1
|
Zhang J, Ruiz-Molina D, Novio F, Roscini C. Water-Stable Upconverting Coordination Polymer Nanoparticles for Transparent Films and Anticounterfeiting Patterns with Air-Stable Upconversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8377-8386. [PMID: 36722461 PMCID: PMC9940112 DOI: 10.1021/acsami.2c16354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Photon upconversion (UC) based on triplet-triplet annihilation is a very promising phenomenon with potential application in several areas, though, due to the intrinsic mechanism, the achievement of diffusion-limited solid materials with air-stable UC is still a challenge. Herein, we report UC coordination polymer nanoparticles (CPNs) combining sensitizer and emitter molecules especially designed with alkyl spacers that promote the amorphous character. Beyond the characteristic constraints of crystalline MOFs, amorphous CPNs facilitate high dye density and flexible ratio tunability. To show the universality of the approach, two types of UC-CPNs are reported, exhibiting highly photostable UC in two different visible spectral regions. Given their nanoscale, narrow size distribution, and good chemical/colloidal stability in water, the CPNs were also successfully printed as anticounterfeiting patterns and used to make highly transparent and photostable films for luminescent solar concentrators, both showing air-stable UC.
Collapse
Affiliation(s)
- Junda Zhang
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus
UAB, 08193 Cerdanyola
del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Fernando Novio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus
UAB, 08193 Cerdanyola
del Vallès, Spain
| | - Claudio Roscini
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
2
|
Wei L, Fan C, Rao M, Gao F, He C, Sun Y, Zhu S, He Q, Yang C, Wu W. Triplet-triplet annihilation upconversion in LAPONITE®/PVP nanocomposites: absolute quantum yields of up to 23.8% in the solid state and application to anti-counterfeiting. MATERIALS HORIZONS 2022; 9:3048-3056. [PMID: 36213984 DOI: 10.1039/d2mh00887d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low quantum efficiency in the solid phase and the highly efficient quenching by oxygen are two major weaknesses limiting the practical applications of triplet-triplet annihilation (TTA) upconversion (UC). Herein, we report an organic-inorganic hybrid nanocomposites fabricated by self-assembly of LAPONITE® clay and poly(N-vinyl-2-pyrrolidone) (PVP), which serves as excellent matrix for solid-state TTA-UC even in air. In the hybrid hydrogel doped by TTA-UC components, the anionic acceptors are arranged in an ordered manner at the nano-disk edge through electrostatic attraction, which avoids haphazard accumulation of the acceptors and allows for highly efficient inter-acceptor triplet energy migration. Moreover, the entangled PVP could not only protect the triplet excitons from oxygen quenching but even proactively eliminate oxygen by photoirradiation. Significantly, the dried gel prepared by completely removing water from the hydrogel gave absolute UC quantum efficiencies of up to 23.8% (out of a 50% maximum), which is the highest TTA-UC efficiency obtained in the solid state. The dried gels are readily made into powder by grinding with maintained UC emissions, making them convenient for application to information encryption and anti-counterfeiting security by virtue of the high UC quantum efficiency and insensitivity to oxygen.
Collapse
Affiliation(s)
- Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Chunying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Fanrui Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Cheng He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Yujiao Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Sijia Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Qiuhui He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Zhao T, Busko D, Richards BS, Howard IA. Limitation of room temperature phosphorescence efficiency in metal organic frameworks due to triplet-triplet annihilation. Front Chem 2022; 10:1010857. [PMID: 36386002 PMCID: PMC9659923 DOI: 10.3389/fchem.2022.1010857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The effect of triplet-triplet annihilation (TTA) on the room-temperature phosphorescence (RTP) in metal-organic frameworks (MOFs) is studied in benchmark RTP MOFs based on Zn metal centers and isophthalic or terephthalic acid linkers (ZnIPA and ZnTPA). The ratio of RTP to singlet fluorescence is observed to decrease with increasing excitation power density. Explicitly, in ZnIPA the ratio of the RTP to fluorescence is 0.58 at 1.04 mW cm-2, but only 0.42 at (the still modest) 52.6 mW cm-2. The decrease in ratio is due to the reduction of RTP efficiency at higher excitation due to TTA. The density of triplet states increases at higher excitation power densities, allowing triplets to diffuse far enough during their long lifetime to meet another triplet and annihilate. On the other hand, the shorter-lived singlet species can never meet an annihilate. Therefore, the singlet fluorescence scales linearly with excitation power density whereas the RTP scales sub-linearly. Equivalently, the efficiency of fluorescence is unaffected by excitation power density but the efficiency of RTP is significantly reduced at higher excitation power density due to TTA. Interestingly, in time-resolved measurements, the fraction of fast decay increases but the lifetime of long tail of the RTP remains unaffected by excitation power density. This may be due to the confinement of triplets to individual grains, leading decay to be faster until there is only one triplet per grain left. Subsequently, the remaining "lone triplets" decay with the unchanging rate expressed by the long tail. These results increase the understanding of RTP in MOFs by explicitly showing the importance of TTA in determining the (excitation power density dependent) efficiency of RTP. Also, for applications in optical sensing, these results suggest that a method based on long tail lifetime of the RTP is preferable to a ratiometric approach as the former will not be affected by variation in excitation power density whereas the latter will be.
Collapse
Affiliation(s)
- Tonghan Zhao
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bryce S. Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ian A. Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
4
|
Weiss R, VanOrman ZA, Sullivan CM, Nienhaus L. A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS MATERIALS AU 2022; 2:641-654. [PMID: 36855545 PMCID: PMC9928406 DOI: 10.1021/acsmaterialsau.2c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The process of photon upconversion promises importance for many optoelectronic applications, as it can result in higher efficiencies and more effective photon management. Upconversion via triplet-triplet annihilation (TTA) occurs at low incident powers and at high efficiencies, requirements for integration into existing optoelectronic devices. Semiconductor nanocrystals are a diverse class of triplet sensitizers with advantages over traditional molecular sensitizers such as energetic tunability and minimal energy loss during the triplet sensitization process. In this Perspective, we review current progress in semiconductor nanocrystal triplet sensitization, specifically focusing on the nanocrystal, the ligand shell which surrounds the nanocrystal, and progress in solid-state sensitization. Finally, we discuss potential areas of improvement which could result in more efficient upconversion systems sensitized by semiconductor nanocrystals. Specifically, we focus on the development of solid-state TTA upconversion systems, elucidation of the energy transfer mechanisms from nanocrystal to transmitter ligand which underpin the upconversion process and propose novel configurations of nanocrystal-sensitized systems.
Collapse
|
5
|
Fu J, Zhou S, Tang S, Wu X, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z. Imparting down/up-conversion dual channels fluorescence to luminescence metal-organic frameworks by carbon dots-induced for fluorescence sensing. Talanta 2022; 242:123283. [DOI: 10.1016/j.talanta.2022.123283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
6
|
Vaghi L, Rizzo F, Pedrini J, Mauri A, Meinardi F, Cosentino U, Greco C, Monguzzi A, Papagni A. Bypassing the statistical limit of singlet generation in sensitized upconversion using fluorinated conjugated systems. Photochem Photobiol Sci 2022; 21:913-921. [PMID: 35488979 DOI: 10.1007/s43630-022-00225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The photon upconversion based on triplet-triplet annihilation (TTA) is a mechanism that converts the absorbed low-energy electromagnetic radiation into higher energy photons also at extremely low excitation intensities, but its use in actual technologies is still hindered by the limited availability of efficient annihilator moieties. We present here the results obtained by the synthesis and application of two new fluorinated chromophores based on phenazine and acridine structures, respectively. Both compounds show upconverted emission demonstrating their ability as TTA annihilator. More interesting, the acridine-based chromophore shows an excellent TTA yield that overcomes the one of some of best model systems. By correlating the experimental data and the quantum mechanical modeling of the investigated compound, we propose an alternative efficient pathway for the generation of the upconverted emissive states involving the peculiar high-energy triplet levels of the dye, thus suggesting a new development strategy for TTA annihilators based on the fine tuning of their high-energy excited states properties.
Collapse
Affiliation(s)
- Luca Vaghi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy
| | - Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via G. Fantoli 16/15, 20138, Milan, Italy
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Jacopo Pedrini
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy
| | - Anna Mauri
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi Milano-Bicocca, Milano, Piazza della Scienza 1 e 4, 20126, Milan, Italy
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy
| | - Ugo Cosentino
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi Milano-Bicocca, Milano, Piazza della Scienza 1 e 4, 20126, Milan, Italy
| | - Claudio Greco
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi Milano-Bicocca, Milano, Piazza della Scienza 1 e 4, 20126, Milan, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy.
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milan, Italy.
| |
Collapse
|
7
|
Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M, Gallegos AO, Stokes RC, Congreve DN. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 2022; 604:474-478. [PMID: 35444324 DOI: 10.1038/s41586-022-04485-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1-6, with stereolithography a particularly successful approach4,7-9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7-9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser power required to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10-13 to print volumetrically with less than 4 milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.
Collapse
Affiliation(s)
| | - Tracy H Schloemer
- Rowland Institute at Harvard University, Cambridge, MA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | | | - Michael Seitz
- Rowland Institute at Harvard University, Cambridge, MA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Arynn O Gallegos
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Daniel N Congreve
- Rowland Institute at Harvard University, Cambridge, MA, USA. .,Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Kiseleva N, Filatov MA, Fischer JC, Kaiser M, Jakoby M, Busko D, Howard IA, Richards BS, Turshatov A. BODIPY-pyrene donor-acceptor sensitizers for triplet-triplet annihilation upconversion: the impact of the BODIPY-core on upconversion efficiency. Phys Chem Chem Phys 2022; 24:3568-3578. [PMID: 35084007 DOI: 10.1039/d1cp05382e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) is an important type of optical process with applications in biophotonics, solar energy harvesting and photochemistry. In most of the TTA-UC systems, the formation of triplet excited states takes place via spin-orbital interactions promoted by heavy atoms. Given the crucial role of heavy atoms (especially noble metals, such as Pd and Pt) in promoting intersystem crossing (ISC) and, therefore, in production of UC luminescence, the feasibility of using more readily available and inexpensive sensitizers without heavy atoms remains a challenge. Here, we investigated sensitization of TTA-UC using BODIPY-pyrene heavy-atom-free donor-acceptor dyads with different numbers of alkyl groups in the BODIPY scaffold. The molecules with four and six alkyl groups are unable to sensitize TTA-UC in the investigated solvents (tetrahydrofuran (THF) and dichloromethane (DCM)) due to negligible ISC. In contrast, the dyad with two methyl groups in the BODIPY scaffold and the dyad with unsubstituted BODIPY demonstrate efficient intersystem crossing (ISC) of 49-58%, resulting in TTA-UC with quantum yields of 4.7% and 6.9%, respectively. The analysis of the elementary steps of the TTA-UC process indicates that heavy-atom-free donor-acceptor dyads are less effective than their noble metal counterparts, but may equal them in the future if the right combination of solvent, donor-acceptor sensitizer structure, and new luminescent molecules as TTA-UC emitters can be found.
Collapse
Affiliation(s)
- Natalia Kiseleva
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany.
| | - Mikhail A Filatov
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Jan C Fischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany.
| | - Milian Kaiser
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany.
| | - Marius Jakoby
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany.
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany.
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany. .,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany. .,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshofen, Germany.
| |
Collapse
|
9
|
Lee H, Lee MS, Uji M, Harada N, Park JM, Lee J, Seo SE, Park CS, Kim J, Park SJ, Bhang SH, Yanai N, Kimizuka N, Kwon OS, Kim JH. Nanoencapsulated Phase-Change Materials: Versatile and Air-Tolerant Platforms for Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4132-4143. [PMID: 35019270 DOI: 10.1021/acsami.1c21080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient and long-term stable triplet-triplet annihilation upconversion (TTA-UC) can be achieved by effectively protecting the excited organic triplet ensembles from photoinduced oxygen quenching, and discovery of a new material platform that promotes TTA-UC in ambient conditions is of paramount importance for practical applications. In this study, we present the first demonstration of an organic nonparaffin phase-change material (PCM) as an air-tolerant medium for TTA-UC with a unique solid-liquid phase transition in response to temperature variation. For the proposed concept, 2,4-hexadien-1-ol is used and extensively characterized with several key features, including good solvation capacity, mild melting point (30.5 °C), and exclusive antioxidant property, enabling a high-efficiency, low-threshold, and photostable TTA-UC system without energy-intensive degassing processes. In-depth characterization reveals that the triplet diffusion among the transient species, i.e., 3sensitizer* and 3acceptor*, is efficient and well protected from oxygen quenching in both aerated liquid- and solid-phase 2,4-hexadien-1-ol. We also propose a new strategy for the nanoencapsulation of PCM by employing hollow mesoporous silica nanoparticles as vehicles. This scheme is applicable to both aqueous- and solid-phase TTA-UC systems as well as suitable for various applications, such as thermal energy storage and smart drug delivery.
Collapse
Affiliation(s)
- Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Myung-Soo Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Masanori Uji
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoyuki Harada
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jeong-Min Park
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiyeon Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Chul Soon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Nobuhiro Yanai
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejeon 34141, South Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
10
|
Yin W, Yu T, Chen J, Hu R, Yang G, Zeng Y, Li Y. Thermally Activated Upconversion with Metal-Free Sensitizers Enabling Exceptional Anti-Stokes Shift and Anti-counterfeiting Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57481-57488. [PMID: 34841866 DOI: 10.1021/acsami.1c19181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photochemical upconversion (UC) via triplet-triplet annihilation (TTA) has attracted considerable attention for its potential applications in solar energy conversion, photocatalysis, and bioimaging. Achieving a large anti-Stokes shift in photochemical UC is appealing but still a great challenge, especially for purely organic sensitizers. Here, we develop solid-state TTA UC systems with metal- and heavy atom-free dyes as the sensitizers, which sensitize the 9,10-diphenylanthracene acceptor through thermally activated triplet-triplet energy transfer. Solid-state UC emission with remarkable anti-Stokes shifts up to 1.10 eV is achieved owing to an evident enthalpy gain by the endothermic sensitization. The solid upconverter shows air-stable UC emission and potentials in dual-mode anti-counterfeiting and encryption applications. The present UC approach involving thermally activated sensitization enabled by purely organic dyes provides a versatile strategy to develop TTA UC materials with large anti-Stokes shift, air-tolerant emission, and environmental compatibility, which would have promising applications in information encryption, photochemical conversion, and bioimaging.
Collapse
Affiliation(s)
- Wenxia Yin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Hu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
11
|
Saenz F, Ronchi A, Mauri M, Kiebala D, Monguzzi A, Weder C. Block Copolymer Stabilized Liquid Nanodroplets Facilitate Efficient Triplet Fusion-Based Photon Upconversion in Solid Polymer Matrices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43314-43322. [PMID: 34459603 DOI: 10.1021/acsami.1c09813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sensitized triplet-triplet annihilation-based photon upconversion is a photophysical process that affords anti-Stokes-shifted emission after annihilation of two metastable triplet excitons of an emitter dye and the formation of a fluorescent singlet state. While this process readily occurs in solutions under conditions where the mobility of the dye molecules is high, particular architectures are required to facilitate efficient energy transfers in solid polymers. One possibility is to incorporate liquid upconverting domains into solid polymer matrices. Another possibility is to reduce the intermolecular distance between the dyes below the Dexter radius, allowing exciton migration via triplet hopping. We introduce herein nanostructured materials that combine both of these features. These glassy nanostructured polymer systems contain liquid upconverting nanodroplets that are stabilized with a block copolymer surfactant and are fabricated under ambient conditions in a facile one-step protocol. The dyes concentrate in the nanostructured liquid domains, and this enables hopping-mediated ET and TTA between the dyes and leads to an upconversion efficiency of ∼20%.
Collapse
Affiliation(s)
- Felipe Saenz
- Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Alessandra Ronchi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Michele Mauri
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Derek Kiebala
- Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
12
|
Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chem Rev 2021; 121:9165-9195. [PMID: 34327987 DOI: 10.1021/acs.chemrev.1c00034] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet-triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.
Collapse
Affiliation(s)
- Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Ahmad W, Wang J, Li H, Ouyang Q, Wu W, Chen Q. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Edhborg F, Bildirir H, Bharmoria P, Moth-Poulsen K, Albinsson B. Intramolecular Triplet-Triplet Annihilation Photon Upconversion in Diffusionally Restricted Anthracene Polymer. J Phys Chem B 2021; 125:6255-6263. [PMID: 34081465 PMCID: PMC8279549 DOI: 10.1021/acs.jpcb.1c02856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In the strive to
develop triplet–triplet annihilation photon
upconversion (TTA-UC) to become applicable in a viable technology,
there is a need to develop upconversion systems that can function
well in solid states. One method to achieve efficient solid-state
TTA-UC systems is to replace the intermolecular energy-transfer steps
with the corresponding intramolecular transfers, thereby minimizing
loss channels involved in chromophore diffusion. Herein, we present
a study of photon upconversion by TTA internally within a polymeric
annihilator network (iTTA). By the design of the annihilator polymer
and the choice of experiment conditions, we isolate upconversion emission
governed by iTTA within the annihilator particles and eliminate possible
external TTA between separate annihilator particles (xTTA). This approach
leads to mechanistic insights into the process of iTTA and makes it
possible to explore the upconversion kinetics and performance of a
polymeric annihilator. In comparison to a monomeric upconversion system
that only functions using xTTA, we show that upconversion in a polymeric
annihilator is efficient also at extremely low annihilator concentrations
and that the overall kinetics is significantly faster. The presented
results show that intramolecular photon upconversion is a versatile
concept for the development of highly efficient solid-state photon
upconversion materials.
Collapse
Affiliation(s)
- Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Hakan Bildirir
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Pankaj Bharmoria
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
15
|
|
16
|
Roy I, Goswami S, Young RM, Schlesinger I, Mian MR, Enciso AE, Zhang X, Hornick JE, Farha OK, Wasielewski MR, Hupp JT, Stoddart JF. Photon Upconversion in a Glowing Metal–Organic Framework. J Am Chem Soc 2021; 143:5053-5059. [DOI: 10.1021/jacs.1c00298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - J. Fraser Stoddart
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Tamura H. Triplet Exciton Transfers and Triplet-Triplet Annihilation in Anthracene Derivatives via Direct versus Superexchange Pathways Governed by Molecular Packing. J Phys Chem A 2020; 124:7943-7949. [PMID: 32902271 DOI: 10.1021/acs.jpca.0c06835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triplet exciton transfer (TET) and triplet-triplet annihilations (TTAs) in anthracene derivatives, namely, one of the polymorphs of 9,10-bis(triisopropylsilylethynyl)anthracene (TIPS-ANTp) and 1,2,3,4-tetrafluoro-5,8-bis(trimethylsilylethynyl)anthracene (F4-TMS-ANT), are analyzed theoretically. The electronic couplings for TET and TTA are evaluated by means of the diabatization scheme in conjunction with the time-dependent density functional theory and the multireference second-order Møller-Plesset method. The TET rate is estimated on the basis of Fermi's golden rule considering the Franck-Condon factor of intramolecular modes. TTA is analyzed by means of quantum dynamics calculations with the multiconfiguration time-dependent Hartree method. TET in the cofacially stacked F4-TMS-ANT is faster than that of the slip-stacked TIPS-ANTp. In the anthracene derivatives, a singlet exciton is lower in energy than a pair of triplets. F4-TMS-ANT can exhibit an ultrafast TTA via the superexchange pathway mediated by higher lying charge transfer (CT) states, owing to strong electronic couplings. In contrast, TIPS-ANTp exhibits an inefficient TTA via the direct pathway with a small two-electron coupling. The cofacial stacking decreases the energy gap to the intermediate CT states, thereby facilitating TET and TTA via the superexchange pathway.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| |
Collapse
|
18
|
Hu X, Wang Z, Su Y, Chen P, Chen J, Zhang C, Wang C. Nanoscale Metal–Organic Frameworks and Metal–Organic Layers with Two-Photon-Excited Fluorescence. Inorg Chem 2020; 59:4181-4185. [DOI: 10.1021/acs.inorgchem.0c00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuefu Hu
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhiye Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuming Su
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peican Chen
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiawei Chen
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cankun Zhang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
19
|
Gharaati S, Wang C, Förster C, Weigert F, Resch‐Genger U, Heinze K. Triplet-Triplet Annihilation Upconversion in a MOF with Acceptor-Filled Channels. Chemistry 2020; 26:1003-1007. [PMID: 31670422 PMCID: PMC7027809 DOI: 10.1002/chem.201904945] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/10/2023]
Abstract
Photon upconversion has enjoyed increased interest in the last years due to its high potential for solar-energy harvesting and bioimaging. A challenge for triplet-triplet annihilation upconversion (TTA-UC) processes is to realize these features in solid materials without undesired phase segregation and detrimental dye aggregation. To achieve this, we combine a palladium porphyrin sensitizer and a 9,10-diphenylanthracene annihilator within a crystalline mesoporous metal-organic framework using an inverted design. In this modular TTA system, the framework walls constitute the fixed sensitizer, while caprylic acid coats the channels providing a solventlike environment for the mobile annihilator in the channels. The resulting solid material shows green-to-blue delayed upconverted emission with a luminescence lifetime of 373±5 μs, a threshold value of 329 mW cm-2 and a triplet-triplet energy transfer efficiency of 82 %. The versatile design allows straightforward changing of the acceptor amount and type.
Collapse
Affiliation(s)
- Shadab Gharaati
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division BiophotonicsFederal Institute for, Materials Research and Testing (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Florian Weigert
- Division BiophotonicsFederal Institute for, Materials Research and Testing (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for, Materials Research and Testing (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
20
|
Edhborg F, Küçüköz B, Gray V, Albinsson B. Singlet Energy Transfer in Anthracene-Porphyrin Complexes: Mechanism, Geometry, and Implications for Intramolecular Photon Upconversion. J Phys Chem B 2019; 123:9934-9943. [PMID: 31647236 DOI: 10.1021/acs.jpcb.9b07991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we show that the mechanism for singlet excitation energy transfer (SET) in coordination complexes changes upon changing a single atom. SET is governed by two different mechanisms; Förster resonance energy transfer (FRET) based on Coulombic, through-space interactions, or Dexter energy transfer relying on exchange, through-bond interactions. On the basis of time-resolved fluorescence and transient absorption measurements, we conduct a mechanistic study of SET from a set of photoexcited anthracene donors to axially coordinated porphyrin acceptors, revealing the effect of coordination geometry and a very profound effect of the porphyrin central metal atom. We found that FRET is the dominating mechanism of SET for complexes with zinc-octaethylporphyrin (ZnOEP) as the acceptor, while Dexter energy transfer is the dominating mechanism of SET in a corresponding ruthenium complex (RuOEP). In addition, by analyzing the coordination geometry of the complexes and its temperature dependence, the binding angle potential energy of axially coordinated porphyrin complexes could be estimated. The results of this study are of fundamental importance and are discussed with respect to the consequences for developing intramolecular triplet-triplet annihilation photon upconversion in coordination complexes.
Collapse
Affiliation(s)
- Fredrik Edhborg
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Gothenburg , Sweden
| | - Betül Küçüköz
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Gothenburg , Sweden
| | - Victor Gray
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Gothenburg , Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
21
|
Perego J, Pedrini J, Bezuidenhout CX, Sozzani PE, Meinardi F, Bracco S, Comotti A, Monguzzi A. Engineering Porous Emitting Framework Nanoparticles with Integrated Sensitizers for Low-Power Photon Upconversion by Triplet Fusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903309. [PMID: 31441141 DOI: 10.1002/adma.201903309] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The conversion of low-energy light into photons of higher energy based on sensitized triplet-triplet annihilation (sTTA) upconversion is emerging as the most promising wavelength-shifting methodology because it operates efficiently at excitation powers as low as the solar irradiance. However, the production of solid-state upconverters suited for direct integration in devices is still an ongoing challenge owing to the difficulties concerning the organization of two complementary moieties, the triplet sensitizer, and the annihilator, which must interact efficiently. This problem is solved by fabricating porous fluorescent nanoparticles wherein the emitters are integrated into robust covalent architectures. These emitting porous aromatic framework (ePAF) nanoparticles allow intimate interaction with the included metallo-porphyrin as triplet sensitizers. Remarkably, the high concentration of framed chromophores ensures hopping-mediated triplet diffusion required for TTA, yet the low density of the framework promotes their high optical features without quenching effects, typical of the solid state. A green-to-blue photon upconversion yield as high as 15% is achieved: a record performance among annihilators in a condensed phase. Furthermore, the engineered ePAF architecture containing covalently linked sensitizers produces full-fledge solid-state bicomponent particles that behave as autonomous nanodevices.
Collapse
Affiliation(s)
- Jacopo Perego
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Jacopo Pedrini
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Charl X Bezuidenhout
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Piero E Sozzani
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Silvia Bracco
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Angiolina Comotti
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| |
Collapse
|