1
|
Seo DB, Kwon YM, Kim J, Kang S, Yim S, Lee SS, Kim ET, Song W, An KS. Edge-Rich 3D Structuring of Metal Chalcogenide/Graphene with Vertical Nanosheets for Efficient Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28613-28624. [PMID: 38785040 DOI: 10.1021/acsami.4c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Constructing pertinent nanoarchitecture with abundant exposed active sites is a valid strategy for boosting photocatalytic hydrogen generation. However, the controllable approach of an ideal architecture comprising vertically standing transition metal chalcogenides (TMDs) nanosheets on a 3D graphene network remains challenging despite the potential for efficient photocatalytic hydrogen production. In this study, we fabricated edge-rich 3D structuring photocatalysts involving vertically grown TMDs nanosheets on a 3D porous graphene framework (referred to as 3D Gr). 2D TMDs (MoS2 and WS2)/3D Gr heterostructures were produced by location-specific photon-pen writing and metal-organic chemical vapor deposition for maximum edge site exposure enabling efficient photocatalytic reactivity. Vertically aligned 2D Mo(W)S2/3D Gr heterostructures exhibited distinctly boosted hydrogen production because of the 3D Gr caused by synergetic impacts associated with the large specific surface area and improved density of exposed active sites in vertically standing Mo(W)S2. The heterostructure involving graphene and TMDs corroborates an optimum charge transport pathway to rapidly separate the photogenerated electron-hole pairs, allowing more electrons to contribute to the photocatalytic hydrogen generation reaction. Consequently, the size-tailored heterostructure showed a superior hydrogen generation rate of 6.51 mmol g-1 h-1 for MoS2/3D graphene and 7.26 mmol g-1 h-1 for WS2/3D graphene, respectively, which were 3.59 and 3.76 times greater than that of MoS2 and WS2 samples. This study offers a promising path for the potential of 3D structuring of vertical TMDs/graphene heterostructure with edge-rich nanosheets for photocatalytic applications.
Collapse
Affiliation(s)
- Dong-Bum Seo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yeong Min Kwon
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jin Kim
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Saewon Kang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Eui-Tae Kim
- Department of Materials Science & Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
Bar-Saden M, Tenne R. The gold ticket to achiral WS 2 nanotubes. NATURE MATERIALS 2024; 23:310-311. [PMID: 37443380 DOI: 10.1038/s41563-023-01609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Affiliation(s)
- M Bar-Saden
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - R Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
3
|
Peng K, Wang Y, Liu F, Wan P, Wang H, Niu M, Su L, Zhuang L, Qin Y. Hierarchical SiC-Graphene Composite Aerogel-Supported Ni-Mo-S Nanosheets for Efficient pH-Universal Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257120 DOI: 10.1021/acsami.3c02802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
MoS2 exhibits good prospects in electrocatalytic hydrogen evolution. Whereas, the electrocatalytic property of MoS2 is restrained by its insufficient active sites, low electrical conductivity, and slow water dissociation processes. Herein, an aerogel composed of silicon carbide (SiC) and graphene (SiCnw-RGO) was constructed by growing SiC nanowires (SiCnw) in the graphene aerogel (RGO) via the CVD method, and then Ni-Mo-S nanosheets were hydrothermally synthesized on the SiCnw-RGO composite aerogel to develop an efficient pH-universal electrocatalyst. Ni-Mo-S nanosheets supported on SiCnw-RGO (Ni-Mo-S@SiCnw-RGO) exhibit an interesting hierarchical three-dimensional interconnected structure of composite aerogel. The optimal Ni-Mo-S@SiCnw-RGO electrocatalyst exhibits excellent catalytic performance with low Tafel slopes of 60 mV/dec under acidic conditions and 90 mV/dec under alkaline conditions. Density functional theory calculations demonstrate a composite catalyst exhibits advantageous hydrogen adsorption free energy and water dissociation energy barrier. This study provides a reference to design an efficient hierarchical aerogel electrocatalyst.
Collapse
Affiliation(s)
- Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihan Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Wan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhuang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanbin Qin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Guo K, Zheng J, Bao J, Li Y, Xu D. Combining Highly Dispersed Amorphous MoS 3 with Pt Nanodendrites as Robust Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208077. [PMID: 36960487 DOI: 10.1002/smll.202208077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Surface modification of electrocatalysts to obtain new or improved electrocatalytic performance is currently the main strategy for designing advanced nanocatalysts. In this work, highly dispersed amorphous molybdenum trisulfide-anchored Platinum nanodendrites (denoted as Pt-a-MoS3 NDs) are developed as efficient hydrogen evolution electrocatalysts. The formation mechanism of spontaneous in situ polymerization MoS4 2- into a-MoS3 on Pt surface is discussed in detail. It is verified that the highly dispersed a-MoS3 enhances the electrocatalytic activity of Pt catalysts under both acidic and alkaline conditions. The potentials at the current density of 10 mA cm-2 (η10 ) in 0.5 m sulfuric acid (H2 SO4 ) and 1 m potassium hydroxide (KOH) electrolyte are -11.5 and -16.3 mV, respectively, which is significantly lower than that of commercial Pt/C (-20.2 mV and -30.7 mV). This study demonstrates that such high activity benefits from the interface between highly dispersed a-MoS3 and Pt sites, which act as the preferred adsorption sites for the efficient conversion of hydrion (H+ ) to hydrogen (H2 ). Additionally, the anchoring of highly dispersed clusters to Pt substrate greatly enhances the corresponding electrocatalytic stability.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jinyu Zheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
5
|
Huang S, Cao Y, Yao F, Zhang D, Yang J, Ye S, Yao D, Liu Y, Li J, Lei D, Wang X, Huang H, Wu M. Interface Density Engineering on Heterogeneous Molybdenum Dichalcogenides Enabling Highly Efficient Hydrogen Evolution Catalysis and Sodium Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207919. [PMID: 36938911 DOI: 10.1002/smll.202207919] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Constructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO2 /MoS2 heterogeneous nanorods are encapsulated in nitrogen and sulfur co-doped carbon matrix (MoO2 /MoS2 @NSC) by controllable sulfidation. MoO2 and MoS2 are coupled intimately at atomic level, forming the MoO2 /MoS2 heterointerfaces with different distribution density. Strong electronic interactions are triggered at these MoO2 /MoS2 heterointerfaces for enhancing electron transfer. In alkaline media, the optimal material exhibits outstanding hydrogen evolution reaction (HER) performances that significantly surpass carbon-covered MoS2 nanorods counterpart (η10 : 156 mV vs 232 mV) and most of the MoS2 -based heterostructures reported recently. First-principles calculation deciphers that MoO2 /MoS2 heterointerfaces greatly promote water dissociation and hydrogen atom adsorption via the O-Mo-S electronic bridges during HER process. Moreover, benefited from the high pseudocapacitance contribution, abundant "ion reservoir"-like channels, and low Na+ diffusion barrier appended by high-density MoO2 /MoS2 heterointerfaces, the material delivers high specific capacity of 888 mAh g-1 , remarkable rate capability and cycling stability of 390 cycles at 0.1 A g-1 as the anode of sodium ion battery. This work will undoubtedly light the way of interface density engineering for high-performance electrochemical energy conversion and storage systems.
Collapse
Affiliation(s)
- Senchuan Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Yangfei Cao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Fen Yao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Daliang Zhang
- Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jing Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Siyang Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yan Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Jiade Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Danni Lei
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xuxu Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Haitao Huang
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China
| | - Mingmei Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
6
|
Li BL, Luo JJ, Zou HL, Zhang QM, Zhao LB, Qian H, Luo HQ, Leong DT, Li NB. Chiral nanocrystals grown from MoS 2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat Commun 2022; 13:7289. [PMID: 36435865 PMCID: PMC9701227 DOI: 10.1038/s41467-022-35016-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The transfer of the concept of chirality from molecules to synthesized nanomaterials has attracted attention amongst multidisciplinary teams. Here we demonstrate heterogeneous nucleation and anisotropic accumulation of Au nanoparticles on multilayer MoS2 planes to form chiroptically functional nanomaterials. Thiol amino acids with chiral conformations modulate asymmetric growth of gold nanoarchitectures on seeds of highly faceted Au/MoS2 heterostructures. Consequently, dendritic plasmonic nanocrystals with partial chiral morphologies are synthesized. The chirality of dendritic nanocrystals inherited from cysteine molecules refers to the structural characteristics and includes specific recognition of enantiomeric molecules. With integration of the intrinsic photothermal properties and inherited enantioselective characteristics, dendritic Au/MoS2 heterostructures exhibit chirality-dependent release of antimicrobial drugs from hydrogel substrates when activated by exogenous infrared irradiation. A three-in-one strategy involving synthesis of chiral dendritic heterostructures, enantioselective recognition, and controlled drug release system is presented, which improves nanomaterial synthetic technology and enhances our understanding of crucial chirality information.
Collapse
Affiliation(s)
- Bang Lin Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Jun Jiang Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hao Lin Zou
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Qing-Meng Zhang
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Liu-Bin Zhao
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hang Qian
- grid.410570.70000 0004 1760 6682Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037 P. R. China
| | - Hong Qun Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - David Tai Leong
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
| | - Nian Bing Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
7
|
Gautam A, Sk S, Pal U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys Chem Chem Phys 2022; 24:20638-20673. [PMID: 36047908 DOI: 10.1039/d2cp02089k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Amit Gautam
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Muhammad S, Ferenczy ET, Germaine IM, Wagner JT, Jan MT, McElwee-White L. Molybdenum(IV) dithiocarboxylates as single-source precursors for AACVD of MoS 2 thin films. Dalton Trans 2022; 51:12540-12548. [PMID: 35913376 PMCID: PMC9426634 DOI: 10.1039/d2dt01852g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrakis(dithiocarboxylato)molybdenum(IV) complexes of the type Mo(S2CR)4 (R = Me, Et, iPr, Ph) were synthesized, characterized, and prescreened as precursors for aerosol assisted chemical vapor deposition (AACVD) of MoS2 thin films. The thermal behavior of the complexes as determined by TGA and GC-MS was appropriate for AACVD, although the complexes were not sufficiently volatile for conventional CVD bubbler systems. Thin films of MoS2 were grown by AACVD at 500 °C from solutions of Mo(S2CMe)4 in toluene. The films were characterized by GIXRD diffraction patterns which correspond to a 2H-MoS2 structure in the deposited film. Mo-S bonding in 2H-MoS2 was further confirmed by XPS and EDS. The film morphology, vertically oriented structure, and thickness (2.54 μm) were evaluated by FE-SEM. The Raman E12g and A1g vibrational modes of crystalline 2H-MoS2 were observed. These results demonstrate the use of dithiocarboxylato ligands for the chemical vapor deposition of metal sulfides.
Collapse
Affiliation(s)
- Saleh Muhammad
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
- Department of Chemistry, Islamia College Peshawar, 25120 Peshawar, Pakistan
| | - Erik T Ferenczy
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Ian M Germaine
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - J Tyler Wagner
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Muhammad T Jan
- Department of Chemistry, Islamia College Peshawar, 25120 Peshawar, Pakistan
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
9
|
Gao Y, Wang S, Wang B, Jiang Z, Fang T. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202956. [PMID: 35908166 DOI: 10.1002/smll.202202956] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The disulfide compounds of molybdenum (MoS2 ) are layered van der Waals materials that exhibit a rich array of polymorphic structures. MoS2 can be roughly divided into semiconductive phase and metallic phase according to the difference in electron filling state of the 4d orbital of Mo atom. The two phases show completely different properties, leading to their diverse applications in biosensors. But to some extent, they compensate for each other. This review first introduces the relationship between phase state and the chemical/physical structures and properties of MoS2 . Furthermore, the synthetic methods are summarized and the preparation strategies for metastable phases are highlighted. In addition, examples of electronic and chemical property designs of MoS2 by means of doping and surface modification are outlined. Finally, studies on biosensors based on MoS2 in recent years are presented and classified, and the roles of MoS2 with different phases are highlighted. This review offers references for the selection of materials to construct different types of biosensors based on MoS2 , and provides inspiration for sensing performance enhancement.
Collapse
Affiliation(s)
- Yan Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Siyao Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Zhao Jiang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Tao Fang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
10
|
Ge J, Chen Y, Zhao Y, Wang Y, Zhang F, Lei X. Activated MoS 2 by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26846-26857. [PMID: 35657022 DOI: 10.1021/acsami.2c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating the electronic structure of MoS2 by constructing cationic vacancies is an effective method to activate and improve its intrinsic properties. Herein, we synthesize the MoS2-based composite with abundant single atomic Mo cation vacancies through uniformly loading nickel-cobalt-Prussian blue analogues (NiCoPBA) (NiCoPBA-MoS2-VMo) by immersing a single Ni atom-decorated MoS2 (Ni-MoS2) into K3[Co(CN)6] solution. Subsequently, NiCoP-MoS2-VMo with improved conductivity is obtained by phosphating the composite as a high-efficiency hydrogen evolution reaction (HER) catalyst. Experiments and theoretical calculations indicate that the electrons of NiCoP are spontaneously transferred to the substrate MoS2-VMo nanosheets in NiCoP-MoS2-VMo, and the moderately oxidized NiCoP is beneficial to the adsorption of OH*. Meanwhile, the mono-atomic Mo cation vacancies of the catalyst modulate the electronic structure of S, optimizing the adsorption of hydrogen in the reaction process. Therefore, NiCoP-MoS2-VMo has enhanced chemical adsorption for H* (on MoS2-VMo) and OH*(on NiCoP), expediting the water-splitting step and HER catalysis, and benefiting from the regulation of the electronic structure induced by the construction of metallic Mo vacancies in MoS2, the as-prepared catalyst displays an overpotential of only 67 mV at 10 mA cm-2 with long-term stability (no current decay over 20 h). This work affords not only a kind of efficient HER catalysts but also a new valuable route for developing inexpensive and high-performance catalysts with single atomic cation vacancies.
Collapse
Affiliation(s)
- Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiping Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Guo D, Wan Z, Fang G, Zhu M, Xi B. A Tandem Interfaced (Ni 3 S 2 -MoS 2 )@TiO 2 Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201896. [PMID: 35560706 DOI: 10.1002/smll.202201896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Reported herein is a highly active and durable hydrogen evolution reaction (HER) electrocatalyst, which is constructed following a tandem interface strategy and functional in alkaline and even neutral medium (pH ≈ 7). The ternary composite material, consisting of conductive nickel foam (NF) substrate, Ni3 S2 -MoS2 heterostructure, and TiO2 coating, is synthesized by the hydrothermal method and atomic layer deposition (ALD) technique. Representative results include: (1) versatile characterizations confirm the proposed composite structure and strong electronic interactions among comprised sulfide and oxide species; (2) the material outperforms commercial Pt/C by recording an overpotential of 115 mV and a Tafel slope of 67 mV dec-1 under neutral conditions. A long-term stability in alkaline electrolytes up to 200 h and impressive overall water splitting behavior (1.56 V @ 10 mA cm-2 ) are documented; (3) implementation of ALD oxide tandem layer is crucial to realize the design concept with superior HER performance by modulating a variety of heterointerface and intermediates electronic structure.
Collapse
Affiliation(s)
- Daying Guo
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixin Wan
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Mengqi Zhu
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Xi
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
12
|
Jaiswal K, Girish YR, Behera P, De M. Dual Role of MoS 2 Quantum Dots in a Cross-Dehydrogenative Coupling Reaction. ACS ORGANIC & INORGANIC AU 2022; 2:205-213. [PMID: 36855472 PMCID: PMC9955124 DOI: 10.1021/acsorginorgau.1c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Modern day research focuses on the development of greener and eco-friendlier protocols to fabricate biologically relevant targets with minimal waste generation. C-C bond formation reactions are of prime importance in this regard. In a typical photocatalytic hydrogen evolution reaction, three components are used, viz, catalyst, photosensitizer, and sacrificial amine donor. Among these, the photosensitizer and sacrificial amine donors are wasted at the end of the reaction. Considering these drawbacks, in this work, we have developed a methodology targeted at the utilization of sacrificial amine donors for C-H functionalization with MoS2 quantum dots (QDs) as the catalyst as well as the photosensitizer. QDs indeed emerged to be an active participant in the heterogeneous electron transfer process. This concept opens up new possibilities in the field of nanomaterial-based photomediated organic transformations without the aid of any external photosensitizers via a clean and sustainable protocol with no side product.
Collapse
Affiliation(s)
- Komal Jaiswal
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560 012, India
| | - Yarabahally R. Girish
- Centre
for Research and Innovation, School of Natural Sciences, Adichunchanagiri University, BGSIT Campus, B.G. Nagara, Mandya 571448, India
| | - Pradipta Behera
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560 012, India
| | - Mrinmoy De
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560 012, India
| |
Collapse
|
13
|
You J, Xie H, Yang Y, Ni W, Ye W. Single-particle spectroscopic investigation on the scattering spectrum of Au@MoS 2 core-shell nanosphere heterostructure. Phys Chem Chem Phys 2022; 24:5780-5785. [PMID: 35195130 DOI: 10.1039/d1cp04983f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the uniform shape of the nanospheres, the Au@MoS2 core-shell nanosphere heterostructure enables us to design nano-optoelectronic devices and nanosensors with highly tunable and reproducible optical properties. However, until now, at the single-particle level, there is still uncertainty as to how much the scattering characteristics depend on the particle size and the local environment. In this letter, we performed an in situ single-particle study of the scattering spectrum of the Au@MoS2 core-shell nanosphere heterostructure before and after coating with the MoS2 layer. Single-particle characterization confirms that the classic quasi-static approximation (QSA) theory can be used to predict the scattering spectra of Au@MoS2 core-shell nanoparticles. Moreover, we have found that the A and B-exciton absorption peaks do not rely on the local refractive index change, while the position of the particle plasmon resonances does. Such features can be used as an internal reference for sensing applications against measurement errors, such as defocusing the imaging. Our results show that Au@MoS2 core-shell nanoparticles have the potential to become one of the promising nanosensors in the field of single-particle sensing.
Collapse
Affiliation(s)
- Jian You
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Hao Xie
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,Department of Physics, School of Science, Hainan University, Haikou 570228, China
| | - Yanhe Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Weihai Ni
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Weixiang Ye
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,Department of Physics, School of Science, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Qiao H, Li Z, Liu F, Ma Q, Ren X, Huang Z, Liu H, Deng J, Zhang Y, Liu Y, Qi X, Zhang H. Au Nanoparticle Modification Induces Charge-Transfer Channels to Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2908-2917. [PMID: 34985250 DOI: 10.1021/acsami.1c21421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic water splitting for hydrogen production is an efficient, clean, and sustainable strategy to solve energy and environmental problems. As the important alternative materials for noble metals (Pt, Ir, etc.), two-dimensional (2D) materials have been widely applied for electrocatalysis, although the practical performance is restricted by low carrier mobility and slow reaction kinetics. Here, we adopt the strategy of Au nanoparticle modification to achieve the enhanced hydrogen evolution reaction (HER) performance of InSe nanosheets. Experimental results prove that the HER performance of InSe nanosheets is significantly enhanced under the modification of Au nanoparticles, and the overpotential (392 mV) and Tafel slope (59 mV/dec) are significantly reduced compared to sole InSe nanosheets (580 mV and 148.2 mV/dec). First-principles calculations have found that the InSe/Au system exhibits metallicity because the free electrons provided by the Au particles are injected into the InSe, thereby improving its conductivity. The difference charge density and localized charge density of InSe/Au show that Au nanoparticle loading can induce the formation of Au-Se electron-transfer channels with electrovalent bond characteristics, which effectively promotes the charge transfer. Meanwhile, the standard free-energy calculation of the HER process shows that the InSe/Au heterojunction has a H* adsorption/desorption Gibbs free energy [(|ΔGH*|) = 0.59 eV] closer to the optimal value. This study reveals the theoretical mechanism of metal modification to improve the performance of electrocatalytic HER and is expected to motivate the development of a new strategy for enhancing the catalytic activity of 2D semiconductor materials.
Collapse
Affiliation(s)
- Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Zhongjun Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518035, China
| | - Fei Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Qian Ma
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Xiaohui Ren
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518035, China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
- Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Huating Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jun Deng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
| | - Yunsheng Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
15
|
Xu X, Wang R, Chen S, Trukhanov A, Wu Y, Shao L, Huang L, Sun Z. Interface engineering of hierarchical P-doped NiSe/2H-MoSe2 nanorod arrays for efficient hydrogen evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01498j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing non-noble metal-based electrocatalysts with better activity and stability for hydrogen evolution reaction (HER) is crucial for the electrolysis of water. Herein, self-supported three-dimensional (3D) P-doped NiSe/2H-MoSe2 nanorod arrays (denoted...
Collapse
|
16
|
Ribet SM, Murthy AA, Roth EW, Dos Reis R, Dravid VP. Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:100-115. [PMID: 35241968 PMCID: PMC8887695 DOI: 10.1016/j.mattod.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
| | - Eric W Roth
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| |
Collapse
|
17
|
Seravalli L, Bosi M, Fiorenza P, Panasci SE, Orsi D, Rotunno E, Cristofolini L, Rossi F, Giannazzo F, Fabbri F. Gold nanoparticle assisted synthesis of MoS 2 monolayers by chemical vapor deposition. NANOSCALE ADVANCES 2021; 3:4826-4833. [PMID: 36134320 PMCID: PMC9418562 DOI: 10.1039/d1na00367d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 06/16/2023]
Abstract
The use of metal nanoparticles is an established paradigm for the synthesis of semiconducting one-dimensional nanostructures. In this work we study their effect on the synthesis of two-dimensional semiconducting materials, by using gold nanoparticles for chemical vapor deposition growth of two-dimensional molybdenum disulfide (MoS2). In comparison with the standard method, the employment of gold nanoparticles allows us to obtain large monolayer MoS2 flakes, up to 20 μm in lateral size, even if they are affected by the localized overgrowth of MoS2 bilayer and trilayer islands. Important modifications of the optical and electronic properties of MoS2 triangular domains are reported, where the photoluminescence intensity of the A exciton is strongly quenched and a shift to a positive threshold voltage in back-gated field effect transistors is observed. These results indicate that the use of gold nanoparticles influences the flake growth and properties, indicating a method for possible localized synthesis of two-dimensional materials, improving the lateral size of monolayers and modifying their properties.
Collapse
Affiliation(s)
- L Seravalli
- Institute for Materials for Electronics and Magnetism (IMEM-CNR) Parco Area delle Scienze 37/a 43124 Parma Italy
| | - M Bosi
- Institute for Materials for Electronics and Magnetism (IMEM-CNR) Parco Area delle Scienze 37/a 43124 Parma Italy
| | - P Fiorenza
- Institute for Microelectronics and Microsystems (CNR-IMM) Z. I. VIII Strada 5 95121 Catania Italy
| | - S E Panasci
- Institute for Microelectronics and Microsystems (CNR-IMM) Z. I. VIII Strada 5 95121 Catania Italy
| | - D Orsi
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parco Area delle Scienze 7/a 43124 Parma Italy
| | - E Rotunno
- Istituto Nanoscienze-CNR via G Campi 213/a 41125 Modena Italy
| | - L Cristofolini
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parco Area delle Scienze 7/a 43124 Parma Italy
| | - F Rossi
- Institute for Materials for Electronics and Magnetism (IMEM-CNR) Parco Area delle Scienze 37/a 43124 Parma Italy
| | - F Giannazzo
- Institute for Microelectronics and Microsystems (CNR-IMM) Z. I. VIII Strada 5 95121 Catania Italy
| | - F Fabbri
- NEST, Istituto Nanoscienze - CNR, Scuola Normale Superiore Piazza San Silvestro 12 56127 Pisa Italy
| |
Collapse
|
18
|
Fabrication of CoSe@NC nanocubes for high performance potassium ion batteries. J Colloid Interface Sci 2021; 604:157-167. [PMID: 34265676 DOI: 10.1016/j.jcis.2021.06.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Potassium-ion batteries (PIBs) are considered as a promising candidate for large-scale energy storage. While exploring suitable anode materials are of vital need for the practical applications of PIBs. Herein, a well-designed heterostructured anode material CoSe nanocubes wrapped by N-doped carbon (CoSe@NC), has been successfully fabricated by simple annealing ZIF-67 nanocubes followed by in-situ selenization process. It is noted that ZIF-67 nanocubes are used as an effective template for the formation of porous structure, which can facilitate the construction of heterogeneous interface between CoSe and N-doped carbon (NC), effectively stabilizing CoSe with conversion reaction product Co0, increasing the diffusion mobility of electrons and K+-ions, and alleviating huge volume change. As expected, the heterostructured CoSe@NC nanocubes exhibit excellent K+-storage performance, which can display a rather high initial charge capacity (388.7 mAh g-1 at 0.1 A g-1 with the columbic efficiency of 70%), superior cyclic stability (309.6 mA h g-1 after 500 cycles at 2 A g-1), and exceptional rate capability (365.9 mAh g-1 at 2 A g-1). In terms of the low-cost and facile production approach for CoSe@NC, which makes the CoSe@NC a promising anode material for PIBs.
Collapse
|
19
|
Shahzad K, Imran Khan M, Elboughdiri N, Ghernaout D, Ur Rehman A. Energizing periodic mesoporous organosilica (PMOS) with bismuth and cerium for photo-degrading methylene blue and methyl orange in water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1116-1125. [PMID: 33502065 DOI: 10.1002/wer.1519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
This work reported an efficient catalyst to reduce the organic pollutants by using an energetic periodic mesoporous organosilica (PMOS) supported with bismuth (Bi-PMOS) and cerium (Ce-PMOS). PMOS support was designed through co-condensation of sodium silicate and 3-methacryloxypropyltrimethoxysilane on polysorbate templates. The resultant PMOSs were fabricated with bismuth and cerium oxides to formulate Bi-PMOS and Ce-PMOS, respectively. These materials showed photo-degradations of methylene blue (MB, 74.7% and 41.1% with Bi-PMOS and Ce-PMOS, respectively) and methyl orange (MO, 53.2% and 39.4% with Bi-PMOS and Ce-PMOS, respectively). Such efficient photo-degradations were attributed to the precise doping of metallic nodes of Bi2 O3 and CeO2 on the porous structure of PMOS with high surface area. The results also showed that Bi and Ce were more effective in PMOS support for photo-degradation of dyes as the support provides more lifetime to photo-generated electron-hole pairs than other materials. Moreover, active reusability and high degradation efficiencies of Bi-PMOS and Ce-PMOS proved them better analytical tools to reduce organic pollutants under visible lights. PRACTITIONER POINTS: The oxides of bismuth and cerium have impressive photocatalytic characteristics. New material energizing mesoporous organosilica with bismuth and cerium for photo-degradation of methylene blue and methyl orange in water. The use of an efficient catalyst to reduce the organic pollutants by using an energetic periodic mesoporous organosilica (PMOS) supported with bismuth (Bi-PMOS) and cerium (Ce-PMOS).
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes, Tunisia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida, Blida, Algeria
| | - Aziz Ur Rehman
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
20
|
Xu Q, Liu Y, Tian Z, Shi Y, Wang Z, Zheng W. Fabrication of heterogeneous interface and phosphorus doping in MoS2 for efficient hydrogen evolution in both acid and alkaline electrolytes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Huang Y, Lv J, Huang J, Xu K, Liu L. Nanocrystalline NiSe 2/MoS 2 heterostructures for electrochemical hydrogen evolution reaction. NANOTECHNOLOGY 2021; 32:175602. [PMID: 33461182 DOI: 10.1088/1361-6528/abdced] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although it suffers from a heavy dependence on the noble platinum catalyst, the electrochemical hydrogen evolution reaction (HER) is one of the most promising methods for the production of hydrogen. After numerous efforts, it is found that MoS2-based heterostructure may replace platinum as the electrochemical HER catalyst. In this work, the nanocrystalline NiSe2/MoS2 heterostructures were successfully prepared on the carbon fiber paper (CFP) substrate through electrochemical deposition and hydrothermal process. According to a series of electrochemical HER tests and a comparison with other MoS2-based heterostructure catalysts, the CFP/NiSe2/MoS2 catalyst with an overpotential η 10 of 143 mV and a Tafel slope of 45 mV dec-1 exhibited an excellent electrochemical HER catalytic performance and durability. In addition, CFP/NiSe2/MoS2 catalyst was treated by plasma to further improve the catalytic performance of the catalyst.
Collapse
Affiliation(s)
- Yazhou Huang
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Junyan Lv
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Jiacai Huang
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Kunshan Xu
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
22
|
Mei L, Gao X, Gao Z, Zhang Q, Yu X, Rogach AL, Zeng Z. Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction. Chem Commun (Camb) 2021; 57:2879-2882. [PMID: 33616580 DOI: 10.1039/d0cc08091h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a micellar system to prepare Pt-TMDs composites with tunable Pt nanoparticles (NPs, 2-6 nm in size) on single-layer TMDs (MoS2, TiS2, TaS2) nanosheets. The Pt-MoS2 composites have shown excellent performance for the hydrogen evolution reaction (HER) with the Pt NPs exhibiting a volcano-type size effect toward HER activity due to the synergistic effects between the Pt NPs and MoS2.
Collapse
Affiliation(s)
- Liang Mei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
| | - Xiaoping Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qingyong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
| |
Collapse
|
23
|
Ge R, Huo J, Sun M, Zhu M, Li Y, Chou S, Li W. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903380. [PMID: 31532899 DOI: 10.1002/smll.201903380] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Molybdenum carbide (Mox C)-based nanomaterials have shown competitive performances for energy conversion applications based on their unique physicochemical properties. A large surface area and proper surface atomic configuration are essential to explore potentiality of Mox C in electrochemical applications. Although considerable efforts are made on the development of advanced Mox C-based catalysts for energy conversion with high efficiency and stability, some urgent issues, such as low electronic conductivity, low catalytic efficiency, and structural instability, have to be resolved in accordance with their application environments. Surface and interface engineering have shown bright prospects to construct highly efficient Mox C-based electrocatalysts for energy conversion including the hydrogen evolution reaction, oxygen evolution reaction, nitrogen reduction reaction, and carbon dioxide reduction reaction. In this Review, the recent progresses in terms of surface and interface engineering of Mox C-based electrocatalytic materials are summarized, including the increased number of active sites by decreasing the particle size or introducing porous or hierarchical structures and surface modification by introducing heteroatom(s), defects, carbon materials, and others electronic conductive species. Finally, the challenges and prospects for energy conversion on Mox C-based nanomaterials are discussed in terms of key performance parameters for the catalytic performance.
Collapse
Affiliation(s)
- Riyue Ge
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Juanjuan Huo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingjie Sun
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Zhu
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Ying Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Wenxian Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444, China
| |
Collapse
|
24
|
Hierarchically Ordinated Two-Dimensional MoS2 Nanosheets on Three-Dimensional Reduced Graphene Oxide Aerogels as Highly Active and Stable Catalysts for Hydrogen Evolution Reaction. Catalysts 2021. [DOI: 10.3390/catal11020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogen gas (H2) is being intensively proposed as a next-generation clean energy owing to the depletion of fossil fuels. Electrochemical water splitting is one of the most promising processes for hydrogen production. Furthermore, many efforts focusing on electrochemical water splitting have been made to develop low-cost, electrochemically active, and stable catalysts for efficient hydrogen production. MoS2 has emerged as an attractive material for developing catalysts for the hydrogen evolution reaction (HER). Hence, in this study, we design hierarchically ordinated two-dimensional (2D) MoS2 nanosheets on three-dimensional (3D) reduced graphene oxide (rGO) (H-2D/3D-MoS2-rGO) aerogel structures as a new class of electrocatalysts for the HER. We use the one-pot hydrothermal synthesis route for developing high-performance electroactive materials for the HER. The as-prepared H-2D/3D-MoS2-rGO contains a unique 3D hierarchical structure providing large surface areas owing to the 3D porous networks of rGO and more active sites owing to the many edge sites in the MoS2 nanosheets. In addition, the H-2D/3D-MoS2-rGO structure exhibits remarkable electrochemical properties during the HER. It shows a lower overpotential than pure MoS2 and excellent electrochemical stability owing to the large number of active sites (highly exposed edge sites) and high electrical conductivity from the rGO structure.
Collapse
|
25
|
DiStefano JG, Murthy AA, Hao S, Dos Reis R, Wolverton C, Dravid VP. Topology of transition metal dichalcogenides: the case of the core-shell architecture. NANOSCALE 2020; 12:23897-23919. [PMID: 33295919 DOI: 10.1039/d0nr06660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-planar architectures of the traditionally flat 2D materials are emerging as an intriguing paradigm to realize nascent properties within the family of transition metal dichalcogenides (TMDs). These non-planar forms encompass a diversity of curvatures, morphologies, and overall 3D architectures that exhibit unusual characteristics across the hierarchy of length-scales. Topology offers an integrated and unified approach to describe, harness, and eventually tailor non-planar architectures through both local and higher order geometry. Topological design of layered materials intrinsically invokes elements highly relevant to property manipulation in TMDs, such as the origin of strain and its accommodation by defects and interfaces, which have broad implications for improved material design. In this review, we discuss the importance and impact of geometry on the structure and properties of TMDs. We present a generalized geometric framework to classify and relate the diversity of possible non-planar TMD forms. We then examine the nature of curvature in the emerging core-shell architecture, which has attracted high interest due to its versatility and design potential. We consider the local structure of curved TMDs, including defect formation, strain, and crystal growth dynamics, and factors affecting the morphology of core-shell structures, such as synthesis conditions and substrate morphology. We conclude by discussing unique aspects of TMD architectures that can be leveraged to engineer targeted, exotic properties and detail how advanced characterization tools enable detection of these features. Varying the topology of nanomaterials has long served as a potent methodology to engineer unusual and exotic properties, and the time is ripe to apply topological design principles to TMDs to drive future nanotechnology innovation.
Collapse
Affiliation(s)
- Jennifer G DiStefano
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Tang L, Liu L, Chen Q, Yang F, Quan X. The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@carbon felt as photo electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Li BL, Zou HL, Luo HQ, Leong DT, Li NB. Layered MoS 2 defect-driven in situ synthesis of plasmonic gold nanocrystals visualizes the planar size and interfacial diversity. NANOSCALE 2020; 12:11979-11985. [PMID: 32459251 DOI: 10.1039/d0nr02838j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current defect theories significantly guide broad research progress, whereas the recognition of defect status remains challenging. Herein, MoS2 defect type, density and exposed state are visually identified with a reagent indicator of HAuCl4. Mo-terminated defects spontaneously reduce [AuCl4]- anions and oxidized Mo species are dissociated. Consequently, MoS2 edges guide the epitaxial branch of Au nanocrystals (NCs), followed by sequential growths at their planar defects. The size-evolution processes of LaMer growth and planar packages of the aggregative growth of Au/MoS2 nanoseeds result in the occupation of Au atomic layers on heterostructures. Consequently, shell-core hybrids are presented with localized surface plasmon resonance characteristics. The mechanism is systematically explored via the discriminated performance of plasmonic characteristics of Au nanostructures on semiconducting MoS2 substrates. With plasmonic identification, defect-associated size and interfacial diversities of MoS2 are visually information-rich. Tunable morphologies and synergistic optical characteristics of plasmonic semiconductor heterostructures inspire many more applications through the edge and planar defects intrinsic in layered MoS2.
Collapse
Affiliation(s)
- Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
28
|
Jin Z, Yan X, Hao X. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J Colloid Interface Sci 2020; 569:34-49. [DOI: 10.1016/j.jcis.2020.02.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 11/28/2022]
|
29
|
Liu S, Zhou L, Zhang W, Jin J, Mu X, Zhang S, Chen C, Mu S. Stabilizing sulfur vacancy defects by performing "click" chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS 2. NANOSCALE 2020; 12:9943-9949. [PMID: 32356535 DOI: 10.1039/d0nr01693d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Defect engineering is widely applied in transition metal dichalcogenides to produce high-purity hydrogen. However, the instability of vacancy states on catalysis still remains a considerable challenge. Here, our first-principles calculations showed that, by optimizing the asymmetric S vacancy in the highly asymmetric 1T' crystal of layered bitransition metal dichalcogenides (Co-MoS2) in light of Pd modulation, the relative amount of metastable phase and the quantity of active sites in the structure can be reduced and increased, respectively, leading to a further boosted hydrogen evolution reaction (HER) activity toward layered bi-transition metal dichalcogenides. Thus, we then used a "click" chemistry strategy to make such a catalyst with engineered unsaturated sulfur edges via a strong coupling effect between ultrafine Pd ensembles and Co-MoS2 nanosheets. As expected, the Pd-modulated Co-MoS2 nanosheets exhibited a very low overpotential of 60 mV at 10 mA cm-2 with a small Tafel slope (56 mV dec-1) for the HER in 1.0 M PBS, comparable to those of commercial Pt/C. In addition, their high HER activity was retained in acidic and alkaline conditions. Both the theoretical and experimental results revealed that Pd ensembles can efficiently activate and stabilize the inert basal plane S sites during HER processes as a result of the formation of Pd-S in Co-MoS2. This work not only provides a deeper understanding of the correlation between defect sites and intrinsic HER catalytic properties for transition metal chalcogenide (TMD)-based catalysts, but also offers new insights into better designing earth-abundant HER catalysts displaying high efficiency and durability.
Collapse
Affiliation(s)
- Suli Liu
- Department of Chemistry, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Peng K, Zhou J, Gao H, Wang J, Wang H, Su L, Wan P. Emerging One-/Two-Dimensional Heteronanostructure Integrating SiC Nanowires with MoS 2 Nanosheets for Efficient Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19519-19529. [PMID: 32255331 DOI: 10.1021/acsami.0c02046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MoS2 has emerged as a good application prospect in the electrocatalytic hydrogen evolution reaction (HER). Nevertheless, the catalytic activity of MoS2 is greatly restricted by its inferior electrical conductivity, inadequate exposure of active edge sites, and sluggish water dissociation dynamics. Herein, a 1D/2D heteronanostructure composed of SiC nanowires wrapped with MoS2 nanosheets was prepared via the hydrothermal synthesis of MoS2 on highly connected SiC nanowires (SiCnw). The nanocomposites exhibit an emerging tectorum-like morphology with interface connections of C-Mo bonds, which benefit the efficient interfacial transmission of electrons. Due to the synergetic catalytic effects of MoS2 nanosheets and SiC nanowires, the MoS2/SiCnw nanocomposites possess efficient catalytic performance with a low Tafel slope (55 mV/dec). SiC nanocrystals could reduce the activated water dissociation energy barrier, and the morphologies of connected nanowires could improve the active site exposure and charge transport. The nanocomposites possess favorable hydrogen adsorption free energy from density functional theory (DFT) calculations. The electrocatalytic performance of MoS2/SiCnw nanocomposites could be further improved by assembling the nanocomposites on a carbon fiber paper to enhance the electronic transmission efficiency.
Collapse
Affiliation(s)
- Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingxuan Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongfei Gao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianwei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Wan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
31
|
Yang Y, Wang Y, He HL, Yan W, Fang L, Zhang YB, Qin Y, Long R, Zhang XM, Fan X. Covalently Connected Nb 4N 5-xO x-MoS 2 Heterocatalysts with Desired Electron Density to Boost Hydrogen Evolution. ACS NANO 2020; 14:4925-4937. [PMID: 32207915 DOI: 10.1021/acsnano.0c01072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational design and controllable synthesis of efficient and robust electrocatalysts for hydrogen evolution reaction (HER) remain a critical challenge for the renewable energy economy. Herein, heterostructured Nb4N5-xOx-MoS2 (0 < x < 1) anchored on N-doped graphene (defined as Nb4N5-xOx-MoS2/NG) is synthesized by hydrothermal and chemical vapor deposition (CVD) approaches. During the CVD process, MoS2 nanosheets are etched into small pieces and covalently interconnected with Nb4N5-xOx to form fine Nb4N5-xOx-MoS2 heterostructures, which possess abundant interfaces and fully exposed edge active sites. The as-prepared Nb4N5-xOx-MoS2 heterostructures with Nb-(N,S)-Mo bridges provide desired electron density, which exhibit excellent chemisorption ability for both H and water, significantly improving the intrinsic HER activity. Meanwhile, the covalently connected Nb4N5-xOx-MoS2 heterostructures together with chemical coupling of Nb4N5-xOx-MoS2 and N-doped graphene improve the structural stability and ensure fast electron transfer in the Nb4N5-xOx-MoS2/NG nanocomposite, further supporting the H2 generation and stability.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Hai-Long He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjun Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Li Fang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, China
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen, Shanxi 041001, China
| | - Xiujun Fan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, China
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen, Shanxi 041001, China
| |
Collapse
|
32
|
Sriram P, Manikandan A, Chuang FC, Chueh YL. Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904271. [PMID: 32196957 DOI: 10.1002/smll.201904271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light-matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross-section of 2D-TMDs inhibits the light-matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D-TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D-TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D-TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon-enhanced interaction in 2D-TMDs is briefly described and state-of-the-art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.
Collapse
Affiliation(s)
- Pavithra Sriram
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arumugam Manikandan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Physics Division, The National Center for Theoretical Science, Hsinchu, 30013, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
33
|
Luo R, Xu WW, Zhang Y, Wang Z, Wang X, Gao Y, Liu P, Chen M. Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nat Commun 2020; 11:1011. [PMID: 32081885 PMCID: PMC7035323 DOI: 10.1038/s41467-020-14753-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
The structures and properties of van der Waals (vdW) heterojunctions between semiconducting two-dimensional transition-metal dichalcogenides (2D TMDs) and conductive metals, such as gold, significantly influence the performances of 2D-TMD based electronic devices. Chemical vapor deposition is one of the most promising approaches for large-scale synthesis and fabrication of 2D TMD electronics with naturally formed TMD/metal vdW interfaces. However, the structure and chemistry of the vdW interfaces are less known. Here we report the interfacial reconstruction between TMD monolayers and gold substrates. The participation of sulfur leads to the reconstruction of Au {001} surface with the formation of a metastable Au4S4 interfacial phase which is stabilized by the top MoS2 and WS2 monolayers. Moreover, the enhanced vdW interaction between the reconstructed Au4S4 interfacial phase and TMD monolayers results in the transition from n-type TMD-Au Schottky contact to p-type one with reduced energy barrier height.
Collapse
Affiliation(s)
- Ruichun Luo
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Yongzheng Zhang
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Ziqian Wang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xiaodong Wang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yi Gao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Pan Liu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
34
|
The synergistic effect of proton intercalation and electron transfer via electro-activated molybdenum disulfide/graphite felt toward hydrogen evolution reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Feng J, Zhou H, Chen D, Bian T, Yuan A. Core-shell structured ZnCo/NC@MoS2 electrocatalysts for tunable hydrogen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Ren Y, Chen Z, Yu X. Ultrathin, Porous and Oxygen Vacancies‐Enriched Ag/WO
3−
x
Heterostructures for Electrocatalytic Hydrogen Evolution. Chem Asian J 2019; 14:4315-4321. [DOI: 10.1002/asia.201901319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yumei Ren
- School of Materials Science and EngineeringZhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of EducationSchool of Materials Science and Engineering, andCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan University Kaifeng 475004 China
| | - Xiangrong Yu
- Department of Medical ImagingZhuhai Hospital of Jinan University Zhuhai 519070 China
| |
Collapse
|
37
|
Plasma-treated sponge-like NiAu nanoalloy for enhancing electrocatalytic performance in hydrogen evolution reaction. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Wu C, Zhang J, Tong X, Yu P, Xu JY, Wu J, Wang ZM, Lou J, Chueh YL. A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900578. [PMID: 31165564 DOI: 10.1002/smll.201900578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Ultrathin 2D molybdenum disulfide (MoS2 ), which is the flagship of 2D transition-metal dichalcogenide nanomaterials, has drawn much attention in the last few years. 2D MoS2 has been banked as an alternative to platinum for highly active hydrogen evolution reaction because of its low cost, high surface-to-volume ratio, and abundant active sites. However, when MoS2 is used directly as a photocatalyst, contrary to public expectation, it still performs poorly due to lateral size, high recombination ratio of excitons, and low optical cross section. Besides, simply compositing MoS2 as a cocatalyst with other semiconductors cannot satisfy the practical application, which stimulates the pursual of a comprehensive insight into recent advances in synthesis, properties, and enhanced hydrogen production of MoS2 . Therefore, in this Review, emphasis is given to synthetic methods, phase transitions, tunable optical properties, and interfacial engineering of 2D MoS2 . Abundant ways of band edge tuning, structural modification, and phase transition are addressed, which can generate the neoteric photocatalytic systems. Finally, the main challenges and opportunities with respect to MoS2 being a cocatalyst and coherent light-matter interaction of MoS2 in photocatalytic systems are proposed.
Collapse
Affiliation(s)
- Cuo Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jing Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jing-Yin Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jun Lou
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| |
Collapse
|
39
|
Zhuang Z, Huang J, Li Y, Zhou L, Mai L. The Holy Grail in Platinum‐Free Electrocatalytic Hydrogen Evolution: Molybdenum‐Based Catalysts and Recent Advances. ChemElectroChem 2019. [DOI: 10.1002/celc.201900143] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zechao Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan P. R. China
| | - Jiazhao Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan P. R. China
| | - Yong Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable TechnologyUniversity of Bremen Bremen Germany
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan P. R. China
| |
Collapse
|
40
|
|
41
|
Chen Q, Wang K, Qin J, Wang S, Wei W, Wang J, Shen Q, Qu P, Liu D. Ru x Se@MoS 2 hybrid as a highly efficient electrocatalyst toward hydrogen evolution reaction. RSC Adv 2019; 9:13486-13493. [PMID: 35519574 PMCID: PMC9063915 DOI: 10.1039/c9ra02873k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Alkaline hydrogen evolution reaction (HER) requires highly efficient and stable catalytic materials, the engineering of which needs overall consideration of the water dissociation process as well as the intermediate hydrogen adsorption process. Herein, a Ru x Se@MoS2 hybrid catalyst was synthesized by the decoration of MoS2 with Ru x Se nanoparticles through a two-step hydrothermal reaction. Due to the bifunctionality mechanism in which Ru promotes the water dissociation and the nearby Se atoms, unsaturated Mo and/or S atoms act as active sites for the intermediate hydrogen adsorption, the hybrid catalyst exhibits an exceptional HER performance in basic media with a rather low overpotential of 45 mV at a current density of 10 mA cm-2 and a small Tafel slope of 42.9 mV dec-1. The synergetic effect between Ru x Se and MoS2 not only enables more catalytically active sites, but also increases the inherent conductivity of the hybrid catalyst, leading to more favorable HER kinetics under both alkaline and acidic conditions. As a result, Ru x Se@MoS2 also demonstrates an enhanced catalytic activity toward HER in 0.5 M H2SO4 in comparison with pure Ru x Se and MoS2, which requires an overpotential of 120 mV to deliver a 10 mA cm-2 current density and gives a Tafel slope of 72.2 mV dec-1. In addition, the hybrid electrocatalyst also exhibits superior electrochemical stability during the long-term HER process in both acidic media and alkaline media.
Collapse
Affiliation(s)
- Qi Chen
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University Fushun 113001 Liaoning China
- Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 Henan China
| | - Kefeng Wang
- Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 Henan China
| | - Jingjing Qin
- Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 Henan China
| | - Songzhu Wang
- Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 Henan China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 Henan China
| | - Jingge Wang
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Qi Shen
- College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Peng Qu
- Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000 Henan China
| | - Daosheng Liu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University Fushun 113001 Liaoning China
| |
Collapse
|
42
|
Liao F, Jiang B, Shen W, Chen Y, Li Y, Shen Y, Yin K, Shao M. Ir‐Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Binbin Jiang
- Provincial Key Laboratory of Functional Coordination Compounds and Nanomaterials School of Chemistry and Chemical EngineeringAnqing Normal University Anqing 246001 P. R. China
| | - Wen Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Ying Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Yanqing Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Yuwei Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Kui Yin
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| |
Collapse
|
43
|
Yang J, Choi MK, Sheng Y, Jung J, Bustillo K, Chen T, Lee SW, Ercius P, Kim JH, Warner JH, Chan EM, Zheng H. MoS 2 Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS 2 Transfer. NANO LETTERS 2019; 19:1788-1795. [PMID: 30741548 DOI: 10.1021/acs.nanolett.8b04821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two dimensional (2D) materials have found various applications because of their unique physical properties. For example, graphene has been used as the electron transparent membrane for liquid cell transmission electron microscopy (TEM) due to its high mechanical strength and flexibility, single-atom thickness, chemical inertness, etc. Here, we report using 2D MoS2 as a functional substrate as well as the membrane window for liquid cell TEM, which is enabled by our facile and polymer-free MoS2 transfer process. This provides the opportunity to investigate the growth of Pt nanocrystals on MoS2 substrates, which elucidates the formation mechanisms of such heterostructured 2D materials. We find that Pt nanocrystals formed in MoS2 liquid cells have a strong tendency to align their crystal lattice with that of MoS2, suggesting a van der Waals epitaxial relationship. Importantly, we can study its impact on the kinetics of the nanocrystal formation. The development of MoS2 liquid cells will allow further study of various liquid phenomena on MoS2, and the polymer-free MoS2 transfer process will be implemented in a wide range of applications.
Collapse
Affiliation(s)
- Jiwoong Yang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Moon Kee Choi
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yuewen Sheng
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jaebong Jung
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Karen Bustillo
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tongxin Chen
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Seung-Wuk Lee
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Peter Ercius
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ji Hoon Kim
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Emory M Chan
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Haimei Zheng
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
44
|
Niu S, Li S, Hu J, Li Y, Du Y, Han X, Xu P. Fabrication of uniform Ru-doped NiFe2O4 nanosheets as an efficient hydrogen evolution electrocatalyst. Chem Commun (Camb) 2019; 55:14649-14652. [DOI: 10.1039/c9cc07651d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ru-doped NiFe2O4 nanosheets exhibit outstanding electrocatalytic hydrogen evolution activity and stability.
Collapse
Affiliation(s)
- Siqi Niu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jing Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yuzhi Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|