1
|
Zhang J, Xia Y, Peng L, Zhang Y, Li B, Shu L, Cen Y, Zhuang J, Zhu H, Zhan P, Zhang H. Ultra-Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi 2N 4 and WSi 2N 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307691. [PMID: 38454650 PMCID: PMC11095159 DOI: 10.1002/advs.202307691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Indexed: 03/09/2024]
Abstract
The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light-matter interaction. Based on first-principles calculations, it is demonstrated that the phonon polaritons formed by two infrared-active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra-high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin-film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity-exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10-5me, providing the potential for high-temperature quantum condensation. The ultra-confined and ultra-low-loss phonon polaritons, as well as strongly-coupled cavity exciton polaritons with ultra-small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta-optics, and quantum materials.
Collapse
Affiliation(s)
- Juan Zhang
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Yujie Xia
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Lei Peng
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Yiming Zhang
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Ben Li
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Le Shu
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Yan Cen
- Department of PhysicsFudan UniversityShanghai200433China
| | - Jun Zhuang
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Heyuan Zhu
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
| | - Peng Zhan
- National Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced Microstructures and School of PhysicsNanjing UniversityNanjing210093China
| | - Hao Zhang
- The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghai200433China
- Yiwu Research Institute of Fudan UniversityChengbei RoadYiwu CityZhejiang322000China
| |
Collapse
|
2
|
Li J, Wang L, Wang Y, Tao Z, Zhong W, Su Z, Xue S, Miao G, Wang W, Peng H, Guo J, Zhu X. Observation of the nonanalytic behavior of optical phonons in monolayer hexagonal boron nitride. Nat Commun 2024; 15:1938. [PMID: 38431679 PMCID: PMC10908826 DOI: 10.1038/s41467-024-46229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Phonon splitting of the longitudinal and transverse optical modes (LO-TO splitting), a ubiquitous phenomenon in three-dimensional polar materials, will break down in two-dimensional (2D) polar systems. Theoretical predictions propose that the LO phonon in 2D polar monolayers becomes degenerate with the TO phonon, displaying a distinctive "V-shaped" nonanalytic behavior near the center of the Brillouin zone. However, the full experimental verification of these nonanalytic behaviors has been lacking. Here, using monolayer hexagonal boron nitride (h-BN) as a prototypical example, we report the comprehensive and direct experimental verification of the nonanalytic behavior of LO phonons by inelastic electron scattering spectroscopy. Interestingly, the slope of the LO phonon in our measurements is lower than the theoretically predicted value for a freestanding monolayer due to the screening of the Cu foil substrate. This enables the phonon polaritons in monolayer h-BN/Cu foil to exhibit ultra-slow group velocity (~5 × 10-6 c, c is the speed of light) and ultra-high confinement (~ 4000 times smaller wavelength than that of light). These exotic behaviors of the optical phonons in h-BN presents promising prospects for future optoelectronic applications.
Collapse
Affiliation(s)
- Jiade Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yani Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Zhiyu Tao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weiliang Zhong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhibin Su
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Siwei Xue
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guangyao Miao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Weihua Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Rivano N, Marzari N, Sohier T. Infrared-active phonons in one-dimensional materials and their spectroscopic signatures. NPJ COMPUTATIONAL MATERIALS 2023; 9:194. [PMID: 38666058 PMCID: PMC11041644 DOI: 10.1038/s41524-023-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/26/2023] [Indexed: 04/28/2024]
Abstract
Dimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually breaks down in two-dimensional materials. Here, we develop the theory for one-dimensional (1D) systems-nanowires, nanotubes, and atomic and polymeric chains. Combining an analytical model with the implementation of density-functional perturbation theory in 1D boundary conditions, we show that the dielectric splitting in the dispersion relations collapses as x 2 log ( x ) at the zone center. The dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts, opening infrared and Raman characterization avenues.
Collapse
Affiliation(s)
- Norma Rivano
- Theory and Simulations of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicola Marzari
- Theory and Simulations of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Laboratory for Materials Simulations, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Thibault Sohier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
4
|
Chen J, Chen R, Tay F, Gong Z, Hu H, Yang Y, Zhang X, Wang C, Kaminer I, Chen H, Zhang B, Lin X. Low-Velocity-Favored Transition Radiation. PHYSICAL REVIEW LETTERS 2023; 131:113002. [PMID: 37774266 DOI: 10.1103/physrevlett.131.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
When a charged particle penetrates through an optical interface, photon emissions emerge-a phenomenon known as transition radiation. Being paramount to fundamental physics, transition radiation has enabled many applications from high-energy particle identification to novel light sources. A rule of thumb in transition radiation is that the radiation intensity generally decreases with the decrease of particle velocity v; as a result, low-energy particles are not favored in practice. Here, we find that there exist situations where transition radiation from particles with extremely low velocities (e.g., v/c<10^{-3}) exhibits comparable intensity as that from high-energy particles (e.g., v/c=0.999), where c is the light speed in free space. The comparable radiation intensity implies an extremely high photon extraction efficiency from low-energy particles, up to 8 orders of magnitude larger than that from high-energy particles. This exotic phenomenon of low-velocity-favored transition radiation originates from the interference of the excited Ferrell-Berreman modes in an ultrathin epsilon-near-zero slab. Our findings may provide a promising route toward the design of integrated light sources based on low-energy electrons and specialized detectors for beyond-standard-model particles.
Collapse
Affiliation(s)
- Jialin Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ruoxi Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Fuyang Tay
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA
| | - Zheng Gong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Hao Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yi Yang
- Department of Physics, University of Hong Kong, Hong Kong 999077, China
| | - Xinyan Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Chan Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Ido Kaminer
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| |
Collapse
|
5
|
Guo X, Li N, Yang X, Qi R, Wu C, Shi R, Li Y, Huang Y, García de Abajo FJ, Wang EG, Gao P, Dai Q. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. NATURE NANOTECHNOLOGY 2023; 18:529-534. [PMID: 36823369 DOI: 10.1038/s41565-023-01324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/11/2023] [Indexed: 05/21/2023]
Abstract
Light confinement in nanostructures produces an enhanced light-matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light-matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume (Vm ≈ 10-10λ03 at an optical wavelength λ0 ≈ 6.4 μm) and a Purcell factor (Q/Vm) as high as 1012. We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light-matter interactions, with exciting implications for compact photonic devices.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- International Center for Quantum Materials, Electron Microscopy Laboratory, School of Physics, Academy for Advanced Interdisciplinary Studies, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Ruishi Qi
- International Center for Quantum Materials, Electron Microscopy Laboratory, School of Physics, Academy for Advanced Interdisciplinary Studies, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ruochen Shi
- International Center for Quantum Materials, Electron Microscopy Laboratory, School of Physics, Academy for Advanced Interdisciplinary Studies, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Yuehui Li
- International Center for Quantum Materials, Electron Microscopy Laboratory, School of Physics, Academy for Advanced Interdisciplinary Studies, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, China
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - En-Ge Wang
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- Songshan Lake Materials Lab, Institute of Physics, Chinese Academy of Sciences, Guangdong, China
- School of Physics, Liaoning University, Shenyang, China
| | - Peng Gao
- International Center for Quantum Materials, Electron Microscopy Laboratory, School of Physics, Academy for Advanced Interdisciplinary Studies, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Herzig Sheinfux H, Jung M, Orsini L, Ceccanti M, Mahalanabish A, Martinez-Cercós D, Torre I, Barcons Ruiz D, Janzen E, Edgar JH, Pruneri V, Shvets G, Koppens FHL. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons. ACS NANO 2023; 17:7377-7383. [PMID: 37010352 DOI: 10.1021/acsnano.2c11497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks, which are a result of intermodal coupling and should not appear in ordinary polaritonic crystals with an equivalent geometry. These findings are in agreement with theoretical predictions that even simple lattices can exhibit a rich hypercrystal bandstructure. This work is of both fundamental and practical interest, providing insight into nanoscale light-matter interactions and the potential to manipulate the optical density of states.
Collapse
Affiliation(s)
| | - Minwoo Jung
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Lorenzo Orsini
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Matteo Ceccanti
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Aditya Mahalanabish
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | | - Iacopo Torre
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - David Barcons Ruiz
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506-5102, United States
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506-5102, United States
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Frank H L Koppens
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Wu H, Liu X, Zhu K, Huang Y. Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1425. [PMID: 37111010 PMCID: PMC10146062 DOI: 10.3390/nano13081425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) materials and their vertically stacked heterostructures have attracted much attention due to their novel optical properties and strong light-matter interactions in the infrared. Here, we present a theoretical study of the near-field thermal radiation of 2D vdW heterostructures vertically stacked of graphene and monolayer polar material (2D hBN as an example). An asymmetric Fano line shape is observed in its near-field thermal radiation spectrum, which is attributed to the interference between the narrowband discrete state (the phonon polaritons in 2D hBN) and a broadband continuum state (the plasmons in graphene), as verified by the coupled oscillator model. In addition, we show that 2D van der Waals heterostructures can achieve nearly the same high radiative heat flux as graphene but with markedly different spectral distributions, especially at high chemical potentials. By tuning the chemical potential of graphene, we can actively control the radiative heat flux of 2D van der Waals heterostructures and manipulate the radiative spectrum, such as the transition from Fano resonance to electromagnetic-induced transparency (EIT). Our results reveal the rich physics and demonstrate the potential of 2D vdW heterostructures for applications in nanoscale thermal management and energy conversion.
Collapse
|
8
|
Yan X, Li J, Gu L, Gadre CA, Moore SL, Aoki T, Wang S, Zhang G, Gao Z, Basov DN, Wu R, Pan X. Curvature-Induced One-Dimensional Phonon Polaritons at Edges of Folded Boron Nitride Sheets. NANO LETTERS 2022; 22:9319-9326. [PMID: 36413202 DOI: 10.1021/acs.nanolett.2c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Generation and manipulation of phonon polaritons are of paramount importance for understanding the interaction between an electromagnetic field and dielectric materials and furthering their application in mid-infrared optical communication. However, the formation of tunable one-dimensional phonon polaritons has been rarely realized in van der Waals layered structures. Here we report the discovery of curvature-induced phonon polaritons localized at the crease of folded hexagonal boron nitrides (h-BNs) with a few atomic layers using monochromated electron energy-loss spectroscopy. Compared to bulk regions, the creased-localized signals undergo an abnormal blue-shift of 1.4 meV. First-principles calculations reveal that the energy shift arises from the optical phonon hardening in the curled region. Interestingly, the curvature-induced phonon polariton can also be controllably achieved via an electron-beam etching approach. This work opens an avenue of tailoring local electromagnetic response and creating unique phonon polariton modes in van der Waals layered materials for diverse applications.
Collapse
Affiliation(s)
- Xingxu Yan
- Department of Materials Science and Engineering, University of California-Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute, University of California-Irvine, Irvine, California 92697, United States
| | - Jie Li
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
| | - Lei Gu
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
| | - Chaitanya Avinash Gadre
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
| | - Samuel L Moore
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Toshihiro Aoki
- Irvine Materials Research Institute, University of California-Irvine, Irvine, California 92697, United States
| | - Shuopei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, People's Republic of China
| | - Dimitri N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California-Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
9
|
Passler NC, Ni X, Hu G, Matson JR, Carini G, Wolf M, Schubert M, Alù A, Caldwell JD, Folland TG, Paarmann A. Hyperbolic shear polaritons in low-symmetry crystals. Nature 2022; 602:595-600. [PMID: 35197618 PMCID: PMC8866127 DOI: 10.1038/s41586-021-04328-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase1–4. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light–matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales5. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response6,7. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic1,3,4 and hexagonal8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals10, many common oxides11 and organic crystals12, greatly expanding the material base and extending design opportunities for compact photonic devices. Shear phenomena in the infrared dielectric response of a monoclinic crystal are shown to unveil a new polariton class termed hyperbolic shear polariton that can emerge in any low-symmetry monoclinic or triclinic system.
Collapse
Affiliation(s)
| | - Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Guangwei Hu
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | | | - Giulia Carini
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | | | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA. .,Physics Program, Graduate Center, City University of New York, New York, NY, USA.
| | | | | | | |
Collapse
|
10
|
Lu G, Gubbin CR, Nolen JR, Folland TG, Diaz-Granados K, Kravchenko II, Spencer JA, Tadjer MJ, Glembocki OJ, De Liberato S, Caldwell JD. Collective Phonon-Polaritonic Modes in Silicon Carbide Subarrays. ACS NANO 2022; 16:963-973. [PMID: 34957830 DOI: 10.1021/acsnano.1c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized surface phonon polaritons (LSPhPs) can be implemented to engineer light-matter interactions through nanoscale patterning for a range of midinfrared application spaces. However, the polar material systems studied to date have mainly focused on simple designs featuring a single element in the periodic unit cell. Increasing the complexity of the unit cell can serve to modify the resonant near-fields and intra- and inter-unit-cell coupling as well as to dictate spectral tuning in the far-field. In this work, we exploit more complicated unit-cell structures to realize LSPhP modes with additional degrees of design freedom, which are largely unexplored. Collectively excited LSPhP modes with distinctly symmetric and antisymmetric near-fields are supported in these subarray designs, which are based on nanopillars that are scaled by the number of subarray elements to ensure a constant unit-cell size. Moreover, we observe an anomalous mode-matching of the collective symmetric mode in our fabricated subarrays that is robust to changing numbers of pillars within the subarrays as well as to defects intentionally introduced in the form of missing pillars. This work therefore illustrates the hierarchical design of tailored LSPhP resonances and modal near-field profiles simultaneously for a variety of IR applications such as surface-enhanced spectroscopies and biochemical sensing.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - J Ryan Nolen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Thomas G Folland
- School of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ivan I Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Joseph A Spencer
- US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Marko J Tadjer
- US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Orest J Glembocki
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
11
|
King ME, Fonseca Guzman MV, Ross MB. Material strategies for function enhancement in plasmonic architectures. NANOSCALE 2022; 14:602-611. [PMID: 34985484 DOI: 10.1039/d1nr06049j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic materials are promising for applications in enhanced sensing, energy, and advanced optical communications. These applications, however, often require chemical and physical functionality that is suited and designed for the specific application. In particular, plasmonic materials need to access the wide spectral range from the ultraviolet to the mid-infrared in addition to having the requisite surface characteristics, temperature dependence, or structural features that are not intrinsic to or easily accessed by the noble metals. Herein, we describe current progress and identify promising strategies for further expanding the capabilities of plasmonic materials both across the electromagnetic spectrum and in functional areas that can enable new technology and opportunities.
Collapse
Affiliation(s)
- Melissa E King
- Department of Chemistry, University of Massachusetts, Lowell, Lowell, MA 01854, USA.
| | | | - Michael B Ross
- Department of Chemistry, University of Massachusetts, Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
12
|
Moore SL, Ciccarino CJ, Halbertal D, McGilly LJ, Finney NR, Yao K, Shao Y, Ni G, Sternbach A, Telford EJ, Kim BS, Rossi SE, Watanabe K, Taniguchi T, Pasupathy AN, Dean CR, Hone J, Schuck PJ, Narang P, Basov DN. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat Commun 2021; 12:5741. [PMID: 34593793 PMCID: PMC8484559 DOI: 10.1038/s41467-021-26072-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Twisted two-dimensional van der Waals (vdW) heterostructures have unlocked a new means for manipulating the properties of quantum materials. The resulting mesoscopic moiré superlattices are accessible to a wide variety of scanning probes. To date, spatially-resolved techniques have prioritized electronic structure visualization, with lattice response experiments only in their infancy. Here, we therefore investigate lattice dynamics in twisted layers of hexagonal boron nitride (hBN), formed by a minute twist angle between two hBN monolayers assembled on a graphite substrate. Nano-infrared (nano-IR) spectroscopy reveals systematic variations of the in-plane optical phonon frequencies amongst the triangular domains and domain walls in the hBN moiré superlattices. Our first-principles calculations unveil a local and stacking-dependent interaction with the underlying graphite, prompting symmetry-breaking between the otherwise identical neighboring moiré domains of twisted hBN. Here, the authors investigate the lattice dynamics of twisted hexagonal boron nitride layers via nano-infrared spectroscopy, showing local and stacking-dependent variations of the optical phonon frequencies associated to the interaction with the graphite substrate.
Collapse
Affiliation(s)
- S L Moore
- Department of Physics, Columbia University, New York, NY, USA.
| | - C J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - D Halbertal
- Department of Physics, Columbia University, New York, NY, USA
| | - L J McGilly
- Department of Physics, Columbia University, New York, NY, USA
| | - N R Finney
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - K Yao
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Y Shao
- Department of Physics, Columbia University, New York, NY, USA
| | - G Ni
- Department of Physics, Columbia University, New York, NY, USA
| | - A Sternbach
- Department of Physics, Columbia University, New York, NY, USA
| | - E J Telford
- Department of Physics, Columbia University, New York, NY, USA
| | - B S Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - S E Rossi
- Department of Physics, Columbia University, New York, NY, USA
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - A N Pasupathy
- Department of Physics, Columbia University, New York, NY, USA
| | - C R Dean
- Department of Physics, Columbia University, New York, NY, USA
| | - J Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - P J Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - P Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Lyu W, Teng H, Wu C, Zhang X, Guo X, Yang X, Dai Q. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. NANOSCALE 2021; 13:12720-12726. [PMID: 34477622 DOI: 10.1039/d1nr01701b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoscale Fourier transform infrared spectroscopy (nano-FTIR) based on scanning probe microscopy enables the identification of the chemical composition and structure of surface species with a high spatial resolution (∼10 nm), which is crucial for exploring catalytic reaction processes, cellular processes, virus detection, etc. However, the characterization of a single molecule with nano-FTIR is still challenging due to the weak coupling between the molecule and infrared light due to a large size mismatch. Here, we propose a novel structure (monolayer α-MoO3/air nanogap/Au) to excite anisotropic acoustic phonon polaritons (APhPs) with ultra-high field confinement (mode volume, VAPhPs∼ 10-11V0) and electromagnetic energy enhancement (>107), which largely enhance the interaction of single molecules with infrared light. In addition, the anisotropic APhP-assisted nano-FTIR can detect single molecular dipoles in directions both along and perpendicular to the probe axis, while pristine nano-FTIR mainly detects molecular dipoles along the probe axis. The proposed structure provides a way to detect a single molecule, which will impact the fields of biology, chemistry, energy, and environment through fundamental research and applications.
Collapse
Affiliation(s)
- Wei Lyu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Karanikolas V, Thanopulos I, Paspalakis E. Strong coupling regime and bound states in the continuum between a quantum emitter and phonon-polariton modes. OPTICS EXPRESS 2021; 29:23408-23420. [PMID: 34614606 DOI: 10.1364/oe.428459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We investigate the population dynamics of a two-level quantum emitter (QE) placed near a hexagonal boron nitride (h-BN) layer. The h-BN layer supports two energy phonon-polariton bands. In the case that the transition energy of the QE is resonant to them, its relaxation rate is enhanced several orders of magnitude compared to its free-space value and the population of the QE excited state shows reversible dynamics. We further show that for specific parameters of the QE/h-BN layer system, the QE population can be trapped in the excited state, keeping a constant value over long periods of time, thus demonstrating that the h-BN layer is a platform that can provide the strong light-matter interaction conditions needed for the formation of bound states in the electromagnetic continuum of modes. Semi-analytical methods are employed for determining whether such a bound state can be formed for given coupling conditions, as well as for computing the amount of initial population trapped in it. The bound states in the continuum are important for designing practical future quantum applications.
Collapse
|
15
|
Juraschek DM, Narang P. Highly Confined Phonon Polaritons in Monolayers of Perovskite Oxides. NANO LETTERS 2021; 21:5098-5104. [PMID: 34101474 DOI: 10.1021/acs.nanolett.1c01002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) materials are able to strongly confine light hybridized with collective excitations of atoms, enabling electric-field enhancements and novel spectroscopic applications. Recently, freestanding monolayers of perovskite oxides have been synthesized, which possess highly infrared-active phonon modes and a complex interplay of competing interactions. Here, we show that this new class of 2D materials exhibits highly confined phonon polaritons by evaluating central figures of merit for phonon polaritons in the tetragonal phases of the 2D perovskites SrTiO3, KTaO3, and LiNbO3, using density functional theory calculations. Specifically, we compute the 2D phonon-polariton dispersions, the propagation-quality, confinement, and deceleration factors, and we show that they are comparable to those found in the prototypical 2D dielectric hexagonal boron nitride. Our results suggest that monolayers of perovskite oxides are promising candidates for polaritonic platforms that enable new possibilities in terms of tunability and spectral ranges.
Collapse
Affiliation(s)
- Dominik M Juraschek
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
16
|
Song X, Dereshgi SA, Palacios E, Xiang Y, Aydin K. Enhanced Interaction of Optical Phonons in h-BN with Plasmonic Lattice and Cavity Modes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25224-25233. [PMID: 34008954 DOI: 10.1021/acsami.1c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hexagonal boron nitride (h-BN) is regarded as a milestone in the investigation of light interaction with phonon polaritons in two-dimensional van der Waals materials, showing significant potential in novel and high-efficient photonics devices in the mid-infrared region. Here, we investigate a structure composed of Au-grating arrays fabricated onto a Fabry-Perot (FP) cavity composed of h-BN, Ge, and Au back-reflector layers. The plasmonic FP cavity reduces the required device thickness by enhancing modal interactions and introduces in-plane polarization sensitivity based on the Au array lattice. Our experiments show multiple absorption peaks of over 90% in the mid-infrared region and the band stop filters with 80% efficiency using only a 15 nm h-BN slab. Moreover, mode interaction with experimental coupling strengths as high as 10.8 meV in the mid-infrared region is investigated. In particular, the interaction and hybridization of optical phonon modes with plasmonic modes including the lattice and cavity modes are studied. Anticrossing splitting ascribed to the coupling of optical phonons to plasmonic modes can be tuned by the designed geometry which can be tailored to efficient response band engineering for infrared photonics. We also show that in practical applications involving wet transfer of h-BN thin films, the contribution of minor optical phonon modes to resonant peaks should not be ignored, which originate from defects and multicrystallinity in the h-BN slab. Our findings provide a favorable complement to manipulation of light-phonon interaction, inspiring a promising design of phonon-based nanophotonic devices in the infrared range.
Collapse
Affiliation(s)
- Xianglian Song
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen 518060, China
| | - Sina Abedini Dereshgi
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Edgar Palacios
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanjiang Xiang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen 518060, China
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Koray Aydin
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Li N, Guo X, Yang X, Qi R, Qiao T, Li Y, Shi R, Li Y, Liu K, Xu Z, Liu L, García de Abajo FJ, Dai Q, Wang EG, Gao P. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. NATURE MATERIALS 2021; 20:43-48. [PMID: 32807920 DOI: 10.1038/s41563-020-0763-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/09/2020] [Indexed: 05/21/2023]
Abstract
Phonon polaritons enable light confinement at deep subwavelength scales, with potential technological applications, such as subdiffraction imaging, sensing and engineering of spontaneous emission. However, the trade-off between the degree of confinement and the excitation efficiency of phonon polaritons prevents direct observation of these modes in monolayer hexagonal boron nitride (h-BN), where they are expected to reach ultrahigh confinement. Here, we use monochromatic electron energy-loss spectroscopy (about 7.5 meV energy resolution) in a scanning transmission electron microscope to measure phonon polaritons in monolayer h-BN, directly demonstrating the existence of these modes as the phonon Reststrahlen band (RS) disappears. We find phonon polaritons in monolayer h-BN to exhibit high confinement (>487 times smaller wavelength than that of light in free space) and ultraslow group velocity down to about 10-5c. The large momentum compensation provided by electron beams additionally allows us to excite phonon polaritons over nearly the entire RS band of multilayer h-BN. These results open up a broad range of opportunities for the engineering of metasurfaces and strongly enhanced light-matter interactions.
Collapse
Affiliation(s)
- Ning Li
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- International Center for Quantum Materials, Peking University, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiangdong Guo
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Xiaoxia Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Ruishi Qi
- International Center for Quantum Materials, Peking University, Beijing, China
| | - Tianyu Qiao
- International Center for Quantum Materials, Peking University, Beijing, China
| | - Yifei Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Ruochen Shi
- International Center for Quantum Materials, Peking University, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Yuehui Li
- International Center for Quantum Materials, Peking University, Beijing, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Zhi Xu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
| | - Lei Liu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Qing Dai
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - En-Ge Wang
- International Center for Quantum Materials, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- School of Physics, Liaoning University, Shenyang, China
| | - Peng Gao
- International Center for Quantum Materials, Peking University, Beijing, China.
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
18
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Wang H, Li J, Edgar JH, Xu XG. Three-dimensional near-field analysis through peak force scattering-type near-field optical microscopy. NANOSCALE 2020; 12:1817-1825. [PMID: 31899464 DOI: 10.1039/c9nr08417g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scattering-type scanning near-field optical microscopy (s-SNOM) is instrumental in exploring polaritonic behaviors of two-dimensional (2D) materials at the nanoscale. A sharp s-SNOM tip couples momenta into 2D materials through phase matching to excite phonon polaritons, which manifest as nanoscale interference fringes in raster images. However, s-SNOM lacks the ability to detect the progression of near-field properties along the perpendicular axis to the surface. Here, we perform near-field analysis of a micro-disk and a reflective edge made of isotopically pure hexagonal boron nitride (h-11BN), by using three-dimensional near-field response cubes obtained by peak force scattering-type near-field optical microscopy (PF-SNOM). Momentum quantization of polaritons from the confinement of the circular structure is revealed in situ. Moreover, tip-sample distance is found to be capable of fine-tuning the momentum of polaritons and modifying the superposition of quantized polaritonic modes. The PF-SNOM-based three-dimensional near-field analysis provides detailed characterization capability with a high spatial resolution to fully map three-dimensional near-fields of nano-photonics and polaritonic structures.
Collapse
Affiliation(s)
- Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| | | | | | | |
Collapse
|
20
|
Dai S, Fang W, Rivera N, Stehle Y, Jiang BY, Shen J, Tay RY, Ciccarino CJ, Ma Q, Rodan-Legrain D, Jarillo-Herrero P, Teo EHT, Fogler MM, Narang P, Kong J, Basov DN. Phonon Polaritons in Monolayers of Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806603. [PMID: 31353629 DOI: 10.1002/adma.201806603] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Phonon polaritons in van der Waals materials reveal significant confinement accompanied with long propagation length: important virtues for tasks pertaining to the control of light and energy flow at the nanoscale. While previous studies of phonon polaritons have relied on relatively thick samples, here reported is the first observation of surface phonon polaritons in single atomic layers and bilayers of hexagonal boron nitride (hBN). Using antenna-based near-field microscopy, propagating surface phonon polaritons in mono- and bilayer hBN microcrystals are imaged. Phonon polaritons in monolayer hBN are confined in a volume about one million times smaller than the free-space photons. Both the polariton dispersion and their wavelength-thickness scaling law are altered compared to those of hBN bulk counterparts. These changes are attributed to phonon hardening in monolayer-thick crystals. The data reported here have bearing on applications of polaritons in metasurfaces and ultrathin optical elements.
Collapse
Affiliation(s)
- Siyuan Dai
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Wenjing Fang
- Department of Electrical Engineering & Computer Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nicholas Rivera
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yijing Stehle
- Sichuan University Pittsburgh Institute, Sichuan University, Sichuan, Chengdu, 610017, China
| | - Bor-Yuan Jiang
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jialiang Shen
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Roland Yingjie Tay
- School of Electrical and Electronic Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02139, USA
| | - Qiong Ma
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Rodan-Legrain
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pablo Jarillo-Herrero
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Michael M Fogler
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02139, USA
| | - Jing Kong
- Department of Electrical Engineering & Computer Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dimitri N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|