1
|
Yao Z, Xiong Y, Kang H, Xu X, Guo J, Li W, Xu X. Tunable Periodic Nanopillar Array for MAPbI 3 Perovskite Photodetectors with Improved Light Absorption. ACS OMEGA 2024; 9:2606-2614. [PMID: 38250387 PMCID: PMC10795138 DOI: 10.1021/acsomega.3c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.
Collapse
Affiliation(s)
- Zhengtong Yao
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Yuting Xiong
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Hanyue Kang
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jianhe Guo
- Guangdong
Provincial Key Laboratory of Sensing Technology and Biomedical
Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wen Li
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaobin Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
2
|
Patino-Guerrero A, Esmaeili H, Migrino RQ, Nikkhah M. Nanoengineering of gold nanoribbon-embedded isogenic stem cell-derived cardiac organoids. RSC Adv 2023; 13:16985-17000. [PMID: 37288383 PMCID: PMC10243308 DOI: 10.1039/d3ra01811c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Abstract
Cardiac tissue engineering is an emerging field providing tools to treat and study cardiovascular diseases (CVDs). In the past years, the integration of stem cell technologies with micro- and nanoengineering techniques has enabled the creation of novel engineered cardiac tissues (ECTs) with potential applications in disease modeling, drug screening, and regenerative medicine. However, a major unaddressed limitation of stem cell-derived ECTs is their immature state, resembling a neonatal phenotype and genotype. The modulation of the cellular microenvironment within the ECTs has been proposed as an efficient mechanism to promote cellular maturation and improve features such as cellular coupling and synchronization. The integration of biological and nanoscale cues in the ECTs could serve as a tool for the modification and control of the engineered tissue microenvironment. Here we present a proof-of-concept study for the integration of biofunctionalized gold nanoribbons (AuNRs) with hiPSC-derived isogenic cardiac organoids to enhance tissue function and maturation. We first present extensive characterization of the synthesized AuNRs, their PEGylation and cytotoxicity evaluation. We then evaluated the functional contractility and transcriptomic profile of cardiac organoids fabricated with hiPSC-derived cardiomyocytes (mono-culture) as well as with hiPSC-derived cardiomyocytes and cardiac fibroblasts (co-culture). We demonstrated that PEGylated AuNRs are biocompatible and do not induce cell death in hiPSC-derived cardiac cells and organoids. We also found an improved transcriptomic profile of the co-cultured organoids indicating maturation of the hiPSC-derived cardiomyocytes in the presence of cardiac fibroblasts. Overall, we present for the first time the integration of AuNRs into cardiac organoids, showing promising results for improved tissue function.
Collapse
Affiliation(s)
| | - Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ 8528 USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System Phoenix AZ 85012 USA
- University of Arizona College of Medicine Phoenix AZ 85004 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ 8528 USA
- Center for Personalized Diagnostics Biodesign Institute, Arizona State University Tempe AZ 85281 USA
| |
Collapse
|
3
|
Wang B, Li Y, Zhou M, Han Y, Zhang M, Gao Z, Liu Z, Chen P, Du W, Zhang X, Feng X, Liu BF. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat Commun 2023; 14:1341. [PMID: 36906581 PMCID: PMC10007670 DOI: 10.1038/s41467-023-36017-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/10/2023] [Indexed: 03/13/2023] Open
Abstract
The frequent outbreak of global infectious diseases has prompted the development of rapid and effective diagnostic tools for the early screening of potential patients in point-of-care testing scenarios. With advances in mobile computing power and microfluidic technology, the smartphone-based mobile health platform has drawn significant attention from researchers developing point-of-care testing devices that integrate microfluidic optical detection with artificial intelligence analysis. In this article, we summarize recent progress in these mobile health platforms, including the aspects of microfluidic chips, imaging modalities, supporting components, and the development of software algorithms. We document the application of mobile health platforms in terms of the detection objects, including molecules, viruses, cells, and parasites. Finally, we discuss the prospects for future development of mobile health platforms.
Collapse
Affiliation(s)
- Bangfeng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengfan Zhou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yulong Han
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Mingyu Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zetai Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Wang CM, Chan HS, Liao CL, Chang CW, Liao WS. Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:34-44. [PMID: 36703907 PMCID: PMC9830500 DOI: 10.3762/bjnano.14.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 05/09/2023]
Abstract
We introduce a unique soft lithographic operation that exploits stamp roof collapse-induced gaps to selectively remove an alkanethiol self-assembled monolayer (SAM) on Au to generate surface patterns that are orders of magnitude smaller than structures on the original elastomer stamp. The smallest achieved feature dimension is 5 nm using a micrometer-scale structured stamp in a chemical lift-off lithography (CLL) process. Molecular patterns retained in the gaps between stamp features and their circumscribed or inscribed circles follow mathematical predictions, and their sizes can be tuned by altering the stamp structure dimensions, including height, pitch, and shape. These generated surface molecular patterns can function as biorecognition arrays or be transferred to the underneath Au layer for metallic structure creation. By combining CLL process with this gap phenomenon, soft material properties that are previously thought as demerits can be used to achieve sub-10 nm features in a straightforward sketch.
Collapse
Affiliation(s)
- Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Sheng Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Li Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Wei Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Wu B, Lou Y, Wu D, Min Q, Wan X, Zhang H, Yu Y, Ma J, Si G, Pang Y. Directivity-Enhanced Detection of a Single Nanoparticle Using a Plasmonic Slot Antenna. NANO LETTERS 2022; 22:2374-2380. [PMID: 35285643 DOI: 10.1021/acs.nanolett.1c04949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ refractive index sensors integrated with nanoaperture-based optical tweezers possess stable and sensitive responsivity to single nanoparticles. In most existing works, detection events are only identified using the total light intensity with directivity information ignored, leading to a low signal-to-noise ratio. Here, we propose to detect an optically trapped 20 nm silica particle by monitoring directivity of a plasmonic antenna. The main and secondary radiation lobes of the antenna reverse upon trapping because the particle-induced perturbation negates the relative phase between two antenna elements, leading to a significant change of the antenna front-to-back ratio. As a result, we obtain a signal-to-noise ratio of 20, with an order-of-magnitude improvement as compared to the intensity-only detection scheme.
Collapse
Affiliation(s)
- Bei Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Dan Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Qiuhong Min
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Xinchen Wan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Hongyuan Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yarong Yu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jian Ma
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Gangzheng Si
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| |
Collapse
|
6
|
Dahlin A. Biochemical Sensing with Nanoplasmonic Architectures: We Know How but Do We Know Why? ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:281-297. [PMID: 33761272 DOI: 10.1146/annurev-anchem-091420-090751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here, the research field of nanoplasmonic sensors is placed under scrutiny, with focus on affinity-based detection using refractive index changes. This review describes how nanostructured plasmonic sensors can deliver unique advantages compared to the established surface plasmon resonance technique, where a planar metal surface is used. At the same time, it shows that these features are actually only useful in quite specific situations. Recent trends in the field are also discussed and some devices that claim extraordinary performance are questioned. It is argued that the most important challenges are related to limited receptor affinity and nonspecific binding rather than instrumental performance. Although some nanoplasmonic sensors may be useful in certain situations, it seems likely that conventional surface plasmon resonance will continue to dominate biomolecular interaction analysis. For detection of analytes in complex samples, plasmonics may be an important tool, but probably not in the form of direct refractometric detection.
Collapse
Affiliation(s)
- Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
| |
Collapse
|
7
|
Zhao C, Liu Q, Cheung KM, Liu W, Yang Q, Xu X, Man T, Weiss PS, Zhou C, Andrews AM. Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity. ACS NANO 2021; 15:904-915. [PMID: 33337135 PMCID: PMC7855841 DOI: 10.1021/acsnano.0c07503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wafer-scale nanoribbon field-effect transistor (FET) biosensors fabricated by straightforward top-down processes are demonstrated as sensing platforms with high sensitivity to a broad range of biological targets. Nanoribbons with 350 nm widths (700 nm pitch) were patterned by chemical lift-off lithography using high-throughput, low-cost commercial digital versatile disks (DVDs) as masters. Lift-off lithography was also used to pattern ribbons with 2 μm or 20 μm widths (4 or 40 μm pitches, respectively) using masters fabricated by photolithography. For all widths, highly aligned, quasi-one-dimensional (1D) ribbon arrays were produced over centimeter length scales by sputtering to deposit 20 nm thin-film In2O3 as the semiconductor. Compared to 20 μm wide microribbons, FET sensors with 350 nm wide nanoribbons showed higher sensitivity to pH over a broad range (pH 5 to 10). Nanoribbon FETs functionalized with a serotonin-specific aptamer demonstrated larger responses to equimolar serotonin in high ionic strength buffer than those of microribbon FETs. Field-effect transistors with 350 nm wide nanoribbons functionalized with single-stranded DNA showed greater sensitivity to detecting complementary DNA hybridization vs 20 μm microribbon FETs. In all, we illustrate facile fabrication and use of large-area, uniform In2O3 nanoribbon FETs for ion, small-molecule, and oligonucleotide detection where higher surface-to-volume ratios translate to better detection sensitivities.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qingzhou Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qing Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Corresponding Authors (AMA), (CZ), and (PSW)
| | - Chongwu Zhou
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Corresponding Authors (AMA), (CZ), and (PSW)
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- Corresponding Authors (AMA), (CZ), and (PSW)
| |
Collapse
|
8
|
Kim Y, Gonzales J, Zheng Y. Sensitivity-Enhancing Strategies in Optical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004988. [PMID: 33369864 PMCID: PMC7884068 DOI: 10.1002/smll.202004988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Indexed: 05/07/2023]
Abstract
High-sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity-improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity-improving strategies are introduced, which can be developed into "plug-and-play" modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion-limit-breaking systems for enhancing sensor-analyte contact and subsequent analyte recognition by fluid-mixing and analyte-concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Gonzales
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Ferhan AR, Yoon BK, Jeon WY, Cho NJ. Biologically interfaced nanoplasmonic sensors. NANOSCALE ADVANCES 2020; 2:3103-3114. [PMID: 36134263 PMCID: PMC9418064 DOI: 10.1039/d0na00279h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 05/30/2023]
Abstract
Understanding biointerfacial processes is crucial in various fields across fundamental and applied biology, but performing quantitative studies via conventional characterization techniques remains challenging due to instrumentation as well as analytical complexities and limitations. In order to accelerate translational research and address current challenges in healthcare and medicine, there is an outstanding need to develop surface-sensitive technologies with advanced measurement capabilities. Along this line, nanoplasmonic sensing has emerged as a powerful tool to quantitatively study biointerfacial processes owing to its high spatial resolution at the nanoscale. Consequently, the development of robust biological interfacing strategies becomes imperative to maximize its characterization potential. This review will highlight and discuss the critical role of biological interfacing within the context of constructing nanoplasmonic sensing platforms for biointerfacial science applications. Apart from paving the way for the development of highly surface-sensitive characterization tools that will spur fundamental biological interaction studies and improve the overall understanding of biological processes, the basic principles behind biointerfacing strategies presented in this review are also applicable to other fields that involve an interface between an inorganic material and a biological system.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|