Microfluidic Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19581-19592. [PMID: 33884865 DOI: 10.1021/acsami.0c23096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fast determination of antimicrobial agents' effectiveness (susceptibility/resistance pattern) is an essential diagnostic step for treating bacterial infections and stopping world-wide outbreaks. Here, we report an egg-like multivolume microchamber-based microfluidic (EL-MVM2) platform, which is used to produce a wide range of gradient-based antibiotic concentrations quickly (∼10 min). The EL-MVM2 platform works based upon testing a bacterial suspension in multivolume microchambers (microchamber sizes that range from a volume of 12.56 to 153.86 nL). Antibiotic molecules from a stock solution diffuse into the microchambers of various volumes at the same loading rate, leading to different concentrations among the microchambers. Therefore, we can quickly and easily produce a robust antibiotic gradient-based concentration profile. The EL-MVM2 platform's diffusion (loading) pattern was investigated for different antibiotic drugs using both computational fluid dynamics simulations and experimental approaches. With an easy-to-follow protocol for sample loading and operation, the EL-MVM2 platform was also found to be of high precision with respect to predicting the susceptibility/resistance outcome (>97%; surpassing the FDA-approval criterion for technology-based antimicrobial susceptibility testing instruments). These features indicate that the EL-MVM2 is an effective, time-saving, and precise alternative to conventional antibiotic susceptibility testing platforms currently being used in clinical diagnostics and point-of-care settings.
Collapse
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Ann V Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Du L, Liu H, Zhou J. Picoliter droplet array based on bioinspired microholes for in situ single-cell analysis. MICROSYSTEMS & NANOENGINEERING 2020; 6:33. [PMID: 34567647 PMCID: PMC8433318 DOI: 10.1038/s41378-020-0138-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 06/11/2023]
Abstract
The division of aqueous samples into microdroplet arrays has many applications in biochemical and medical analysis. Inspired by biological features, we propose a method to produce picoliter droplet arrays for single-cell analysis based on physical structure and interface. A 0.9 pL droplet array with an RSD (relative standard deviation) less than 6.3% and a density of 49,000 droplets/cm2 was successfully generated on a PDMS chip (polydimethylsiloxane) from a micromachined glass mold. The droplet generation principle of the wetting behavior in the microholes with splayed sidewalls on the PDMS chip by liquid smearing was exploited. The feasibility of the picoliter droplets for bacterial single-cell analysis was verified by the separation of mixed bacteria into single droplets and isolated in situ bacteria propagation.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of ASIC and System, School of Microelectronics, Academy for Engineering & Technology, Fudan University, Shanghai, 200433 China
| | - Huan Liu
- Tian Jin Tuo Rui Med Technology Co., Ltd, Tianjin, 200438 China
| | - Jia Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Academy for Engineering & Technology, Fudan University, Shanghai, 200433 China
| |
Collapse
|
6
|
Mo M, Yang Y, Zhang F, Jing W, Iriya R, Popovich J, Wang S, Grys T, Haydel SE, Tao N. Rapid Antimicrobial Susceptibility Testing of Patient Urine Samples Using Large Volume Free-Solution Light Scattering Microscopy. Anal Chem 2019; 91:10164-10171. [PMID: 31251566 PMCID: PMC7003966 DOI: 10.1021/acs.analchem.9b02174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of antibiotic resistance has prompted the development of rapid antimicrobial susceptibility testing (AST) technologies that will enable evidence-based treatment and promote antimicrobial stewardship. To date, many rapid AST methods have been developed, but few are able to be performed on clinical samples directly. Here we developed a large volume light scattering microscopy technique that tracks phenotypic features of single bacterial cells directly in clinical urine samples without sample enrichment or culturing. The technique demonstrated rapid (90 min) detection of Escherichia coli in 24 clinical urine samples with 100% sensitivity and 83% specificity and rapid (90 min) AST in 12 urine samples with 87.5% categorical agreement with two antibiotics, ampicillin and ciprofloxacin.
Collapse
Affiliation(s)
- Manni Mo
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Fenni Zhang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Wenwen Jing
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Iriya
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - John Popovich
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Shelley E. Haydel
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona 85287, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|