1
|
Chi BK, Gavin SJ, Ahern BN, Peperni N, Monfette S, Weix DJ. Sulfone Electrophiles in Cross-Electrophile Coupling: Nickel-Catalyzed Difluoromethylation of Aryl Bromides. ACS Catal 2024; 14:11087-11100. [PMID: 39391026 PMCID: PMC11463998 DOI: 10.1021/acscatal.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fluoroalkyl fragments have played a critical role in the design of pharmaceutical and agrochemical molecules in recent years due to the enhanced biological properties of fluorinated molecules compared to their non-fluorinated analogues. Despite the potential advantages conferred by incorporating a difluoromethyl group in organic compounds, industrial adoption of difluoromethylation methods lags behind fluorination and trifluoromethylation. This is due in part to challenges in applying common difluoromethyl sources towards industrial applications. We report here the nickel-catalyzed cross-electrophile coupling of (hetero)aryl bromides with difluoromethyl 2-pyridyl sulfone, a sustainably sourced, crystalline difluoromethylation reagent. The scope of this reaction is demonstrated with 24 examples (67 ± 16% average yield) including a diverse array of heteroaryl bromides and precursors to difluoromethyl-containing preclinical pharmaceuticals. This reaction can be applied to small-scale parallel synthesis and benchtop scale-up under mild conditions. As sulfone reagents are uncommon electrophiles in cross-electrophile coupling, the mechanism of this process was investigated. Studies confirmed the formation of •CF2H instead of difluorocarbene. A series of modified difluoromethyl sulfones revealed that sulfone reactivity does not correlate exclusively with reduction potential and that coordination of cations or nickel to the pyridyl group is essential to reactivity, setting out parameters for matching the reactivity of sulfones in cross-electrophile coupling.
Collapse
Affiliation(s)
- Benjamin K. Chi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samantha J. Gavin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nikita Peperni
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Zhao H, Ravn AK, Haibach MC, Engle KM, Johansson Seechurn CCC. Diversification of Pharmaceutical Manufacturing Processes: Taking the Plunge into the Non-PGM Catalyst Pool. ACS Catal 2024; 14:9708-9733. [PMID: 38988647 PMCID: PMC11232362 DOI: 10.1021/acscatal.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Recent global events have led to the cost of platinum group metals (PGMs) reaching unprecedented heights. Many chemical companies are therefore starting to seriously consider and evaluate if and where they can substitute PGMs for non-PGMs in their catalytic processes. This review covers recent highly relevant applications of non-PGM catalysts in the modern pharmaceutical industry. By highlighting these selected successful examples of non-PGM-catalyzed processes from the literature, we hope to emphasize the enormous potential of non-PGM catalysis and inspire further development within this field to enable this technology to progress toward manufacturing processes. We also present some historical contexts and review the perceived advantages and challenges of implementing non-PGM catalysts in the pharmaceutical manufacturing environment.
Collapse
Affiliation(s)
- Hui Zhao
- Sinocompound
Catalysts, Building C,
Bonded Area Technology Innovation Zone, Zhangjiagang, Jiangsu 215634, China
| | - Anne K. Ravn
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael C. Haibach
- Process
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Keary M. Engle
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
3
|
Li S, Wang X, Yang Y, Ni C, Hu J. Divergent Generation of the Difluoroalkyl Radical and Difluorocarbene via Selective Cleavage of C-S Bonds of the Sulfox-CF 2SO 2Ph Reagent. Org Lett 2024; 26:872-876. [PMID: 38236716 DOI: 10.1021/acs.orglett.3c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A new difluoroalkylation reagent Sulfox-CF2SO2Ph bearing both sulfoximine and sulfone moieties was prepared from commercially available SulfoxFluor and PhSO2CF2H. On one hand, the Sulfox-CF2SO2Ph reagent could act as a (phenylsulfonyl)difluoromethyl radical source under photoredox catalysis, in which the arylsulfoximidoyl group is selectively removed. On the other hand, under basic conditions, Sulfox-CF2SO2Ph could serve as a difluorocarbene precursor for S- and O-difluoromethylations with S- and O-nucleophiles, respectively, in which the phenylsulfonyl group in Sulfox-CF2SO2Ph is selectively removed (followed by α-elimination of the arylsulfoximidoyl group).
Collapse
Affiliation(s)
- Shali Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Xiu Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yide Yang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Briand M, Anselmi E, Dagousset G, Magnier E. The Revival of Enantioselective Perfluoroalkylation - Update of New Synthetic Approaches from 2015-2022. CHEM REC 2023; 23:e202300114. [PMID: 37219007 DOI: 10.1002/tcr.202300114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Over the last years, methods devoted to the synthesis of asymmetric molecules bearing a perfluoroalkylated chain have been limited in number. Among them, only a few can be used on a large variety of scaffolds. This microreview aims at summarizing these recent advances in enantioselective perfluoroalkylation (-CF3 , -CF2 H, -Cn F2n+1 ) and highlights the need for new enantioselective methods to easily synthesize chiral fluorinated molecules which would be useful for the pharmaceutical and agrochemical industries. Some perspectives are also mentioned.
Collapse
Affiliation(s)
- Marina Briand
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Elsa Anselmi
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
- Université de Tours, Faculté des Sciences et Techniques, Parc Grandmont, Avenue Monge, 37200, Tours, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| |
Collapse
|
5
|
Ispizua-Rodriguez X, Krishnamurti V, Carpio V, Barrett C, Prakash GKS. Copper-Catalyzed Synthesis of Difluoromethyl Alkynes from Terminal and Silyl Acetylenes. J Org Chem 2023; 88:1194-1199. [PMID: 36622772 DOI: 10.1021/acs.joc.2c02799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient method for the direct C(sp)-H difluoromethylation of terminal alkynes and the desilylation-difluoromethylation of (trimethylsilyl)acetylenes is disclosed. The copper-catalyzed transformation provides access to a wide range of structurally diverse CF2H alkynes in good yields, utilizing a (difluoromethyl)zinc reagent and an organic oxidant. The difluoromethylation of important synthons and API's is showcased. The synthetic utility of these (difluoromethyl)alkynes is demonstrated by selected cycloaddition reactions. Additionally, a slight modification to the reaction conditions allowed the selective preparation of a 2-difluoromethylindole.
Collapse
Affiliation(s)
- Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Vanessa Carpio
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Colby Barrett
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
6
|
Gedde OR, Bonde A, Golbækdal PI, Skrydstrup T. Pd-Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF 2 H Generated ex Situ. Chemistry 2022; 28:e202200997. [PMID: 35388933 PMCID: PMC9321866 DOI: 10.1002/chem.202200997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
An expedient ex-situ generation of difluoroiodomethane (DFIM) and its immediate use in a Pd-catalyzed difluoromethylation of aryl boronic acids and ester derivatives in a two-chamber reactor is reported. Heating a solution of bromodifluoroacetic acid with sodium iodide in sulfolane proved to be effective for the generation of near stoichiometric amounts of DFIM for the ensuing catalytic coupling step. A two-step difluoromethylation of aryl (pseudo)halides with tetrahydroxydiboron as a low-cost reducing agent, both promoted by Pd catalysis, proved effective to install this fluorine-containing C1 group onto several pharmaceutically relevant molecules. Finally, the method proved adaptable to deuterium incorporation by simply adding D2 O to the DFIM-generating chamber.
Collapse
Affiliation(s)
- Oliver R. Gedde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Andreas Bonde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Peter I. Golbækdal
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| |
Collapse
|
7
|
Shi L, An D, Mei GJ. Difluoromethylation of Heterocycles via a Radical Process. Org Chem Front 2022. [DOI: 10.1039/d2qo00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difluoromethylation is of prime importance for its applicability in functionalizing diverse fluorine-containing heterocycles, which are core moieties of various biologically and pharmacologically active ingredients. Due to their significant biological and...
Collapse
|
8
|
Cai A, Yan W, Wang C, Liu W. Copper-Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon-Iodine Bonds. Angew Chem Int Ed Engl 2021; 60:27070-27077. [PMID: 34652873 DOI: 10.1002/anie.202111993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/07/2023]
Abstract
The engagement of unactivated alkyl halides in copper-catalyzed cross-coupling reactions has been historically challenging, due to their low reduction potential and the slow oxidative addition of copper(I) catalysts. In this work, we report a novel strategy that leverages the halogen abstraction ability of aryl radicals, thereby engaging a diverse range of alkyl iodides in copper-catalyzed Negishi-type cross-coupling reactions at room temperature. Specifically, aryl radicals generated via copper catalysis efficiently initiate the cleavage of the carbon-iodide bonds of alkyl iodides. The alkyl radicals thus generated enter the copper catalytic cycles to couple with a difluoromethyl zinc reagent, thus furnishing the alkyl difluoromethane products. This unprecedented Negishi-type difluoromethylation approach has been applied to the late-stage modification of densely functionalized pharmaceutical agents and natural products.
Collapse
Affiliation(s)
- Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
9
|
Cai A, Yan W, Wang C, Liu W. Copper‐Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon–Iodine Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aijie Cai
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Wenhao Yan
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Chao Wang
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Wei Liu
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
10
|
Goetz AE, Becirovic H, Blasberg F, Chen B, Clarke HJ, Colombo M, Daddario P, Damon DB, Depretz C, Dumond YR, Grilli MD, Han L, Houck TL, Johnson AM, Jones KN, Jung J, Leeman M, Liu F, Lu CV, Mangual EJ, Nelson JD, Puchlopek-Dermenci ALA, Ruggeri SG, Simonds PA, Sitter B, Virtue DE, Wang S, Yu L, Yu T. Large-Scale Cyclopropanation of Butyl Acrylate with Difluorocarbene and Classical Resolution of a Key Fluorinated Building Block. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam E. Goetz
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Husein Becirovic
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Florian Blasberg
- AMRI, Euticals GmbH, Industriepark Höchst D569, 65926 Frankfurt am Main, Germany
| | - Bo Chen
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Hugh J. Clarke
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Pedro Daddario
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David B. Damon
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christelle Depretz
- AMRI, Euticals S.A.S., Zone Industrielle de Laville, 47240 Bon-Encontre, France
| | - Yves R. Dumond
- AMRI, Euticals S.A.S., Zone Industrielle de Laville, 47240 Bon-Encontre, France
| | | | - Lu Han
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tim L. Houck
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M. Johnson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kris N. Jones
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jörg Jung
- AMRI, Euticals GmbH, Industriepark Höchst D569, 65926 Frankfurt am Main, Germany
| | - Michel Leeman
- Symeres BV, Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Fangfang Liu
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cuong V. Lu
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Emilio J. Mangual
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jade D. Nelson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Angela L. A. Puchlopek-Dermenci
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sally Gut Ruggeri
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paul A. Simonds
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Barbara Sitter
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel E. Virtue
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shuguang Wang
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Lixin Yu
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Tao Yu
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| |
Collapse
|
11
|
Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Late-stage difluoromethylation: concepts, developments and perspective. Chem Soc Rev 2021; 50:8214-8247. [DOI: 10.1039/d1cs00360g] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the conceptual advances that have led to the multiple difluoromethylation processes making use of well-defined CF2H sources.
Collapse
Affiliation(s)
- Jeroen B. I. Sap
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Claudio F. Meyer
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Natan J. W. Straathof
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Ndidi Iwumene
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Christopher W. am Ende
- Pfizer Inc
- Medicine Design, Eastern Point Road, Groton, Connecticut 06340, and 1 Portland Street
- Cambridge
- USA
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| |
Collapse
|
12
|
Sheldon DJ, Coates G, Crimmin MR. Defluorosilylation of trifluoromethane: upgrading an environmentally damaging fluorocarbon. Chem Commun (Camb) 2020; 56:12929-12932. [PMID: 32975261 DOI: 10.1039/d0cc04592f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid, room-temperature defluorosilylation of trifluoromethane, a highly potent greenhouse gas, has been achieved using a simple silyl lithium reagent. An extensive computational mechanistic analysis provides a viable reaction pathway and demonstrates the unexpected electrophilic nature of LiCF3. The reaction generates a bench stable fluorinated building block that shows promise as an easy-to-use difluoromethylating agent. The difluoromethyl group is an increasingly important bioisostere in active pharmaceutical ingredients, and therefore our methodology creates value from waste. The potential scalability of the process has been demonstrated by achieving the reaction on a gram-scale.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, UK.
| | | | | |
Collapse
|