1
|
Samanta K, Deswal P, Alam S, Bhati M, Ivanov SA, Tretiak S, Ghosh D. Ligand Controls Excited Charge Carrier Dynamics in Metal-Rich CdSe Quantum Dots: Computational Insights. ACS NANO 2024; 18:24941-24952. [PMID: 39189799 DOI: 10.1021/acsnano.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Small metal-rich semiconducting quantum dots (QDs) are promising for solid-state lighting and single-photon emission due to their highly tunable yet narrow emission line widths. Nonetheless, the anionic ligands commonly employed to passivate these QDs exert a substantial influence on the optoelectronic characteristics, primarily owing to strong electron-phonon interactions. In this work, we combine time-domain density functional theory and nonadiabatic molecular dynamics to investigate the excited charge carrier dynamics of Cd28Se17X22 QDs (X = HCOO-, OH-, Cl-, and SH-) at ambient conditions. These chemically distinct but regularly used molecular groups influence the dynamic surface-ligand interfacial interactions in Cd-rich QDs, drastically modifying their vibrational characteristics. The strong electron-phonon coupling leads to substantial transient variations at the band edge states. The strength of these interactions closely depends on the physicochemical characteristics of passivating ligands. Consequently, the ligands largely control the nonradiative recombination rates and emission characteristics in these QDs. Our simulations indicate that Cd28Se17(OH)22 has the fastest nonradiative recombination rate due to the strongest electron-phonon interactions. Conversely, QDs passivated with thiolate or chloride exhibit considerably longer carrier lifetimes and suppressed nonradiative processes. The ligand-controlled electron-phonon interactions further give rise to the broadest and narrowest intrinsic optical line widths for OH and Cl-passivated single QDs, respectively. Obtained computational insights lay the groundwork for designing appropriate passivating ligands on metal-rich QDs, making them suitable for a wide range of applications, from blue LEDs to quantum emitters.
Collapse
Affiliation(s)
- Kushal Samanta
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Deswal
- Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Shayeeque Alam
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Bhati
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei A Ivanov
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Gumber S, Prezhdo OV. Energy-Conserving Surface Hopping for Auger Processes. J Chem Theory Comput 2024; 20:5408-5417. [PMID: 38902855 PMCID: PMC11238531 DOI: 10.1021/acs.jctc.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Auger-type processes are ubiquitous in nanoscale materials because quantum confinement enhances Coulomb interactions, and there exist large densities of states. Modeling Auger processes requires the modification of nonadiabatic (NA) molecular dynamics algorithms to include transitions caused by both NA and Coulomb couplings. The system is split into quantum and classical subsystems, e.g., electrons and vibrations, and as a result, energy conservation becomes nontrivial. In surface hopping, an electronic transition induced by NA coupling is accompanied by a classical velocity readjustment to ensure conservation of the total quantum-classical energy. A different treatment is needed for Auger transitions driven by Coulomb interactions. We develop a nonadiabatic molecular dynamics methodology that meticulously differentiates the energy redistribution accompanying hops induced by the NA coupling and the Coulomb interaction and correctly conserves the total energy at each transition. If the transition is driven by a Coulomb interaction, the hop energy is redistributed within the quantum electronic subsystem only. If the transition is NA, the energy is redistributed between the quantum and classical subsystems. Properly maintaining energy conservation for both types of transitions is crucial to generate a correct order of events, obtain accurate transition times, maintain a proper statistical distribution of state populations, and reach thermodynamic equilibrium. We test the method with biexciton annihilation and Auger-assisted hot electron relaxation in a CdSe quantum dot. The sequence of Auger and phonon-driven processes and the calculated time scales are in excellent agreement with the experimental results. The developed approach can be coupled with any surface-hopping method and provides a crucial practical advance to study charge-carrier dynamics in the nanoscale and condensed matter systems.
Collapse
Affiliation(s)
- Shriya Gumber
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Dong J, Zhang L, Lau K, Shu Y, Wang S, Fu Z, Wu Z, Liu X, Sa B, Pei J, Zheng J, Zhan H, Wang Q. Tailoring Broadband Nonlinear Optical Characteristics and Ultrafast Photocarrier Dynamics of Bi 2O 2S Nanosheets by Defect Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309595. [PMID: 38152956 DOI: 10.1002/smll.202309595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Low-dimensional bismuth oxychalcogenides have shown promising potential in optoelectronics due to their high stability, photoresponse, and carrier mobility. However, the relevant studies on deep understanding for Bi2O2S is quite limited. Here, comprehensive experimental and computational investigations are conducted in the regulated band structure, nonlinear optical (NLO) characteristics, and carrier dynamics of Bi2O2S nanosheets via defect engineering, taking O vacancy (OV) and substitutional Se doping as examples. As the OV continuously increased to ≈35%, the optical bandgaps progressively narrow from ≈1.21 to ≈0.81 eV and NLO wavelengths are extended to near-infrared regions with enhanced saturable absorption. Simultaneously, the relaxation processes are effectively accelerated from tens of picoseconds to several picoseconds, as the generated defect energy levels can serve as both additional absorption cross-sections and fast relaxation channels supported by theoretical calculations. Furthermore, substitutional Se doping in Bi2O2S nanosheets also modulate their optical properties with the similar trends. As a proof-of-concept, passively mode-locked pulsed lasers in the ≈1.0 µm based on the defect-rich samples (≈35% OV and ≈50% Se-doping) exhibit excellent performance. This work deepens the insight of defect functions on optical properties of Bi2O2S nanosheets and provides new avenues for designing advanced photonic devices based on low-dimensional bismuth oxychalcogenides.
Collapse
Affiliation(s)
- Junhao Dong
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lesong Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Kuenyao Lau
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yu Shu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shijin Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhuang Fu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhanggui Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baisheng Sa
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jingying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qianting Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, China
- School of Resources & Chemical Engineering, Sanming University, Sanming, 365004, China
| |
Collapse
|
4
|
Mondal S, Chowdhury U, Dey S, Habib M, Mora Perez C, Frauenheim T, Sarkar R, Pal S, Prezhdo OV. Controlling Charge Carrier Dynamics in Porphyrin Nanorings by Optically Active Templates. J Phys Chem Lett 2023; 14:11384-11392. [PMID: 38078872 PMCID: PMC10749466 DOI: 10.1021/acs.jpclett.3c03304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.
Collapse
Affiliation(s)
- Shrabanti Mondal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Uttam Chowdhury
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Subhajit Dey
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Md Habib
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Department
of Chemistry, Sripat Singh College, Jiaganj 742122, India
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Frauenheim
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
- Beijing
Computational Science Research Center, Beijing 100193, China
- Shenzhen
JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Ritabrata Sarkar
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
| | - Sougata Pal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Prokhorov AV, Gubin MY, Shesterikov AV, Arsenin AV, Volkov VS, Evlyukhin AB. Lasing Effect in Symmetrical van der Waals Heterostructured Metasurfaces Due to Lattice-Induced Multipole Coupling. NANO LETTERS 2023; 23:11105-11111. [PMID: 38029331 PMCID: PMC10880088 DOI: 10.1021/acs.nanolett.3c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
New practical ways to reach the lasing effect in symmetrical metasurfaces have been developed and theoretically demonstrated. Our approach is based on excitation of the resonance of an octupole quasi-trapped mode (OQTM) in heterostructured symmetrical metasurfaces composed of monolithic disk-shaped van der Waals meta-atoms featured by thin photoluminescent layers and placed on a substrate. We revealed that the coincidence of the photoluminescence spectrum maximum of these layers with the wavelength of high-quality OQTM resonance leads to the lasing effect. Based on the solution of laser rate equations and direct full-wave simulation, it was shown that lasing is normally oriented to the metasurface plane and occurs from the entire area of metasurface consisting of MoS2/hBN/MoTe2 disks with line width of generated emission of only about 1.4 nm near the wavelength 1140 nm. This opens up new practical possibilities for creating surface emitting laser devices in subwavelength material systems.
Collapse
Affiliation(s)
- Alexei V. Prokhorov
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | - Mikhail Yu. Gubin
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | | | - Aleksey V. Arsenin
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | - Valentyn S. Volkov
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | - Andrey B. Evlyukhin
- Institute
of Quantum Optics, Leibniz Universität
Hannover, Hannover 30167, Germany
| |
Collapse
|
6
|
Weaver H, Went CM, Wong J, Jasrasaria D, Rabani E, Atwater HA, Ginsberg NS. Detecting, Distinguishing, and Spatiotemporally Tracking Photogenerated Charge and Heat at the Nanoscale. ACS NANO 2023; 17:19011-19021. [PMID: 37721430 PMCID: PMC10569093 DOI: 10.1021/acsnano.3c04607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Since dissipative processes are ubiquitous in semiconductors, characterizing how electronic and thermal energy transduce and transport at the nanoscale is vital for understanding and leveraging their fundamental properties. For example, in low-dimensional transition metal dichalcogenides (TMDCs), excess heat generation upon photoexcitation is difficult to avoid since even with modest injected exciton densities exciton-exciton annihilation still occurs. Both heat and photoexcited electronic species imprint transient changes in the optical response of a semiconductor, yet the distinct signatures of each are difficult to disentangle in typical spectra due to overlapping resonances. In response, we employ stroboscopic optical scattering microscopy (stroboSCAT) to simultaneously map both heat and exciton populations in few-layer MoS2 on relevant nanometer and picosecond length- and time scales and with 100-mK temperature sensitivity. We discern excitonic contributions to the signal from heat by combining observations close to and far from exciton resonances, characterizing the photoinduced dynamics for each. Our approach is general and can be applied to any electronic material, including thermoelectrics, where heat and electronic observables spatially interplay, and it will enable direct and quantitative discernment of different types of coexisting energy without recourse to complex models or underlying assumptions.
Collapse
Affiliation(s)
- Hannah
L. Weaver
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Cora M. Went
- Department
of Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Joeson Wong
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dipti Jasrasaria
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eran Rabani
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- The
Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Harry A. Atwater
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Naomi S. Ginsberg
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
- STROBE
NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Bae S, Jeong TY, Raebiger H, Yee KJ, Kim YH. Localized coherent phonon generation in monolayer MoSe 2 from ultrafast exciton trapping at shallow traps. NANOSCALE HORIZONS 2023; 8:1282-1287. [PMID: 37470115 DOI: 10.1039/d3nh00194f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
We report spectroscopic evidence for the ultrafast trapping of band edge excitons at defects and the subsequent generation of defect-localized coherent phonons (CPs) in monolayer MoSe2. While the photoluminescence measurement provides signals of exciton recombination at both shallow and deep traps, our time-resolved pump-probe spectroscopy on the sub-picosecond time scale detects localized CPs only from the ultrafast exciton trapping at shallow traps. Based on occupation-constrained density functional calculations, we identify the Se vacancy and the oxygen molecule adsorbed on a Se vacancy as the atomistic origins of deep and shallow traps, respectively. Establishing the correlations between the defect-induced ultrafast exciton trapping and the generation of defect-localized CPs, our work could open up new avenues to engineer photoexcited carriers through lattice defects in two-dimensional materials.
Collapse
Affiliation(s)
- Soungmin Bae
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - Tae Young Jeong
- Department of Physics, Chungnam National University, Daejeon 34134, Korea.
| | - Hannes Raebiger
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - Ki-Ju Yee
- Department of Physics, Chungnam National University, Daejeon 34134, Korea.
| | - Yong-Hoon Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
8
|
Zou J, Zhu R, Wang J, Meng H, Wang Z, Chen H, Weng YX. Coherent Phonon-Mediated Many-Body Interaction in Monolayer WSe 2. J Phys Chem Lett 2023; 14:4657-4665. [PMID: 37167104 DOI: 10.1021/acs.jpclett.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.
Collapse
Affiliation(s)
- Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanting Meng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wang J, Ni G, Liao W, Liu K, Chen J, Liu F, Zhang Z, Jia M, Li J, Fu J, Pensa E, Jiang L, Bian Z, Cortés E, Liu M. Subsurface Engineering Induced Fermi Level De-pinning in Metal Oxide Semiconductors for Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202217026. [PMID: 36577697 DOI: 10.1002/anie.202217026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.
Collapse
Affiliation(s)
- Jun Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China.,Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Ganghai Ni
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Wanru Liao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Jiawei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Fangyang Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Zongliang Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Ming Jia
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Jie Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Liangxing Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China.,Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha, 410083, Hunan, P.R. China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| |
Collapse
|
10
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
11
|
Wang X, Niu G, Jiang J, Sui L, Zeng X, Liu X, Zhang Y, Wu G, Yuan K, Yang X. Anomalous Dynamics of Defect-Assisted Phonon Recycling in Few-Layer Mo 0.5W 0.5S 2. J Phys Chem Lett 2022; 13:10395-10403. [PMID: 36318176 DOI: 10.1021/acs.jpclett.2c02935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alloying has emerged as a new strategy to tune the function of 2D transition metal dichalcogenides (TMDCs). However, the lack of research on the electrical and structural properties of these alloys limits their practical applications. Here, femtosecond transient absorption spectroscopy with pump pulse tunability is performed to elucidate the ultrafast carrier dynamics in the few-layer Mo0.5W0.5S2 prepared by the liquid phase exfoliation method. An anomalous rebleaching of the ground state is observed at high pump fluence by 3.1 eV excitation. We ascribe this rebleaching of the ground state to the mechanism that the carriers trapped in the defect are thermally excited back to the untrapped exciton state due to the phonon recycling, which hinders the dissipation of nonradiative energy, through comparative experiments and global analysis. Our findings demonstrate a novel energy transfer channel assisted by defect in few-layer TMDCs which is critical for their advanced applications.
Collapse
Affiliation(s)
- Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Liu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Science College, Dalian Maritime University, Dalian 116026, China
| | - Yutong Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Zhang J, Zhang L, Zhang Q. Unraveling the Effect of Surface Ligands on the Auger Process in an Inorganic Perovskite Quantum-Dot System. J Phys Chem Lett 2022; 13:2943-2949. [PMID: 35343682 DOI: 10.1021/acs.jpclett.2c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work systematically scrutinizes the role of surface-ligand modification in affecting the Auger process in a porotype perovskite system of CsPbBr3-octanoic acid (OcA) and CsPbBr3-oleic acid (OA) quantum dots (QDs), by means of steady-state/time-resolved/temperature-dependent photoluminescence spectroscopy and ultrafast transient absorption spectroscopy. The difference in the ligand chain length (i.e., C8 and C18 alkyl chains for OcA and OA, respectively) is found to significantly affect Auger recombination and hot-carrier cooling processes. More importantly, we provide fresh insight into the involved carrier dynamics; i.e., the modification of CsPbBr3 QDs with short-chain (long-chain) ligand leads to the formation of trapped (free) carriers, which causes a pronounced difference in the ability to suppress the detrimental Auger process. In addition, a careful analysis of spectral evolution reveals that the Auger suppression is related to the carrier population of a certain transition state. The valuable mechanistic information gleaned from the exciton/carrier dynamics perspective would assist in surface engineering through a facile ligand-modification strategy toward rational design and optimization of QD-based photoelectrochemical applications.
Collapse
Affiliation(s)
- Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Abstract
Rapid, far-from-equilibrium processes involving excitation of electronic, vibrational, spin, photon, topological, and other degrees of freedom form the basis of modern technologies, including electronics and optoelectronics, solar energy harvesting and conversion to electrical and chemical energy, quantum information processing, spin- and valleytronics, chemical detection, and medical therapies. Such processes are studied experimentally with various time-resolved spectroscopies that allow scientists to track system's evolution on ultrafast time scales and at close to atomistic level of detail. The availability of various forms of lasing has made such measurements easily accessible to many experimental groups worldwide, to study atoms and small molecules, nanoscale and condensed matter systems, proteins, cells, and mesoscopic materials. The experimental work necessitates parallel theoretical efforts needed to interpret the experiments and to provide insights that cannot be gained through measurements due to experimental limitations.Non-adiabatic (NA) molecular dynamics (MD) allows one to study processes at the atomistic level and in the time domain most directly mimicking the time-resolved experiments. Atomistic modeling takes full advantage of chemical intuition and principles that guide design and fabrication of molecules and materials. It provides atomistic origins of quasi-particles, such as holes, excitons, trions, plasmons, phonons, polarons, polaritons, spin-waves, momentum-resolved and topological states, electrically and magnetically polarized structures, and other abstract concepts. An atomistic description enables one to study realistic aspects of materials, which necessarily contain defects, dopants, surfaces, interfaces, passivating ligands, and solvent layers. Often, such realistic features govern material properties and are hard to account for phenomenologically. NA-MD requires few approximations and assumptions. It does not need to assume that atomic motions are harmonic, that electrons are Drude oscillators, that coupling between different degrees of freedom is weak, that dynamics is Markovian or has short memory, or that evolution occurs by exponential kinetics of transitions between few states. The classical or semiclassical treatment of atomic motions constitutes the main approximation of NA-MD and is used because atoms are 3-5 orders of magnitude heavier than electrons. NA-MD is limited by system size, typically hundreds or thousands of atoms, and time scale, picoseconds to nanoseconds. The quality of NA-MD simulations depends on the electronic structure method used to obtain excited state energies and NA couplings.NA-MD has been largely popularized and advanced in the chemistry community that focuses on molecules. Modeling far-from-equilibrium dynamics in nanoscale and condensed matter systems often has to account for other types of physics. At the same time, condensed phase NA-MD allows for approximations that may not work in molecules. Focusing on the recent NA-MD developments aimed at studying excited state processes in nanoscale and condensed phases, this Account considers how the phenomena important on the nanoscale can be incorporated into NA-MD and what approximations can be made to increase its efficiency with complex systems and processes.
Collapse
Affiliation(s)
- Oleg V. Prezhdo
- Departments of Chemistry, Physics and Astronomy, and Chemical Engineering University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Li W, She Y, Vasenko AS, Prezhdo OV. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. NANOSCALE 2021; 13:10239-10265. [PMID: 34031683 DOI: 10.1039/d1nr01990b] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron-phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge-charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China.
| | | | | | | |
Collapse
|
15
|
Gao L, Hu Z, Lu J, Liu H, Ni Z. Defect-related dynamics of photoexcited carriers in 2D transition metal dichalcogenides. Phys Chem Chem Phys 2021; 23:8222-8235. [PMID: 33875990 DOI: 10.1039/d1cp00006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit enormous potential in the field of optoelectronics. The high performance of TMD materials and optoelectronic devices significantly depends on processes involved in photoelectric conversion, including photo-excitation, relaxation, transportation, and recombination. Remarkably, inevitable defects in materials prolong or shorten the characteristic time of these processes and even bring about new photoelectric conversion channels, namely, the defect-related relaxation pathways of photoexcited carriers tailor the performance of photoelectric applications. In recent years, there have been numerous investigations in exploring the variant transient signals caused by defects in TMDs utilizing ultrafast spectroscopies. They have the capability in providing an accurate and overall representation of ultrafast processes owing to the subtle temporal resolution. The defect-related mechanisms occurring in different time scales (from femtosecond (fs) to microsecond (μs)) play influential roles throughout the relaxation process of photoexcited species. Herein, we review the defect-related relaxation mechanisms of photoexcited species in TMDs according to the time scale utilizing ultrafast spectroscopy techniques. By interpreting and summarizing the defect-related transient signals, we furnish the direction in material design and performance optimization.
Collapse
Affiliation(s)
- Lei Gao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Zhenliang Hu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Hongwei Liu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| |
Collapse
|
16
|
Zhou G, Lu G, Prezhdo OV. Modeling Auger Processes with Nonadiabatic Molecular Dynamics. NANO LETTERS 2021; 21:756-761. [PMID: 33320680 DOI: 10.1021/acs.nanolett.0c04442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Auger-type energy exchange plays key roles in the carrier dynamics in nanomaterials due to strong carrier-carrier interactions. However, theoretical descriptions are limited to perturbative calculations of scattering rates on static structures. We develop an accurate and efficient ab initio technique to model Auger scattering with nonadiabatic molecular dynamics. We incorporate the many-body Coulomb matrix into several surface hopping methods and describe simultaneously charge-charge and charge-phonon scattering in the time-domain and in a nonperturbative, configuration-dependent manner. The approach is illustrated with a CdSe quantum dot. Auger scattering between electrons and holes breaks the phonon bottleneck to electron relaxation. The bottleneck is recovered when electrons and holes are decoupled. The simulations correctly reproduce all experimental processes and time scales, including Auger- and phonon-assisted cooling of hot electrons, intraband carrier relaxation, and carrier recombination. Providing detailed insights into the energy flow, the developed method allows studies of carrier dynamics in nanomaterials with strong carrier-carrier interactions.
Collapse
Affiliation(s)
- Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Gang Lu
- Department of Physics and Astronomy, California State University, Northridge, California 91330, United States
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Britz A, Attar AR, Zhang X, Chang HT, Nyby C, Krishnamoorthy A, Park SH, Kwon S, Kim M, Nordlund D, Sainio S, Heinz TF, Leone SR, Lindenberg AM, Nakano A, Ajayan P, Vashishta P, Fritz D, Lin MF, Bergmann U. Carrier-specific dynamics in 2H-MoTe 2 observed by femtosecond soft x-ray absorption spectroscopy using an x-ray free-electron laser. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014501. [PMID: 33511247 PMCID: PMC7808761 DOI: 10.1063/4.0000048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Femtosecond carrier dynamics in layered 2H-MoTe2 semiconductor crystals have been investigated using soft x-ray transient absorption spectroscopy at the x-ray free-electron laser (XFEL) of the Pohang Accelerator Laboratory. Following above-bandgap optical excitation of 2H-MoTe2, the photoexcited hole distribution is directly probed via short-lived transitions from the Te 3d 5/2 core level (M5-edge, 572-577 eV) to transiently unoccupied states in the valence band. The optically excited electrons are separately probed via the reduced absorption probability at the Te M5-edge involving partially occupied states of the conduction band. A 400 ± 110 fs delay is observed between this transient electron signal near the conduction band minimum compared to higher-lying states within the conduction band, which we assign to hot electron relaxation. Additionally, the transient absorption signals below and above the Te M5 edge, assigned to photoexcited holes and electrons, respectively, are observed to decay concomitantly on a 1-2 ps timescale, which is interpreted as electron-hole recombination. The present work provides a benchmark for applications of XFELs for soft x-ray absorption studies of carrier-specific dynamics in semiconductors, and future opportunities enabled by this method are discussed.
Collapse
Affiliation(s)
| | | | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
| | - Hung-Tzu Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Aravind Krishnamoorthy
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, USA
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, USA
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, USA
| | - David Fritz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ming-Fu Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
18
|
Attar AR, Chang HT, Britz A, Zhang X, Lin MF, Krishnamoorthy A, Linker T, Fritz D, Neumark DM, Kalia RK, Nakano A, Ajayan P, Vashishta P, Bergmann U, Leone SR. Simultaneous Observation of Carrier-Specific Redistribution and Coherent Lattice Dynamics in 2H-MoTe 2 with Femtosecond Core-Level Spectroscopy. ACS NANO 2020; 14:15829-15840. [PMID: 33085888 DOI: 10.1021/acsnano.0c06988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We employ few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to reveal simultaneously the intra- and interband carrier relaxation and the light-induced structural dynamics in nanoscale thin films of layered 2H-MoTe2 semiconductor. By interrogating the valence electronic structure via localized Te 4d (39-46 eV) and Mo 4p (35-38 eV) core levels, the relaxation of the photoexcited hole distribution is directly observed in real time. We obtain hole thermalization and cooling times of 15 ± 5 fs and 380 ± 90 fs, respectively, and an electron-hole recombination time of 1.5 ± 0.1 ps. Furthermore, excitations of coherent out-of-plane A1g (5.1 THz) and in-plane E1g (3.7 THz) lattice vibrations are visualized through oscillations in the XUV absorption spectra. By comparison to Bethe-Salpeter equation simulations, the spectral changes are mapped to real-space excited-state displacements of the lattice along the dominant A1g coordinate. By directly and simultaneously probing the excited carrier distribution dynamics and accompanying femtosecond lattice displacement in 2H-MoTe2 within a single experiment, our work provides a benchmark for understanding the interplay between electronic and structural dynamics in photoexcited nanomaterials.
Collapse
Affiliation(s)
- Andrew R Attar
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Hung-Tzu Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander Britz
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Ming-Fu Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aravind Krishnamoorthy
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States
| | - David Fritz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, United States
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Yang Y, Tokina MV, Fang WH, Long R, Prezhdo OV. Influence of tungsten doping on nonradiative electron–hole recombination in monolayer MoSe2 with Se vacancies. J Chem Phys 2020; 153:154701. [DOI: 10.1063/5.0020720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yating Yang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Marina V. Tokina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
20
|
Qiao L, Fang WH, Long R, Prezhdo OV. Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. J Phys Chem Lett 2020; 11:7066-7082. [PMID: 32787332 DOI: 10.1021/acs.jpclett.0c01687] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Perovskite solar cells have attracted intense attention over the past decade because of their low cost, abundant raw materials, and rapidly growing power conversion efficiency (PCE). However, nonradiative charge carrier losses still constitute a major factor limiting the PCE to well below the Shockley-Queisser limit. This Perspective summarizes recent atomistic quantum dynamics studies on the photoinduced excited-state processes in metal halide perovskites (MHPs), including both hybrid organic-inorganic and all-inorganic MHPs and three- and two-dimensional MHPs. The simulations, performed using a combination of time-domain ab initio density functional theory and nonadiabatic molecular dynamics, allow emphasis on various intrinsic and extrinsic features, such as components, structure, dimensionality and interface engineering, control and exposure to various environmental factors, defects, surfaces, and their passivation. The detailed atomistic simulations advance our understanding of electron-vibrational dynamics in MHPs and provide valuable guidelines for enhancing the performance of perovskite solar cells.
Collapse
Affiliation(s)
- Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
21
|
Agrawal S, Lin W, Prezhdo OV, Trivedi DJ. Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets. J Chem Phys 2020; 153:054701. [PMID: 32770911 DOI: 10.1063/5.0010628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4), a metal-free and visible light responsive photocatalyst, has garnered much attention due to its wide range of applications. In order to elucidate the role of dimensionality on the properties of photo-generated charge carriers, we apply nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory to investigate nonradiative relaxation of hot electrons and holes, and electron-hole recombination in monolayer and bulk g-C3N4. The nonradiative charge recombination occurs on a nanosecond timescale and is faster in bulk than the nanosheet, in agreement with the experiment. The difference arises due to the smaller energy gap and participation of additional vibrations in the bulk system. The long carrier lifetimes are favored by small NA coupling and rapid phonon-induced loss of quantum coherence between the excited and ground electronic states. Decoherence is fast because g-C3N4 is soft and undergoes large scale vibrations. The NA coupling is small since electrons and holes are localized on different atoms, and the electron-hole overlap is relatively small. Phonon-driven relaxation of hot electrons and holes takes 100-200 fs and is slightly slower at higher initial energies due to participation of fewer vibrational modes. This feature of two-dimensional g-C3N4 contrasts traditional three-dimensional semiconductors, which exhibit faster relaxation at higher energies due to larger density of states, and can be used to extract hot carriers to perform useful functions. The ab initio quantum dynamics simulations present a comprehensive picture of the photo-induced charge carrier dynamics in g-C3N4, guiding design of photovoltaic and photocatalytic devices.
Collapse
Affiliation(s)
- Sraddha Agrawal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| |
Collapse
|
22
|
Wei Y, Tokina MV, Benderskii AV, Zhou Z, Long R, Prezhdo OV. Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO2. J Chem Phys 2020; 153:044706. [DOI: 10.1063/5.0014179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Marina V. Tokina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alexander V. Benderskii
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
23
|
Wang X, Long R. Oxidation Notably Accelerates Nonradiative Electron-Hole Recombination in MoS 2 by Different Mechanisms: Time-Domain Ab Initio Analysis. J Phys Chem Lett 2020; 11:4086-4092. [PMID: 32354209 DOI: 10.1021/acs.jpclett.0c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) experience degradation in optoelectronic properties under ambient conditions. By performing nonadiabatic (NA) molecular dynamics simulations, we demonstrate that the MoS2 monolayer containing substitutional oxygen and oxygen adatom accelerates nonradiative electron-hole recombination by a factor of about 1.5 compared to perfect film but operates by different mechanisms. The substitutional oxygen creates no midgap states while enhancing NA coupling by increasing the overlap between electron and hole wave functions, accelerating electron-hole recombination. In contrast, electrons significantly populate the deep trap state created by the oxygen adatom because the trap is modestly delocalized and coupled strongly to free charges. The trap mediated instead of the direct pathway dominates the electron-hole recombination. The generated insights uncover the mechanisms for different types of defects on influencing charge dynamics in TMDs and suggest that the oxygen defects should be avoided for the design of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
24
|
Li Y, Liu W, Wang Y, Xue Z, Leng YC, Hu A, Yang H, Tan PH, Liu Y, Misawa H, Sun Q, Gao Y, Hu X, Gong Q. Ultrafast Electron Cooling and Decay in Monolayer WS 2 Revealed by Time- and Energy-Resolved Photoemission Electron Microscopy. NANO LETTERS 2020; 20:3747-3753. [PMID: 32242668 DOI: 10.1021/acs.nanolett.0c00742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A comprehensive understanding of the ultrafast electron dynamics in two-dimensional transition metal dichalcogenides (TMDs) is necessary for their applications in optoelectronic devices. In this work, we contribute a study of ultrafast electron cooling and decay dynamics in the supported and suspended monolayer WS2 by time- and energy-resolved photoemission electron microscopy (PEEM). Electron cooling in the Q valley of the conduction band is clearly resolved in energy and time, on a time scale of 0.3 ps. Electron decay is mainly via a defect trapping process on a time scale of several picoseconds. We observed that the trap states can be produced and increased by laser illumination under an ultrahigh vacuum, and the higher local optical-field intensity led to the faster increase of trap states. The enhanced defect trapping could significantly modify the carrier dynamics and should be paid attention to in photoemission experiments for two-dimensional materials.
Collapse
Affiliation(s)
- Yaolong Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Wei Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Yunkun Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Zhaohang Xue
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Yu-Chen Leng
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Aiqin Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yunquan Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Quan Sun
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yunan Gao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
25
|
Wang YS, Nijjar P, Zhou X, Bondar DI, Prezhdo OV. Combining Lindblad Master Equation and Surface Hopping to Evolve Distributions of Quantum Particles. J Phys Chem B 2020; 124:4326-4337. [DOI: 10.1021/acs.jpcb.0c03030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Siang Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Parmeet Nijjar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Xin Zhou
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Denys I. Bondar
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Lu TF, Wang YS, Tomko JA, Hopkins PE, Zhang HX, Prezhdo OV. Control of Charge Carrier Dynamics in Plasmonic Au Films by TiO x Substrate Stoichiometry. J Phys Chem Lett 2020; 11:1419-1427. [PMID: 32011143 DOI: 10.1021/acs.jpclett.9b03884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic excitations in noble metals have many fascinating properties and give rise to a broad range of applications. We demonstrate, using nonadiabatic molecular dynamics combined with time-domain density functional theory, that the chemical composition and stoichiometry of substrates can have a strong influence on charge dynamics. By changing oxygen content in TiO2, including stoichiometric, oxygen rich, and oxygen poor phases, and Ti metal, one can alter lifetimes of charge carriers in Au by a factor of 5 and control the ratio of electron-to-hole relaxation rates by a factor of 10. Remarkably, a thin TiOx substrate greatly alters charge carrier properties in much thicker Au films. Such large variations stem from the fact that the Ti and O atoms are much lighter than Au, and their vibrations are much faster at dissipating the energy. The control over a particular charge carrier and an energy range depends on the Au and TiOx level alignment, and the interfacial interaction strength. These factors are easily influenced by the TiOx stoichiometry. In particular, oxygen rich and poor TiO2 can be used to control holes and electrons, respectively, while metallic Ti affects both charge carriers. The detailed atomistic analysis of the interfacial and electron-vibrational interactions generates the fundamental understanding of the properties of plasmonic materials needed to design photovoltaic, photocatalytic, optoelectronic, sensing, nanomedical, and other devices.
Collapse
Affiliation(s)
- Teng-Fei Lu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yi-Siang Wang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - John A Tomko
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Patrick E Hopkins
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Physics , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
27
|
Gao L, Liao Q, Zhang X, Liu X, Gu L, Liu B, Du J, Ou Y, Xiao J, Kang Z, Zhang Z, Zhang Y. Defect-Engineered Atomically Thin MoS 2 Homogeneous Electronics for Logic Inverters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906646. [PMID: 31743525 DOI: 10.1002/adma.201906646] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon-based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy-matched electron induction of the solution process, numerous pure and lattice-stable monosulfur vacancies (Vmonos ) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos , an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand-new and practical design route of defect modulation for 2D-based circuit development is provided.
Collapse
Affiliation(s)
- Li Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiankun Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaozhi Liu
- Collaborative Innovation Center of Quantum Matter, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Collaborative Innovation Center of Quantum Matter, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Baishan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junli Du
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yang Ou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiankun Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
28
|
Yang Y, Fang WH, Benderskii A, Long R, Prezhdo OV. Strain Controls Charge Carrier Lifetimes in Monolayer WSe 2: Ab Initio Time Domain Analysis. J Phys Chem Lett 2019; 10:7732-7739. [PMID: 31755714 DOI: 10.1021/acs.jpclett.9b03105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mono- and few-layer transition metal dichalcogenides (TMDs) are among the most appealing candidates for electronic and optoelectronic devices. During synthesis, TMDs actively interact with substrates, which induce notable strain and influence significantly charge carriers in TMDs. By performing time-domain ab initio simulations on monolayer WSe2, we demonstrate that charge carrier lifetimes vary by a factor of 3 within a typical 1% strain range, the bandgap changes by 0.2 eV, and electron-phonon interactions vary by 60%. Fortuitously, the most common tensile strain extends the lifetimes. The changes arise because of modifications in interatomic interactions. Further, compared to the optimized structure, at ambient temperature the bandgap drops by 0.1 eV and fluctuates by 0.1 eV. WSe2 obeys linear response within 1% strain; however, further strain leads to nonlinear qualitative changes in WSe2 electronic properties. The conduction band is affected more strongly than the valence band. Charges couple to phonons within a 100-400 cm-1 frequency range, with the strongest coupling to in-plane and out-of-plane modes at 250 cm-1. The reported findings agree with the available experiments and should be generic to other 2D materials. The strain effects need to be considered during TMD synthesis and provide means to control and tune TMD properties for 2D device applications.
Collapse
Affiliation(s)
- Yating Yang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , P.R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , P.R. China
| | - Alex Benderskii
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , P.R. China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|