1
|
Gomez Sanchez O, Peng GH, Li WH, Shih CH, Chien CH, Cheng SJ. Enhanced Photo-excitation and Angular-Momentum Imprint of Gray Excitons in WSe 2 Monolayers by Spin-Orbit-Coupled Vector Vortex Beams. ACS NANO 2024; 18:11425-11437. [PMID: 38637308 PMCID: PMC11064230 DOI: 10.1021/acsnano.4c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
A light beam can be spatially structured in the complex amplitude to possess orbital angular momentum (OAM), which introduces an extra degree of freedom alongside the intrinsic spin angular momentum (SAM) associated with circular polarization. Furthermore, superimposing two such twisted light (TL) beams with distinct SAM and OAM produces a vector vortex beam (VVB) in nonseparable states where not only complex amplitude but also polarization is spatially structured and entangled with each other. In addition to the nonseparability, the SAM and OAM in a VVB are intrinsically coupled by the optical spin-orbit interaction and constitute the profound spin-orbit physics in photonics. In this work, we present a comprehensive theoretical investigation, implemented on the first-principles base, of the intriguing light-matter interaction between VVBs and WSe2 monolayers (WSe2-MLs), one of the best-known and promising two-dimensional (2D) materials in optoelectronics dictated by excitons, encompassing bright exciton (BX) as well as various dark excitons (DXs). One of the key findings of our study is that a substantial enhancement of the photoexcitation of gray excitons (GXs), a type of spin-forbidden DX, in a WSe2-ML can be achieved through the utilization of a 3D-structured TL with the optical spin-orbit interaction. Moreover, we show that a spin-orbit-coupled VVB surprisingly allows for the imprinting of the carried optical information onto GXs in 2D materials, which is robust against the decoherence mechanisms in the materials. This suggests a promising method for deciphering the transferred angular momentum from structured light to excitons.
Collapse
Affiliation(s)
| | - Guan-Hao Peng
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Wei-Hua Li
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Ching-Hung Shih
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Chao-Hsin Chien
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Shun-Jen Cheng
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Liu H, Zhang Z, Zhang C, Li X, Zhang C, Xu F, Wu Y, Wu Z, Kang J. Simultaneously Regulated Highly Polarized and Long-Lived Valley Excitons in WSe 2/GaN Heterostructures. NANO LETTERS 2024; 24:1851-1858. [PMID: 38315876 DOI: 10.1021/acs.nanolett.3c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Interlayer excitons, with prolonged lifetimes and tunability, hold potential for advanced optoelectronics. Previous research on the interlayer excitons has been dominated by two-dimensional heterostructures. Here, we construct WSe2/GaN composite heterostructures, in which the doping concentration of GaN and the twist angle of bilayer WSe2 are employed as two ingredients for the manipulation of exciton behaviors and polarizations. The exciton energies in monolayer WSe2/GaN can be regulated continuously by the doping levels of the GaN substrate, and a remarkable increase in the valley polarizations is achieved. Especially in a heterostructure with 4°-twisted bilayer WSe2, a maximum polarization of 38.9% with a long lifetime is achieved for the interlayer exciton. Theoretical calculations reveal that the large polarization and long lifetime are attributed to the high exciton binding energy and large spin flipping energy during depolarization in bilayer WSe2/GaN. This work introduces a distinctive member of the interlayer exciton with a high degree of polarization and a long lifetime.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
- School of Physical Science and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Zongnan Zhang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Chenhao Zhang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Xu Li
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Chunmiao Zhang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Feiya Xu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Yaping Wu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Zhiming Wu
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Junyong Kang
- Department of Physics, Engineering Research Centre for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
3
|
Zhang C, Gao Y, Zhang W, Zhang Z. Spatial Imaging and Control of Dark Excitons in Monolayer Transition Metal Dichalcogenides. NANO LETTERS 2023; 23:11424-11429. [PMID: 38009634 DOI: 10.1021/acs.nanolett.3c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Dark excitons play a vital role in exciton condensation and optical properties of monolayer transition metal dichalcogenides (MTMDs). Previous literature mainly focuses on the detection of the energy of the dark exciton, while spatial detection and control are equally important but are less studied. Here we report that for MTMD embedded in a semiconductor microcavity and under a uniform in-plane magnetic field the spatial distribution of the dark exciton can be probed by measuring that of the cavity photon for small exciton-exciton interaction energy. Further, we propose to realize the anomalous exciton Hall effect by exploiting spatially inhomogeneous coupling of the bright and dark excitons under a Gaussian excitation beam. This effect occurs regardless of the exciton-exciton interaction, which will strengthen the diffusion of excitons in the excitation region. These results provide an improved understanding of the excitons in MTMDs, thereby facilitating their potential practical applications.
Collapse
Affiliation(s)
- Chuanyi Zhang
- Henan Key Laboratory of Photovoltaic Materials and School of Future Technology, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, Henan University, Kaifeng 475004, China
| | - Yang Gao
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Weifeng Zhang
- Henan Key Laboratory of Photovoltaic Materials and School of Future Technology, Henan University, Kaifeng 475004, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
4
|
Li WH, Lin JD, Lo PY, Peng GH, Hei CY, Chen SY, Cheng SJ. The Key Role of Non-Local Screening in the Environment-Insensitive Exciton Fine Structures of Transition-Metal Dichalcogenide Monolayers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111739. [PMID: 37299642 DOI: 10.3390/nano13111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In this work, we present a comprehensive theoretical and computational investigation of exciton fine structures of WSe2-monolayers, one of the best-known two-dimensional (2D) transition-metal dichalcogenides (TMDs), in various dielectric-layered environments by solving the first-principles-based Bethe-Salpeter equation. While the physical and electronic properties of atomically thin nanomaterials are normally sensitive to the variation of the surrounding environment, our studies reveal that the influence of the dielectric environment on the exciton fine structures of TMD-MLs is surprisingly limited. We point out that the non-locality of Coulomb screening plays a key role in suppressing the dielectric environment factor and drastically shrinking the fine structure splittings between bright exciton (BX) states and various dark-exciton (DX) states of TMD-MLs. The intriguing non-locality of screening in 2D materials can be manifested by the measurable non-linear correlation between the BX-DX splittings and exciton-binding energies by varying the surrounding dielectric environments. The revealed environment-insensitive exciton fine structures of TMD-ML suggest the robustness of prospective dark-exciton-based optoelectronics against the inevitable variation of the inhomogeneous dielectric environment.
Collapse
Affiliation(s)
- Wei-Hua Li
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jhen-Dong Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ping-Yuan Lo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Guan-Hao Peng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ching-Yu Hei
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shao-Yu Chen
- Center of Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
- Center of Atomic Initiative for New Material, National Taiwan University, Taipei 106, Taiwan
| | - Shun-Jen Cheng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
5
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
6
|
Lo TW, Chen X, Zhang Z, Zhang Q, Leung CW, Zayats AV, Lei D. Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe 2 at Room Temperature. NANO LETTERS 2022; 22:1915-1921. [PMID: 35225629 DOI: 10.1021/acs.nanolett.1c04360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spin-forbidden excitons in monolayer transition metal dichalcogenides are optically inactive at room temperature. Probing and manipulating these dark excitons are essential for understanding exciton spin relaxation and valley coherence of these 2D materials. Here, we show that the coupling of dark excitons to a metal nanoparticle-on-mirror cavity leads to plasmon-induced resonant emission with the intensity comparable to that of the spin-allowed bright excitons. A three-state quantum model combined with full-wave electrodynamic calculations reveals that the radiative decay rate of the dark excitons can be enhanced by nearly 6 orders of magnitude through the Purcell effect, therefore compensating its intrinsic nature of weak radiation. Our nanocavity approach provides a useful paradigm for understanding the room-temperature dynamics of dark excitons, potentially paving the road for employing dark exciton in quantum computing and nanoscale optoelectronics.
Collapse
Affiliation(s)
- Tsz Wing Lo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| | - Xiaolin Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
| | - Qiang Zhang
- Department of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong S.A.R
| |
Collapse
|
7
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
8
|
Katznelson S, Cohn B, Sufrin S, Amit T, Mukherjee S, Kleiner V, Mohapatra P, Patsha A, Ismach A, Refaely-Abramson S, Hasman E, Koren E. Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature. MATERIALS HORIZONS 2022; 9:1089-1098. [PMID: 35083477 DOI: 10.1039/d1mh01186c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2D-semiconductors with strong light-matter interaction are attractive materials for integrated and tunable optical devices. Here, we demonstrate room-temperature wavelength multiplexing of the two-primary bright excitonic channels (Ab-, Bb-) in monolayer transition metal dichalcogenides (TMDs) arising from a dark exciton mediated transition. We present how tuning dark excitons via an out-of-plane electric field cedes the system equilibrium from one excitonic channel to the other, encoding the field polarization into wavelength information. In addition, we demonstrate how such exciton multiplexing is dictated by thermal-scattering by performing temperature dependent photoluminescence measurements. Finally, we demonstrate experimentally and theoretically how excitonic mixing can explain preferable decay through dark states in MoX2 in comparison with WX2 monolayers. Such field polarization-based manipulation of excitonic transitions can pave the way for novel photonic device architectures.
Collapse
Affiliation(s)
- Shaul Katznelson
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Cohn
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shmuel Sufrin
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tomer Amit
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Subhrajit Mukherjee
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Vladimir Kleiner
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Pranab Mohapatra
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Avinash Patsha
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Ariel Ismach
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Hasman
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elad Koren
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Jadczak J, Glazov M, Kutrowska-Girzycka J, Schindler JJ, Debus J, Ho CH, Watanabe K, Taniguchi T, Bayer M, Bryja L. Upconversion of Light into Bright Intravalley Excitons via Dark Intervalley Excitons in hBN-Encapsulated WSe 2 Monolayers. ACS NANO 2021; 15:19165-19174. [PMID: 34735768 PMCID: PMC8717626 DOI: 10.1021/acsnano.1c08286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 05/19/2023]
Abstract
Semiconducting monolayers of transition-metal dichalcogenides are outstanding platforms to study both electronic and phononic interactions as well as intra- and intervalley excitons and trions. These excitonic complexes are optically either active (bright) or inactive (dark) due to selection rules from spin or momentum conservation. Exploring ways of brightening dark excitons and trions has strongly been pursued in semiconductor physics. Here, we report on a mechanism in which a dark intervalley exciton upconverts light into a bright intravalley exciton in hBN-encapsulated WSe2 monolayers. Excitation spectra of upconverted photoluminescence reveals resonances at energies 34.5 and 46.0 meV below the neutral exciton in the nominal WSe2 transparency range. The required energy gains are theoretically explained by cooling of resident electrons or by exciton scattering with Λ- or K-valley phonons. Accordingly, an elevated temperature and a moderate concentration of resident electrons are necessary for observing the upconversion resonances. The interaction process observed between the inter- and intravalley excitons elucidates the importance of dark excitons for the optics of two-dimensional materials.
Collapse
Affiliation(s)
- Joanna Jadczak
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- (J.J.)
| | | | - Joanna Kutrowska-Girzycka
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Joerg Debus
- Experimental
Physics 2, TU Dortmund University, 44227 Dortmund, Germany
| | - Ching-Hwa Ho
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kenji Watanabe
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Manfred Bayer
- Experimental
Physics 2, TU Dortmund University, 44227 Dortmund, Germany
| | - Leszek Bryja
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- (L.B.)
| |
Collapse
|
10
|
Rosati R, Wagner K, Brem S, Perea-Causín R, Ziegler JD, Zipfel J, Taniguchi T, Watanabe K, Chernikov A, Malic E. Non-equilibrium diffusion of dark excitons in atomically thin semiconductors. NANOSCALE 2021; 13:19966-19972. [PMID: 34821228 DOI: 10.1039/d1nr06230a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atomically thin semiconductors provide an excellent platform to study intriguing many-particle physics of tightly-bound excitons. In particular, the properties of tungsten-based transition metal dichalcogenides are determined by a complex manifold of bright and dark exciton states. While dark excitons are known to dominate the relaxation dynamics and low-temperature photoluminescence, their impact on the spatial propagation of excitons has remained elusive. In our joint theory-experiment study, we address this intriguing regime of dark state transport by resolving the spatio-temporal exciton dynamics in hBN-encapsulated WSe2 monolayers after resonant excitation. We find clear evidence of an unconventional, time-dependent diffusion during the first tens of picoseconds, exhibiting strong deviation from the steady-state propagation. Dark exciton states are initially populated by phonon emission from the bright states, resulting in creation of hot (unequilibrated) excitons whose rapid expansion leads to a transient increase of the diffusion coefficient by more than one order of magnitude. These findings are relevant for both fundamental understanding of the spatio-temporal exciton dynamics in atomically thin materials as well as their technological application by enabling rapid diffusion.
Collapse
Affiliation(s)
- Roberto Rosati
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032 Marburg, Germany.
| | - Koloman Wagner
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032 Marburg, Germany.
| | - Raül Perea-Causín
- Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden
| | - Jonas D Ziegler
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jonas Zipfel
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Alexey Chernikov
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Renthof 7, D-35032 Marburg, Germany.
- Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Wallauer R, Perea-Causin R, Münster L, Zajusch S, Brem S, Güdde J, Tanimura K, Lin KQ, Huber R, Malic E, Höfer U. Momentum-Resolved Observation of Exciton Formation Dynamics in Monolayer WS 2. NANO LETTERS 2021; 21:5867-5873. [PMID: 34165994 DOI: 10.1021/acs.nanolett.1c01839] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dynamics of momentum-dark exciton formation in transition metal dichalcogenides is difficult to measure experimentally, as many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tunable pump, high-harmonic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS2. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast time scale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic time scale and observe the formation of a momentum-forbidden dark KΣ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy, we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS2.
Collapse
Affiliation(s)
- Robert Wallauer
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| | - Raul Perea-Causin
- Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Lasse Münster
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| | - Sarah Zajusch
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| | - Samuel Brem
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| | - Jens Güdde
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| | - Katsumi Tanimura
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 5670047, Japan
| | - Kai-Qiang Lin
- Department of Physics, University of Regensburg, Regensburg 93040, Germany
| | - Rupert Huber
- Department of Physics, University of Regensburg, Regensburg 93040, Germany
| | - Ermin Malic
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
- Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Ulrich Höfer
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
- Zentrum für Materialwissenschaften, Philipps-Universität, Marburg 35032, Germany
| |
Collapse
|
12
|
Simbulan KB, Huang TD, Peng GH, Li F, Gomez Sanchez OJ, Lin JD, Lu CI, Yang CS, Qi J, Cheng SJ, Lu TH, Lan YW. Selective Photoexcitation of Finite-Momentum Excitons in Monolayer MoS 2 by Twisted Light. ACS NANO 2021; 15:3481-3489. [PMID: 33566571 DOI: 10.1021/acsnano.0c10823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Twisted light carries a well-defined orbital angular momentum (OAM) of lℏ per photon. The quantum number l of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultrawide bandwidth optical communication structures. In spite of its interesting properties, twisted light interaction with solid state materials, particularly two-dimensional materials, is yet to be extensively studied via experiments. In this work, photoluminescence (PL) spectroscopy studies of monolayer molybdenum disulfide (MoS2), a material with ultrastrong light-matter interaction due to reduced dimensionality, are carried out under photoexcitation of twisted light. It is observed that the measured spectral peak energy increases for every increment of l of the incident light. The nonlinear l-dependence of the spectral blue shifts is well accounted for by the analysis and computational simulation of this work. More excitingly, the twisted light excitation revealed the unusual lightlike exciton band dispersion of valley excitons in monolayer transition metal dichalcogenides. This linear exciton band dispersion is predicted by previous theoretical studies and evidenced via this work's experimental setup.
Collapse
Affiliation(s)
- Kristan Bryan Simbulan
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Mathematics and Physics, University of Santo Tomas, Manila 1008, Philippines
| | - Teng-De Huang
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guan-Hao Peng
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Feng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | | | - Jhen-Dong Lin
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-I Lu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chan-Shan Yang
- Graduate Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Junjie Qi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Shun-Jen Cheng
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Hua Lu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yann-Wen Lan
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
13
|
Robert C, Han B, Kapuscinski P, Delhomme A, Faugeras C, Amand T, Molas MR, Bartos M, Watanabe K, Taniguchi T, Urbaszek B, Potemski M, Marie X. Measurement of the spin-forbidden dark excitons in MoS 2 and MoSe 2 monolayers. Nat Commun 2020; 11:4037. [PMID: 32788704 PMCID: PMC7423942 DOI: 10.1038/s41467-020-17608-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
Excitons with binding energies of a few hundreds of meV control the optical properties of transition metal dichalcogenide monolayers. Knowledge of the fine structure of these excitons is therefore essential to understand the optoelectronic properties of these 2D materials. Here we measure the exciton fine structure of MoS2 and MoSe2 monolayers encapsulated in boron nitride by magneto-photoluminescence spectroscopy in magnetic fields up to 30 T. The experiments performed in transverse magnetic field reveal a brightening of the spin-forbidden dark excitons in MoS2 monolayer: we find that the dark excitons appear at 14 meV below the bright ones. Measurements performed in tilted magnetic field provide a conceivable description of the neutral exciton fine structure. The experimental results are in agreement with a model taking into account the effect of the exchange interaction on both the bright and dark exciton states as well as the interaction with the magnetic field.
Collapse
Affiliation(s)
- C Robert
- University of Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France.
| | - B Han
- University of Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France.
| | - P Kapuscinski
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 38042, Grenoble, France
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - A Delhomme
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 38042, Grenoble, France
| | - C Faugeras
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 38042, Grenoble, France.
| | - T Amand
- University of Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - M R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - M Bartos
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 38042, Grenoble, France
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
| | - K Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - B Urbaszek
- University of Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - M Potemski
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 38042, Grenoble, France
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
| | - X Marie
- University of Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| |
Collapse
|
14
|
Liu E, van Baren J, Liang CT, Taniguchi T, Watanabe K, Gabor NM, Chang YC, Lui CH. Multipath Optical Recombination of Intervalley Dark Excitons and Trions in Monolayer WSe_{2}. PHYSICAL REVIEW LETTERS 2020; 124:196802. [PMID: 32469553 DOI: 10.1103/physrevlett.124.196802] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Excitons and trions (or exciton polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe_{2}. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths-through intravalley or intervalley electron-hole recombination-into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.
Collapse
Affiliation(s)
- Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jeremiah van Baren
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ching-Tarng Liang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science (NIMS), 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan
| | - Nathaniel M Gabor
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
- Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, Ontario ON M5G 1M1, Canada
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
15
|
Guo J, Ke C, Wu Y, Kang J. Strain Engineering on the Electronic and Optical Properties of WSSe Bilayer. NANOSCALE RESEARCH LETTERS 2020; 15:97. [PMID: 32367196 PMCID: PMC7198690 DOI: 10.1186/s11671-020-03330-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Controllable optical properties are important for optoelectronic applications. Based on the unique properties and potential applications of two-dimensional Janus WSSe, we systematically investigate the strain-modulated electronic and optical properties of WSSe bilayer through the first-principle calculations. The preferred stacking configurations and chalcogen orders are determined by the binding energies. The bandgap of all the stable structures are found sensitive to the external stress and could be tailored from semiconductor to metallicity under appropriate compressive strains. Atomic orbital projected energy bands reveal a positive correlation between the degeneracy and the structural symmetry, which explains the bandgap evolutions. Dipole transition preference is tuned by the biaxial strain. A controllable transformation between anisotropic and isotropic optical properties is achieved under an around - 6%~- 4% critical strain. The strain controllable electronic and optical properties of the WSSe bilayer may open up an important path for exploring next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Jian Guo
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Jiujiang Research Insititute, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Congming Ke
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Jiujiang Research Insititute, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yaping Wu
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Jiujiang Research Insititute, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Junyong Kang
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Jiujiang Research Insititute, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|