1
|
Galata DL, Péterfi O, Ficzere M, Szabó-Szőcs B, Szabó E, Nagy ZK. The current state-of-the art in pharmaceutical continuous film coating - A review. Int J Pharm 2024; 669:125052. [PMID: 39662853 DOI: 10.1016/j.ijpharm.2024.125052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
In this decade, one of the major trends in the pharmaceutical industry is the adoption of continuous manufacturing. This requires the development of continuous equivalents of essential pharmaceutical processes such as film coating. The process of film coating is the last step of the processing of solid dosage forms and is critical because it determines the visual appearance of the end product, along with ensuring its stability and possibly even defining the rate of drug release. Several manufacturers advertise continuous solutions for film coating, these include semi-continuous and fully continuous appliances. State-of-the-art continuous coaters can match the throughput of continuous manufacturing lines, because largest appliances have a capacity of 1200-1500 kg/h. The paper also describes the main challenges related to continuous film coating including waste production at the beginning and end of the process and the problem caused by elastic recovery of the tablets when film coating is performed immediately after tablet compression. Lastly, we give an overview of the in-line sensors that can be used to monitor the quality of the film coated tablets, enabling real-time quality control of the process. Near-infrared and Raman spectroscopy can measure the mass gain of the tablets, while terahertz pulsed imaging and optical coherence tomography enable coating thickness measurement of individual tablets and even the characterization of intra-tablet coating thickness variability. UV imaging and machine vision can also measure coating thickness, and they are also excellent for detecting tablets with defective coating.
Collapse
Affiliation(s)
- Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Orsolya Péterfi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Máté Ficzere
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Bence Szabó-Szőcs
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Ram Munnangi S, Narala N, Lakkala P, Kumar Vemula S, Narala S, Johnson L, Karry K, Repka M. Optimization of a Twin screw melt granulation process for fixed dose combination immediate release Tablets: Differential amorphization of one drug and crystalline continuance in the other. Int J Pharm 2024; 665:124717. [PMID: 39284422 DOI: 10.1016/j.ijpharm.2024.124717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Interest in Twin Screw Melt Granulation (TSMG) processes is rapidly increasing, along with the search for suitable excipients. This study aims to optimize the TSMG process for immediate-release tablets containing two different drugs. The hypothesis is that one poorly water-soluble drug requires amorphous conversion for improved dissolution, while the other water-soluble drug, with a higher melting point (Tm), remains more stable in its crystalline form. Ibuprofen (IBU) and Acetaminophen (APAP) were chosen as the model drug combination to test this hypothesis. Various diluents, binders, and disintegrating agents were assessed for their impact on processability, crystallinity, disintegration, and dissolution during development. The temperatures used during processing were below the Tm of all components, except for IBU. Melted IBU acted as a granulating aid in addition to the binders in the formulation, facilitating granule formation. Physicochemical analyses by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD) confirmed the complete conversion of IBU into an amorphous state and the preserved crystalline nature of APAP. Saturation solubility studies showed an improvement in IBU's solubility by ∼ 32-fold in 0.1 N HCl. Poor tablet disintegration performance led to the addition of disintegrating agents, where osmotic agents (sorbitol and NaCl) were found to significantly enhance disintegration compared to super disintegrants. The optimized formulation showed an enhanced IBU release (∼20 %) compared to the physical mixture (∼12.5) in 0.1 N HCl dissolution studies.
Collapse
Affiliation(s)
- Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | | | - Krizia Karry
- BASF Corporation, Pharma Solutions, Tarrytown, NY 10591
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Centre for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
3
|
Boyall S, Clarke H, Dixon T, Davidson RWM, Leslie K, Clemens G, Muller FL, Clayton AD, Bourne RA, Chamberlain TW. Automated Optimization of a Multistep, Multiphase Continuous Flow Process for Pharmaceutical Synthesis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:15125-15133. [PMID: 39421637 PMCID: PMC11481092 DOI: 10.1021/acssuschemeng.4c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024]
Abstract
Flow synthesis is becoming increasingly relevant as a sustainable and safe alternative to traditional batch processes, as reaction conditions that are not usually achievable in batch chemistry can be exploited (for example, higher temperatures and pressures). Telescoped continuous reactions have the potential to reduce waste by decreasing the number of separate unit operations (e.g., crystallization, filtration, washing, and drying), increase safety due to limiting operator interaction with potentially harmful materials that can be reacted in subsequent steps, minimize supply chain disruption, and reduce the need to store large inventories of intermediates as they can be synthesized on demand. Optimization of these flow processes leads to further efficiency when exploring new reactions, as with a higher yield comes higher purity, reduced waste, and a greener synthesis. This project explored a two-step process consisting of a three-phase heterogeneously catalyzed hydrogenation followed by a homogeneous amidation reaction. The steps were optimized individually and as a multistep telescoped process for yield using remote automated control via a Bayesian optimization algorithm and HPLC analysis to assess the performance of a reaction for a given set of experimental conditions. 2-MeTHF was selected as a green solvent throughout the process, and the heterogeneous step provided good atom economy due to the use of pure hydrogen gas as a reagent. This research highlights the benefits of using multistage automated optimization in the development of pharmaceutical syntheses. The combination of telescoping and optimization with automation allows for swift investigation of synthetic processes in a minimum number of experiments, leading to a reduction in the number of experiments performed and a large reduction in process mass intensity values.
Collapse
Affiliation(s)
- Sarah
L. Boyall
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Holly Clarke
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Thomas Dixon
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Robert W. M. Davidson
- Dr.
Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, U.K.
| | - Kevin Leslie
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Graeme Clemens
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Frans L. Muller
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Adam D. Clayton
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Richard A. Bourne
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Thomas W. Chamberlain
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
4
|
Yao X, Wang Z, Qian M, Deng Q, Sun P. Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors. Molecules 2024; 29:3651. [PMID: 39125055 PMCID: PMC11314161 DOI: 10.3390/molecules29153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Microstructured reactors offer fast chemical engineering transfer and precise microfluidic control, enabling the determination of reactions' kinetic parameters. This review examines recent advancements in measuring microreaction kinetics. It explores kinetic modeling, reaction mechanisms, and intrinsic kinetic equations pertaining to two types of microreaction: esterification and transesterification reactions involving acids, bases, or biocatalysts. The utilization of a micro packed-bed reactor successfully achieves a harmonious combination of the micro-dispersion state and the reaction kinetic characteristics. Additionally, this review presents micro-process simulation software and explores the advanced integration of microreactors with spectroscopic analyses for reaction monitoring and data acquisition. Furthermore, it elaborates on the control principles of the micro platform. The superiority of online measurement, automation, and the digitalization of the microreaction process for kinetic measurements is highlighted, showcasing the vast prospects of artificial intelligence applications.
Collapse
Affiliation(s)
- Xingjun Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhenxue Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ming Qian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiulin Deng
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Peiyong Sun
- Beijing Institute of Petrochemical Technology, Daxing District, Beijing 102617, China;
| |
Collapse
|
5
|
Mészáros LA, Gyürkés M, Varga E, Tacsi K, Honti B, Borbás E, Farkas A, Nagy ZK, Nagy B. Real-time release testing of in vitro dissolution and blend uniformity in a continuous powder blending process by NIR spectroscopy and machine vision. Eur J Pharm Biopharm 2024; 201:114368. [PMID: 38880401 DOI: 10.1016/j.ejpb.2024.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Continuous manufacturing is gaining increasing interest in the pharmaceutical industry, also requiring real-time and non-destructive quality monitoring. Multiple studies have already addressed the possibility of surrogate in vitro dissolution testing, but the utilization has rarely been demonstrated in real-time. Therefore, in this work, the in-line applicability of an artificial intelligence-based dissolution surrogate model is developed the first time. NIR spectroscopy-based partial least squares regression and artificial neural networks were developed and tested in-line and at-line to assess the blend uniformity and dissolution of encapsulated acetylsalicylic acid (ASA) - microcrystalline cellulose (MCC) powder blends in a continuous blending process. The studied blend is related to a previously published end-to-end manufacturing line, where the varying size of the ASA crystals obtained from a continuous crystallization significantly affected the dissolution of the final product. The in-line monitoring was suitable for detecting the variations in the ASA content and dissolution caused by the feeding of ASA with different particle sizes, and the at-line predictions agreed well with the measured validation dissolution curves (f2 = 80.5). The results were further validated using machine vision-based particle size analysis. Consequently, this work could contribute to the advancement of RTRT in continuous end-to-end processes.
Collapse
Affiliation(s)
- Lilla Alexandra Mészáros
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Emese Varga
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Kornélia Tacsi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Barbara Honti
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Enikő Borbás
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
6
|
Liu J, Benyahia B. Single and Multiobjective Shutdown Optimization of a Multistage Continuous Crystallizer. Ind Eng Chem Res 2024; 63:7300-7314. [PMID: 38681867 PMCID: PMC11046430 DOI: 10.1021/acs.iecr.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
This study presents the first model-based optimal shutdown procedure of a multistage continuous crystallization process which aims at the maximization of on-spec production and minimization of the shutdown time. The cooling antisolvent crystallization of Aspirin (acetylsalicylic acid) in a three-stage continuous crystallizer was used as a case study. To address the optimal shutdown problem, several single optimization scenarios were considered to assess the impact of the degrees of freedom, discretization schemes, and optimization settings such as the constraints. The proposed optimal shutdown procedures showed that significant amounts of on-spec crystals can be produced both at fixed and variable shutdown times. Most importantly, the optimal shutdown procedures can match the steady-state productivity, based on the shutdown to steady-state productivity ratio (STSPR) which can easily reach 100%. Moreover, the residual shutdown material, considered as waste, can be dramatically reduced by >80% compared to the current standard shutdown procedures. Given the conflicting nature of the maximization of on-spec production and minimization of the shutdown time, multiobjective optimization of the shutdown operation was also addressed to identify the set of Pareto optimal solutions. Finally, a multicriteria decision-aiding method, based on multiattribute utility theory, was proposed to rank the Pareto optimal solutions to support the decision-making and help identify a suitable and feasible single optimal shutdown solution.
Collapse
Affiliation(s)
- Jiaxu Liu
- Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Brahim Benyahia
- Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
7
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Eslami T, Jungbauer A. Control strategy for biopharmaceutical production by model predictive control. Biotechnol Prog 2024; 40:e3426. [PMID: 38199980 DOI: 10.1002/btpr.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The biopharmaceutical industry is rapidly advancing, driven by the need for cutting-edge technologies to meet the growing demand for life-saving treatments. In this context, Model Predictive Control (MPC) has emerged as a promising solution to address the complexity of modern biopharmaceutical production processes. Its ability to optimize operations and ensure consistent product yields has made it an attractive option for manufacturers in this sector. Furthermore, MPC's alignment with the Process Analytical Technology (PAT) initiative provides an additional layer of assurance, facilitating real-time monitoring and enabling swift adjustments to maintain process integrity. This comprehensive review delves into the various applications of MPC, ranging from robust control to stochastic model predictive control, thereby equipping biotechnologists and process engineers with a powerful toolset. By harnessing the capabilities of MPC, as elucidated in this review, manufacturers can confidently navigate the intricate bioprocessing landscape and unlock this approach's full potential in their production processes.
Collapse
Affiliation(s)
- Touraj Eslami
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Evon GmbH, St. Ruprecht an der Raab, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
9
|
Velez-Silva NL, Drennen JK, Anderson CA. Continuous manufacturing of pharmaceutical products: A density-insensitive near infrared method for the in-line monitoring of continuous powder streams. Int J Pharm 2024; 650:123699. [PMID: 38081558 DOI: 10.1016/j.ijpharm.2023.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.
Collapse
Affiliation(s)
- Natasha L Velez-Silva
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
10
|
Shan C, Li R, Wang X. Efficient construction of a β-naphthol library under continuous flow conditions. RSC Adv 2024; 14:2673-2677. [PMID: 38226147 PMCID: PMC10789443 DOI: 10.1039/d3ra08660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
A β-naphthol library has been efficiently constructed utilizing a mild continuous flow procedure, relying on a tandem Friedel-Crafts reaction and starting from readily available arylacetyl chloride and alkynes. Multiple functionalized β-naphthols can be acquired within 160 s in generally high yields (up to 83%). Using an electron-rich phenylacetyl chloride derivative (4-OH- or 4-MeO-) provides spirofused triene dione as the primary product. A scale-up preparation affords a throughput of 4.70 g h-1, indicating potential large-scale application. Herein, we present a rapid, reliable, and scalable method to obtain various β-naphthols in the compound library.
Collapse
Affiliation(s)
- Chao Shan
- Heze University Heze Shandong Province 274015 China
| | - Ranran Li
- Heze University Heze Shandong Province 274015 China
| | - Xinchao Wang
- Heze University Heze Shandong Province 274015 China
| |
Collapse
|
11
|
Sahu A, Rathee S, Saraf S, Jain SK. A Review on the Recent Advancements and Artificial Intelligence in Tablet Technology. Curr Drug Targets 2024; 25:416-430. [PMID: 38213164 DOI: 10.2174/0113894501281290231221053939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Tablet formulation could be revolutionized by the integration of modern technology and established pharmaceutical sciences. The pharmaceutical sector can develop tablet formulations that are not only more efficient and stable but also patient-friendly by utilizing artificial intelligence (AI), machine learning (ML), and materials science. OBJECTIVES The primary objective of this review is to explore the advancements in tablet technology, focusing on the integration of modern technologies like artificial intelligence (AI), machine learning (ML), and materials science to enhance the efficiency, cost-effectiveness, and quality of tablet formulation processes. METHODS This review delves into the utilization of AI and ML techniques within pharmaceutical research and development. The review also discusses various ML methodologies employed, including artificial neural networks, an ensemble of regression trees, support vector machines, and multivariate data analysis techniques. RESULTS Recent studies showcased in this review demonstrate the feasibility and effectiveness of ML approaches in pharmaceutical research. The application of AI and ML in pharmaceutical research has shown promising results, offering a potential avenue for significant improvements in the product development process. CONCLUSION The integration of nanotechnology, AI, ML, and materials science with traditional pharmaceutical sciences presents a remarkable opportunity for enhancing tablet formulation processes. This review collectively underscores the transformative role that AI and ML can play in advancing pharmaceutical research and development, ultimately leading to more efficient, reliable and patient-centric tablet formulations.
Collapse
Affiliation(s)
- Amit Sahu
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Shivani Saraf
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
12
|
Otsuka M, Ogata T, Hattori Y, Sasaki T. Evaluation of the effect of granule size of raw tableting materials on critical quality attributes of tablets during the continuous tablet manufacturing process using near-infrared spectroscopy. Drug Dev Ind Pharm 2023; 49:692-702. [PMID: 37847490 DOI: 10.1080/03639045.2023.2271979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE The effects of granule size of raw materials on tablet hardness (TH) and weight (TW) in the continuous tablet manufacturing process (CTMP) were investigated using near-infrared spectroscopy (NIRS). METHODS Granule materials of different sizes were prepared by extrusion granulation from a standard granule formula powder containing lactose/starch and 4.5% acetaminophen. Large-, small-, and medium-sized granules were sequentially filled in a hopper, and tablets were produced continuously using a single-shot tableting machine. After arranging approximately 500 tablets in order, the tablets were subjected to NIRS. A total of 450 NIRS datasets were divided into three groups of 150 each (calibration, validation 1, and validation 2 datasets). RESULTS The best fitted calibration models for predicting TH and TW were obtained, with sufficient accuracy, based on NIRS using the partial least squares regression, and comprised both physical and chemical information. The regression and loading vectors of the calibration models suggested that the models used to predict TH and TW involve physical information based on geometrical factors of the tablet and chemical information related to binder-related intermolecular interactions. CONCLUSIONS The changes in the predicted value profiles of TH and TW using NIRS reflected the changes in the measured values depending on the raw granule size during CTMP.
Collapse
Affiliation(s)
- Makoto Otsuka
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
- Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Tokiro Ogata
- Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Yusuke Hattori
- Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Tetsuo Sasaki
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
13
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Kakhi M, Li J, Dorantes A. Regulatory Experience with Continuous Manufacturing and Real Time Release Testing for Dissolution in New Drug Applications. J Pharm Sci 2023; 112:2604-2614. [PMID: 37572781 DOI: 10.1016/j.xphs.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Regulatory submissions involving the use of continuous manufacturing (CM)1 and/or real-time release testing for dissolution (RTRT-D) to the United States Food and Drug Administration (FDA) were identified spanning several years. The submissions were for orally administered IR tablets and they were examined from a biopharmaceutics perspective to highlight commonly occurring issues which the FDA's assessment teams identified with the proposed use of CM and/or RTRT-D. The objective of this study is to provide recommendations for best practices that will help advance the field by (i) generating greater opportunities for (drug) Applicants2 to benefit from the implementation of advanced manufacturing approaches, (ii) improving high quality regulatory submissions involving CM and RTRT-D, and thus (iii) lessening the regulatory review burden. This paper has identified several common deficiencies, such as inadequate strategies for stratified sampling of drug product (DP) units, inappropriate design of experiments (DoE), inability of the proposed RTRT-D model to account for dissolution variability and to predict the entire time course of dissolution, insufficient documentation, and unsuitable in vitro dissolution methods.
Collapse
Affiliation(s)
- Maziar Kakhi
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Jing Li
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Angelica Dorantes
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
15
|
Abdelhamid M, Corzo C, Ocampo AB, Maisriemler M, Slama E, Alva C, Lochmann D, Reyer S, Freichel T, Salar-Behzadi S, Spoerk M. Mechanically promoted lipid-based filaments via composition tuning for extrusion-based 3D-printing. Int J Pharm 2023; 643:123279. [PMID: 37524255 DOI: 10.1016/j.ijpharm.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Lipid excipients are favorable materials in pharmaceutical formulations owing to their natural, biodegradable, low-toxic and solubility/permeability enhancing properties. The application of these materials with advanced manufacturing platforms, particularly filament-based 3D-printing, is attractive for personalized manufacturing of thermolabile drugs. However, the filament's weak mechanical properties limit their full potential. In this study, highly flexible filaments were extruded using PG6-C16P, a lipid-based excipient belonging to the group of polyglycerol esters of fatty acids (PGFAs), based on tuning the ratio between its major and minor composition fractions. Increasing the percentage of the minor fractions in the system was found to enhance the relevant mechanical filament properties by 50-fold, guaranteeing a flawless 3D-printability. Applying a novel liquid feeding approach further improved the mechanical filament properties at lower percentage of minor fractions, whilst circumventing the issues associated with the standard extrusion approach such as low throughput. Upon drug incorporation, the filaments retained high mechanical properties with a controlled drug release pattern. This work demonstrates PG6-C16 P as an advanced lipid-based material and a competitive printing excipient that can empower filament-based 3D-printing.
Collapse
Affiliation(s)
- Moaaz Abdelhamid
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Eyke Slama
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | | | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria.
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
16
|
Anwar A, Sun P, Rong X, Arkin A, Elham A, Yalkun Z, Li X, Iminjan M. Process analytical technology as in-process control tool in semi-continuous manufacturing of PLGA/PEG-PLGA microspheres. Heliyon 2023; 9:e15753. [PMID: 37153380 PMCID: PMC10160502 DOI: 10.1016/j.heliyon.2023.e15753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Nowadays, among 3rd generation drug delivery systems, biodegradable polymeric based long-acting injectable depot has achieved tremendous success in clinical application. So far, there have been two dozen of commercial products of Poly (lactic-co-glycolic acid) microspheres available in the market. Recently, continuous manufacturing concept has been successfully applied on oral solid formulation from buzzword to reality. However, the polymeric injectable microspheres are still stayed at batch manufacturing phase due to the lack of understanding of knowledge matrix. In this study, micro-mixer as a plug-and-play emulsification modules, Raman spectroscopy and focused beam reflectance measurement as real-time monitoring modules are integrated into a novel semi-continuous manufacturing streamline to provides more efficient upscaling flexibility in microspheres production. In this end to end semi-continuous manufacturing process, amphiphilic block polymer monomethoxy-poly (ethylene glycol) modified PLGA (mPEG-PLGA) was used for encapsulating Gallic acid. Additionally, with guarantee of good robustness, the correlation relationship between critical process parameters, critical material attributes and critical quality attributes were investigated. The time-space evolution process and mechanism for formation of PEG-PLGA microsphere with particular morphology were elaborated. Altogether, this study firstly established semi-continuous manufacturing streamline for PLGA/PEG-PLGA microspheres, which would not only lower the cost of production, narrow process variability and smaller equipment/environmental footprint but also applied in-process control (IPC) and QbD principle on complicated production process of microspheres. Therefore, this study build confidence in the industrial development of PLGA/PEG-PLGA microspheres and establish best practice standards, which might be a quantum leap for developing PLGA microspheres in the future.
Collapse
Affiliation(s)
- Arfidin Anwar
- Department of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Pengfei Sun
- University of Wisconsin-Madison, Department of Educational Psychology, Madison, USA
| | - Xiaoxu Rong
- University of Wisconsin-Madison, Department of Educational Psychology, Madison, USA
| | - Abdulaziz Arkin
- Department of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Aliya Elham
- Department of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Zilala Yalkun
- College of Pharmacy, Dalian Medical University, Dalian, 116000, China
| | - Xun Li
- Chinese Academy of Science, Department of Chemical Engineering, Beijing, 100190, China
- Corresponding author.
| | - Mubarak Iminjan
- Department of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
- Corresponding author.
| |
Collapse
|
17
|
Koyanagi K, Shoji K, Ueno A, Sasaki T, Otsuka M. Comparing Integrated Continuous Process "LaVortex®" and Conventional Batch Processes for the Pharmaceutical Manufacturing of Acetaminophen Oral Dosage Formulations: Challenges and Pharmaceutical Properties of the Granular and Tableted Products. Int J Pharm 2023; 638:122935. [PMID: 37030636 DOI: 10.1016/j.ijpharm.2023.122935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
LaVortex® was developed as a novel free-flow continuous granulation/drying (CGD) system. In this study, we compared the advantages and disadvantages of granules prepared by continuous and batchwise manufacturing systems. Granules containing 30 % acetaminophen were manufactured under various operating conditions using CGD system, with comparison granules manufactured using conventional batch systems that involve a combination of fluid bed granulation (FG), agitation granulation (AG), continuous drying, fluid bed drying, and/or shelf drying, after which the pharmaceutical properties of each type of manufactured granule were evaluated. Cumulative particle-size distributions were determined by sieving, powder flowabilities were determined by angle of repose measurements, and scanning electron microscopy was employed to examine granule morphologies. The CGD system produced fine-to-large spherical or ellipsoidal granules that exhibited excellent powder fluidities and tabletabilities that are almost identical to those of AG granules. Moreover, the CGD granules exhibited better powder flowability than the FG granules. The addition of water promoted CGD-granule growth and improved significantly powder flowability, and did a little in tabletability. Small spherical granules with good fluidity suitable for fine-particle-coating core materials, or large granules with excellent fluidity and tabletability, were prepared by adjusting the values of the elemental parameters of the CGD process.
Collapse
Affiliation(s)
- Keita Koyanagi
- EarthTechnica Corporation Limited, 1780 Kamikouya, Yachiyo, Chiba 276-0022, Japan
| | - Kippei Shoji
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan
| | - Akinori Ueno
- EarthTechnica Corporation Limited, 1780 Kamikouya, Yachiyo, Chiba 276-0022, Japan
| | - Tetsuo Sasaki
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan; Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan; Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan
| | - Makoto Otsuka
- EarthTechnica Corporation Limited, 1780 Kamikouya, Yachiyo, Chiba 276-0022, Japan; Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan.
| |
Collapse
|
18
|
Lei Z, Ang HT, Wu J. Advanced In-Line Purification Technologies in Multistep Continuous Flow Pharmaceutical Synthesis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Compact capillary high performance liquid chromatography system for pharmaceutical on-line reaction monitoring. Anal Chim Acta 2023; 1247:340903. [PMID: 36781255 DOI: 10.1016/j.aca.2023.340903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Due to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients. Using a framework based on capillary HPLC, a compact gradient separation system with a fully modular architecture is described. A custom miniature diode-array detector with a linear dynamic range (up to 1500 mAU at 210 nm) was integrated and evaluated for on-line reaction monitoring. In evaluating system suitability, average peak area %RSD of <3%, and an average retention time %RSD of <0.7%, were achieved. To demonstrate practical utility, the compact system was coupled directly to an on-line lab-scale flow through reactor for continuous reaction monitoring in the laboratory fume hood, where a study of the 3rd Bourne reaction was used to compare the performance of the compact system with a commercially available process HPLC instrument (Waters PATROL UPLC). Further, 33 off-line samples from a continuous crystallization reactor were analysed and it was found that the developed compact HPLC system showed equivalent quantitative performance to an Agilent 1290 Infinity II HPLC system.
Collapse
|
20
|
Flow platform for the synthesis of benzodiazepines. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
21
|
Clayton AD, Pyzer‐Knapp EO, Purdie M, Jones MF, Barthelme A, Pavey J, Kapur N, Chamberlain TW, Blacker AJ, Bourne RA. Bayesian Self-Optimization for Telescoped Continuous Flow Synthesis. Angew Chem Int Ed Engl 2023; 62:e202214511. [PMID: 36346840 PMCID: PMC10108149 DOI: 10.1002/anie.202214511] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
The optimization of multistep chemical syntheses is critical for the rapid development of new pharmaceuticals. However, concatenating individually optimized reactions can lead to inefficient multistep syntheses, owing to chemical interdependencies between the steps. Herein, we develop an automated continuous flow platform for the simultaneous optimization of telescoped reactions. Our approach is applied to a Heck cyclization-deprotection reaction sequence, used in the synthesis of a precursor for 1-methyltetrahydroisoquinoline C5 functionalization. A simple method for multipoint sampling with a single online HPLC instrument was designed, enabling accurate quantification of each reaction, and an in-depth understanding of the reaction pathways. Notably, integration of Bayesian optimization techniques identified an 81 % overall yield in just 14 h, and revealed a favorable competing pathway for formation of the desired product.
Collapse
Affiliation(s)
- Adam D. Clayton
- Institute of Process Research and DevelopmentSchools of Chemistry & Chemical and Process EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | | | - Mark Purdie
- ISELPharmaceutical Technology and Development, OperationsAstraZenecaMacclesfieldUK
| | - Martin F. Jones
- Chemical DevelopmentPharmaceutical Technology and Development, OperationsAstraZenecaMacclesfieldUK
| | | | - John Pavey
- UCB Pharma SAAll. de la Recherche 601070AnderlechtBelgium
| | - Nikil Kapur
- Institute of Process Research and DevelopmentSchool of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Thomas W. Chamberlain
- Institute of Process Research and DevelopmentSchools of Chemistry & Chemical and Process EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - A. John Blacker
- Institute of Process Research and DevelopmentSchools of Chemistry & Chemical and Process EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Richard A. Bourne
- Institute of Process Research and DevelopmentSchools of Chemistry & Chemical and Process EngineeringUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
22
|
García-Lacuna J, Baumann M. Inline purification in continuous flow synthesis – opportunities and challenges. Beilstein J Org Chem 2022. [DOI: 10.3762/bjoc.18.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Continuous flow technology has become the method of choice for many academic and industrial researchers when developing new routes to chemical compounds of interest. With this technology maturing over the last decades, robust and oftentimes automated processes are now commonly exploited to generate fine chemical building blocks. The integration of effective inline analysis and purification tools is thereby frequently exploited to achieve effective and reliable flow processes. This perspective article summarizes recent applications of different inline purification techniques such as chromatography, extractions, and crystallization from academic and industrial laboratories. A discussion of the advantages and drawbacks of these tools is provided as a guide to aid researchers in selecting the most appropriate approach for future applications. It is hoped that this perspective contributes to new developments in this field in the context of process and cost efficiency, sustainability and industrial uptake of new flow chemistry tools developed in academia.
Collapse
|
23
|
Záhonyi P, Szabó E, Domokos A, Haraszti A, Gyürkés M, Moharos E, Nagy ZK. Continuous integrated production of glucose granules with enhanced flowability and tabletability. Int J Pharm 2022; 626:122197. [PMID: 36115464 DOI: 10.1016/j.ijpharm.2022.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
Glucose is widely used in both the food and pharmaceutical industry. However, the application of industrially crystallized glucose in solid dosage forms is challenged by its poor flowability and tabletability. To improve these characteristics continuous twin-screw granulation was tested, which has the potential to be integrated into the continuous production of solid glucose from corn starch. A completely continuous manufacturing line (including drying and milling) was developed and the different production steps were examined and synchronized. Our line was supplemented with an in-line applicable near-infrared spectroscopic probe to monitor the moisture content of the milled granules in real-time. The flowability and tabletability of the powder improved significantly, and tablets with acceptable breaking force (greater than 100 N) could be prepared from the granules. The developed continuous line can be easily installed into the industrial solid glucose production process resulting in pure glucose granules with adequate flow properties and tabletability in a simple, continuous and efficient way.
Collapse
Affiliation(s)
- Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Anna Haraszti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Erzsébet Moharos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
24
|
de Oliveira Silva RR, Calvo PVC, Merfels CA, Lima MVR, Santana HS, Converti A, Palma MSA. Synthesis of Lobeglitazone intermediates seeking for continuous drug production in flow capillary microreactor. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Gyürkés M, Madarász L, Záhonyi P, Köte Á, Nagy B, Pataki H, Nagy ZK, Domokos A, Farkas A. Soft sensor for content prediction in an integrated continuous pharmaceutical formulation line based on the residence time distribution of unit operations. Int J Pharm 2022; 624:121950. [PMID: 35753540 DOI: 10.1016/j.ijpharm.2022.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
In this study, a concentration predicting soft sensor was achieved based on the Residence Time Distribution (RTD) of an integrated, three-step pharmaceutical formulation line. The RTD was investigated with color-based tracer experiments using image analysis. Twin-screw wet granulation (TSWG) was directly coupled with a horizontal fluid bed dryer and an oscillating mill. Based on integrated measurement, we proved that it is also possible to couple the unit operations in silico. Three surrogate tracers were produced with a coloring agent to investigate the separated unit operations and the solid and liquid inputs of the TSWG. The soft sensor's prediction was compared to validating experiments of a 0.05 mg/g (15% of the nominal) concentration change with High-Performance Liquid Chromatography (HPLC) reference measurements of the active ingredient proving the adequacy of the soft sensor (RMSE < 4%).
Collapse
Affiliation(s)
- Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Ákos Köte
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Hajnalka Pataki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
26
|
Arndt S, Rücker R, Stenglein A, Waldvogel SR. Reactor Design for the Direct Electrosynthesis of Periodate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Richard Rücker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
27
|
Steiner A, Nelson RC, Dallinger D, Kappe CO. Synthesis of Thiomorpholine via a Telescoped Photochemical Thiol–Ene/Cyclization Sequence in Continuous Flow. Org Process Res Dev 2022; 26:2532-2539. [PMID: 36032361 PMCID: PMC9396661 DOI: 10.1021/acs.oprd.2c00214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Steiner
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Ryan C. Nelson
- Medicines for All Institute, Virginia Commonwealth University, 737 North Fifth Street, P.O. Box 980100, Richmond, Virginia 23298, United States
| | - Doris Dallinger
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C. Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
28
|
Nicholas RJ, McGuire MA, Hyun SH, Cullison MN, Thompson DH. Development of an Efficient, High Purity Continuous Flow Synthesis of Diazepam. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.877498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In an effort to strengthen the resiliency of supply chains for active pharmaceutical ingredients (API), continuous manufacturing processes may be optimized with respect to improved chemoselectivity, production rate, yield, and/or process intensity. We report an efficient two-step continuous flow synthesis of diazepam, an agent on the World Health Organization’s (WHO) list of essential medicines. Different conditions were rapidly screened in microfluidic chip reactors by varying residence times, temperatures, solvents, and ammonia sources to identify the best telescoped reaction conditions. We report a telescoped flow synthesis that uses two microreactors in series set to 0°C and 60°C, respectively, to produce a 96% yield of 91% pure diazepam within 15 min using an NH4Br/NH4OH solution in the second step. Diazepam of >98% purity was obtained after a single recrystallization.
Collapse
|
29
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
30
|
Cooling Crystallization with Complex Temperature Profiles on a Quasi-Continuous and Modular Plant. Processes (Basel) 2022. [DOI: 10.3390/pr10061047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Volatile markets and increasing demands for quality and fast availability of specialty chemical products have motivated the rise of small-scale, integrated, and modular continuous processing plants. As a significant unit operation used for product isolation and purification, cooling crystallization is part of this trend. Here, the small-scale and integrated quasi-continuous filter belt crystallizer (QCFBC) combines cooling crystallization, solid-liquid separation, and drying on a single apparatus. This contribution shows the general working principle, different operation modes, and possibilities of temperature control with the modular setup. For precise temperature control in cooling crystallization, Peltier elements show promising results in a systematic study of different operation parameters. Sucrose/water was used as a model substance system. The results confirm that seed crystal properties are the most important parameter in crystallization processes. Additionally, an oscillating temperature profile has a narrowing effect on the crystal size distribution (CSD). The integrated, small-scale, and modular setup of the QCFBC offers high degrees of flexibility, process control, and adaptability to cope with future market demands.
Collapse
|
31
|
Hosoya M, Tanaka M, Manaka A, Nishijima S, Tsuno N. Integration of Liquid–Liquid Biphasic Flow Alkylation and Continuous Crystallization Using Taylor Vortex Flow Reactors. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiro Hosoya
- API R&D Laboratory, CMC R&D Division, Shionogi and Company Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Masashi Tanaka
- API R&D Laboratory, CMC R&D Division, Shionogi and Company Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Atsushi Manaka
- API R&D Laboratory, CMC R&D Division, Shionogi and Company Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Shogo Nishijima
- API R&D Laboratory, CMC R&D Division, Shionogi and Company Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Naoki Tsuno
- API R&D Laboratory, CMC R&D Division, Shionogi and Company Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| |
Collapse
|
32
|
Ng DZL, Nelson AZ, Ward G, Lai D, Doyle PS, Khan SA. Control of Drug-Excipient Particle Attributes with Droplet Microfluidic-based Extractive Solidification Enables Improved Powder Rheology. Pharm Res 2022; 39:411-421. [PMID: 35119593 DOI: 10.1007/s11095-021-03155-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Industrial implementation of continuous oral solid dosage form manufacturing has been impeded by the poor powder flow properties of many active pharmaceutical ingredients (APIs). Microfluidic droplet-based particle synthesis is an emerging particle engineering technique that enables the production of neat or composite microparticles with precise control over key attributes that affect powder flowability, such as particle size distribution, particle morphology, composition, and the API's polymorphic form. However, the powder properties of these microparticles have not been well-studied due to the limited mass throughputs of available platforms. In this work, we produce spherical API and API-composite microparticles at high mass throughputs, enabling characterization and comparison of the bulk powder flow properties of these materials and greater understanding of how particle-scale attributes correlate with powder rheology. METHODS A multi-channel emulsification device and an extractive droplet-based method are harnessed to synthesize spherical API and API-excipient particles of artemether. As-received API and API crystallized in the absence of droplet confinement are used as control cases. Particle attributes are characterized for each material and correlated with a comprehensive series of powder rheology tests. RESULTS The droplet-based processed artemether particles are observed to be more flowable, less cohesive, and less compressible than conventionally synthesized artemether powder. Co-processing the API with polycaprolactone to produce composite microparticles reduces the friction of the powder on stainless steel, a common equipment material. CONCLUSIONS Droplet-based extractive solidification is an attractive particle engineering technique for improving powder processing and may aid in the implementation of continuous solid dosage form manufacturing.
Collapse
Affiliation(s)
- Denise Z L Ng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.,Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Arif Z Nelson
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Gareth Ward
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG12NY, UK
| | - David Lai
- GlaxoSmithKline LLC, Product and Process Engineering, 709 Swedeland Road, King of Prussia, Pennsylvania, 19406, USA.,GlaxoSmithKline LLC, Advanced Manufacturing Technologies, 830 Winter Street, Waltham, Massachusetts, 02451, USA
| | - Patrick S Doyle
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | - Saif A Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore. .,Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
33
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Continuous Isolation of Particles with Varying Aspect Ratios up to Thin Needles Achieving Free-Flowing Products. CRYSTALS 2022. [DOI: 10.3390/cryst12020137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The continuous vacuum screw filter (CVSF) for small-scale continuous product isolation of suspensions was operated for the first time with cuboid-shaped and needle-shaped particles. These high aspect ratio particles are very common in pharmaceutical manufacturing processes and provide challenges in filtration, washing, and drying processes. Moreover, the flowability decreases and undesired secondary processes of attrition, breakage, and agglomeration may occur intensively. Nevertheless, in this study, it is shown that even cuboid and needle-shaped particles (l-alanine) can be processed within the CVSF preserving the product quality in terms of particle size distribution (PSD) and preventing breakage or attrition effects. A dynamic image analysis-based approach combining axis length distributions (ALDs) with a kernel-density estimator was used for evaluation. This approach was extended with a quantification of the center of mass of the density-weighted ALDs, providing a measure to analyze the preservation of the inlet PSD statistically. Moreover, a targeted residual moisture below 1% could be achieved by adding a drying module (Tdry = 60 °C) to the modular setup of the CVSF.
Collapse
|
35
|
Yang W, Qian W, Yuan Z, Chen B. Perspectives on the flexibility analysis for continuous pharmaceutical manufacturing processes. Chin J Chem Eng 2022; 41:29-41. [PMID: 36644479 PMCID: PMC9828886 DOI: 10.1016/j.cjche.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
Pharmaceutical continuous manufacturing, especially under the context of COVID-19 pandemic, is regarded as an emerging technology that can guarantee the adequate quality assurance and mitigate process risk while guaranteeing the desirable economic performance. Flexibility analysis is one approach to quantitively assess the capability of chemical process to guarantee feasible operation in face of variations on uncertain parameters. The aim of this paper is to provide the perspectives on the flexibility analysis for continuous pharmaceutical manufacturing processes. State-of-the-art and progress in the flexibility analysis for chemical processes including concept evolution, mathematical model formulations, solution strategies, and applications are systematically overviewed. Recent achievements on the flexibility/feasibility analysis of the downstream dosage form manufacturing process are also touched upon. Further challenges and developments in the field of flexibility analysis for novel continuous manufacturing processes of active pharmaceutical ingredients along with the integrated continuous manufacturing processes are identified.
Collapse
Affiliation(s)
- Wenhui Yang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wuxi Qian
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhihong Yuan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bingzhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Sagandira CR, Nqeketo S, Mhlana K, Sonti T, Gaqa S, Watts P. Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00483b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The convergence of end-to-end continuous flow synthesis with downstream processing, process analytical technology (PAT), artificial intelligence (AI), machine learning and automation in ensuring improved accessibility of quality medicines on demand.
Collapse
Affiliation(s)
| | - Sinazo Nqeketo
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Kanyisile Mhlana
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Thembela Sonti
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Sibongiseni Gaqa
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Paul Watts
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| |
Collapse
|
37
|
Schmalenberg M, Krell T, Mathias C, Kockmann N. Continuous Miniaturized Draft Tube Baffle Crystallizer with Particle Screw for Supportive Suspension Discharge. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mira Schmalenberg
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Tobias Krell
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Christopher Mathias
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Norbert Kockmann
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| |
Collapse
|
38
|
Towards Continuous Primary Manufacturing Processes—Particle Design through Combined Crystallization and Particle Isolation. Processes (Basel) 2021. [DOI: 10.3390/pr9122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Integrated continuous manufacturing processes of active pharmaceutical ingredients (API) provide key benefits concerning product quality control, scale-up capability, and a reduced time-to-market. Thereby, the crystallization step, which is used in approximately 90% of API productions, mainly defines the final API properties. This study focuses on the design and operation of an integrated small-scale process combining a continuous slug flow crystallizer (SFC) with continuous particle isolation using the modular continuous vacuum screw filter (CVSF). By selective adjustment of supersaturation and undersaturation, the otherwise usual blocking could be successfully avoided in both apparatuses. It was shown that, during crystallization in an SFC, a significant crystal growth of particles (Δd50,3≈ 220 µm) is achieved, and that, during product isolation in the CVSF, the overall particle size distribution (PSD) is maintained. The residual moistures for the integrated process ranged around 2% during all experiments performed, ensuring free-flowing particles at the CVSF outlet. In summary, the integrated setup offers unique features, such as its enhanced product quality control and fast start-up behavior, providing a promising concept for integrated continuous primary manufacturing processes of APIs.
Collapse
|
39
|
Sagandira CR, Khasipo AZ, Watts P. Total Synthesis of Glipizide and Glibenclamide in Continuous Flow. Chemistry 2021; 27:16028-16035. [PMID: 34633700 DOI: 10.1002/chem.202103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/09/2022]
Abstract
Glipizide and glibenclamide remain some of the widely prescribed antidiabetic sulfonylurea drugs for the treatment of type 2 diabetes mellitus. Herein the authors report on an isocyanate-free synthetic procedure towards the preparation of these on demand drugs at multigram scale using continuous flow technology. The safety concern over the use of isocyanates in most of the existing synthetic routes was dealt with in this present work by using N-carbamates synthesised in situ from activation of amines with chloroformates as safer alternatives. An overall yield of 80-85 % was obtained for the semi-telescoped steps within 10 min total residence time.
Collapse
Affiliation(s)
- Cloudius R Sagandira
- Department of Chemistry, Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Agnes Z Khasipo
- Department of Chemistry, Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Paul Watts
- Department of Chemistry, Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| |
Collapse
|
40
|
Synthesis of a dipeptide by integrating a continuous flow reaction and continuous crystallization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Steenweg C, Seifert AI, Böttger N, Wohlgemuth K. Process Intensification Enabling Continuous Manufacturing Processes Using Modular Continuous Vacuum Screw Filter. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claas Steenweg
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Astrid Ina Seifert
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Nils Böttger
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Kerstin Wohlgemuth
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
42
|
Modeling and analysis of MSMPR cascades involving nucleation, growth and agglomeration mechanisms with slurry recycling. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Orduña JM, Domínguez G, Pérez-Castells J. Cobalt catalysed aminocarbonylation of thiols in batch and flow for the preparation of amides. RSC Adv 2021; 11:30398-30406. [PMID: 35480268 PMCID: PMC9041104 DOI: 10.1039/d1ra04736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The synthesis of amides from thiols through a cobalt-catalyzed aminocarbonylation is shown. After optimizing all the reaction parameters, the methodology makes possible the obtention of amides with variable yields, while competing reactions such as the formation of disulfides and ureas can be limited. The process works well with aromatic thiols with electron donating groups (EDG) whereas other thiols give reaction with lower yields. The previous process has been transferred and optimized into flow equipment, thus allowing using less CO in a safer way, and permitting the scaling up of the synthesis. Two drugs, moclobemide and itopride were prepared with this methodology, albeit only in the second case with good results. A mechanistic pathway is proposed.
Collapse
Affiliation(s)
- Jose Maria Orduña
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe 28660 Boadilla del Monte Madrid Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe 28660 Boadilla del Monte Madrid Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe 28660 Boadilla del Monte Madrid Spain
| |
Collapse
|
44
|
Continuous Cooling Crystallization in a Coiled Flow Inverter Crystallizer Technology—Design, Characterization, and Hurdles. Processes (Basel) 2021. [DOI: 10.3390/pr9091537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Continuous small-scale production is currently of utmost interest for fine chemicals and pharmaceuticals. For this purpose, equipment and process concepts in consideration of the hurdles for solids handling are required to transfer conventional batch processing to continuous operation. Based on empirical equations, pressure loss constraints, and an expandable modular system, a coiled flow inverter (CFI) crystallizer with an inner diameter of 1.6 mm was designed. It was characterized concerning its residence time behavior, tested for operation with seed crystals or an ultrasonic seed crystal unit, and evaluated for different purging mechanisms for stable operation. The residence time behavior in the CFI corresponds to ideal plug flow behavior. Crystal growth using seed crystals was demonstrated in the CFI for two amino acids. For fewer seed crystals, higher crystal growth rates were determined, while at the same time, secondary nucleation was observed. Feasibility for the interconnection of a sonicated seeding crystal unit could be shown. However, the hurdles are also identified and discussed. Prophylactic flushing combined with a photosensor for distinguishing between solvent and suspension phase can lead to stable and resource-efficient operation. The small-scale CFI technology was investigated in detail, and the limits and opportunities of the technology are presented here.
Collapse
|
45
|
Analysis of the Effects of Process Parameters on Start-Up Operation in Continuous Wet Granulation. Processes (Basel) 2021. [DOI: 10.3390/pr9091502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Toward further implementation of continuous tablet manufacturing, one key issue is the time needed for start-up operation because it could lead to lower product yield and reduced economic performance. The behavior of the start-up operation is not well understood; moreover, the definition of the start-up time is still unclear. This work investigates the effects of process parameters on the start-up operation in continuous wet granulation, which is a critical unit operation in solid drug manufacturing. The profiles of torque and granule size distribution were monitored and measured for the first hour of operation, including the start-up phase. We analyzed the impact of process parameters based on design of experiments and performed an economic assessment to see the effects of the start-up operation. The torque profiles indicated that liquid-to-solid ratio and screw speed would affect the start-up operation, whereas different start-up behavior resulted in different granule size. Depending on the indicator used to define the start-up operation, the economic optimal point was significantly different. The results of this study stress that the start-up time differs according to the process parameters and used definition, e.g., indicators and criteria. This aspect should be considered for the further study and regulation of continuous manufacturing.
Collapse
|