1
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Schäfer F, Lückemeier L, Glorius F. Improving reproducibility through condition-based sensitivity assessments: application, advancement and prospect. Chem Sci 2024:d4sc03017f. [PMID: 39263664 PMCID: PMC11382186 DOI: 10.1039/d4sc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The fluctuating reproducibility of scientific reports presents a well-recognised issue, frequently stemming from insufficient standardisation, transparency and a lack of information in scientific publications. Consequently, the incorporation of newly developed synthetic methods into practical applications often occurs at a slow rate. In recent years, various efforts have been made to analyse the sensitivity of chemical methodologies and the variation in quantitative outcome observed across different laboratory environments. For today's chemists, determining the key factors that really matter for a reaction's outcome from all the different aspects of chemical methodology can be a challenging task. In response, we provide a detailed examination and customised recommendations surrounding the sensitivity screen, offering a comprehensive assessment of various strategies and exploring their diverse applications by research groups to improve the practicality of their methodologies.
Collapse
Affiliation(s)
- Felix Schäfer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Lukas Lückemeier
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
3
|
Petermeier P, Domínguez de María P, Byström E, Kara S. Intensified, Kilogram-Scaled, and Environment-Friendly: Chemoenzymatic Synthesis of Bio-Based Acylated Hydroxystyrenes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12869-12878. [PMID: 39211381 PMCID: PMC11351705 DOI: 10.1021/acssuschemeng.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Lignin-derived styrene derivatives are versatile building blocks for the manufacture of biobased polymers. As shown previously, phenol-protected hydroxystyrenes are accessible under industrially sound conditions (>100 g L-1, >95% yield) by subjecting biogenic phenolic acids to enzymatic decarboxylation and base-catalyzed acylation in nonaqueous media (wet cyclopentyl methyl ether, CPME). Herein, we demonstrate the production of 1 kg of 4-acetoxy-3-methoxy-styrene in a 10 L reactor and present practical adjustments to the up- and downstream processing that warrant a straightforward process and high isolated yields. Additionally, an environmental assessment is conducted, starting with a thorough E factor analysis to identify the sources that contribute most to the environmental burden (solvent and downstream processing). Also, the total CO2 production of the process is studied, including contributions from energy use and the treatment of generated wastes. The energy impact is evaluated through thermodynamic analysis, and the environmental footprint contributions by wastes-organic and aqueous fractions-are assessed based on CO2 emissions from solvent incineration and wastewater treatment, respectively. Overall, the holistic assessment of the process, its optimization, scale-up, product isolation, and environmental analysis indicate the feasibility of multistep chemoenzymatic reactions to deliver high-volume, low-value chemicals from biorefineries.
Collapse
Affiliation(s)
- Philipp Petermeier
- Department
of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- SpinChem
AB, Tvistevägen
48C, 90736 Umeå, Sweden
| | - Pablo Domínguez de María
- Sustainable
Momentum SL, Av. Ansite
3, 4-6, 35011 Las
Palmas de Gran Canaria, Canary Islands, Spain
| | - Emil Byström
- SpinChem
AB, Tvistevägen
48C, 90736 Umeå, Sweden
| | - Selin Kara
- Department
of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- Institute
of Technical Chemistry, Leibniz University
Hannover, 30167 Hannover, Germany
| |
Collapse
|
4
|
Luescher MU, Gallou F, Lipshutz BH. The impact of earth-abundant metals as a replacement for Pd in cross coupling reactions. Chem Sci 2024; 15:9016-9025. [PMID: 38903222 PMCID: PMC11186335 DOI: 10.1039/d4sc00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 06/22/2024] Open
Abstract
Substitution of one metal catalyst for another is not as straightforward as simply justifying this change based on the availability and/or cost of the metals. Methodologies to properly assess options for reaction design, including multiple factors like a metal's availability, cost, or environmental indicators have not advanced at the pace needed, leaving decisions to be made along these lines more challenging. Isolated indicators can lead to conclusions being made in too hasty a fashion. Therefore, an extensive life cycle-like assessment was performed documenting that the commonly held view that methods using earth-abundant metals (and in this case study, Ni) are inherently green replacements for methods using palladium in cross-coupling reactions, and Suzuki-Miyaura couplings, in particular, is an incomplete analysis of the entire picture. This notion can be misleading, and unfortunately derives mainly from the standpoint of price, and to some degree, relative natural abundance associated with the impact of mining of each metal. A more accurate picture emerges when several additional reaction parameters involved in the compared couplings are considered. The analysis points to the major impact that use of organic solvents has in these couplings, while the metals themselves actually play subordinate roles in terms of CO2-release into the environment and hence, the overall carbon footprint (i.e., climate change). The conclusion is that a far more detailed analysis is required than that typically being utilized.
Collapse
Affiliation(s)
- Michael U Luescher
- Chemical & Analytical Development, Novartis Pharma AG Postfach CH-4002 Basel Switzerland
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG Postfach CH-4002 Basel Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California Santa Barbara CA 93106 USA
| |
Collapse
|
5
|
Kekessie I, Wegner K, Martinez I, Kopach ME, White TD, Tom JK, Kenworthy MN, Gallou F, Lopez J, Koenig SG, Payne PR, Eissler S, Arumugam B, Li C, Mukherjee S, Isidro-Llobet A, Ludemann-Hombourger O, Richardson P, Kittelmann J, Sejer Pedersen D, van den Bos LJ. Process Mass Intensity (PMI): A Holistic Analysis of Current Peptide Manufacturing Processes Informs Sustainability in Peptide Synthesis. J Org Chem 2024; 89:4261-4282. [PMID: 38508870 PMCID: PMC11002941 DOI: 10.1021/acs.joc.3c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.
Collapse
Affiliation(s)
- Ivy Kekessie
- Early Discovery
Biochemistry - Peptide Therapeutics, Genentech,
Inc., A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Katarzyna Wegner
- Active Pharmaceutical
Ingredient Development, Ipsen Manufacturing
Ireland Ltd., Blanchardstown
Industrial Park, Dublin 15, Ireland
| | - Isamir Martinez
- Green Chemistry
Institute, American Chemical Society, 1155 16th St North West, Washington, District of Columbia, 20036, United
States
| | - Michael E. Kopach
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Timothy D. White
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Janine K. Tom
- Drug Substance
Technologies, Amgen, Inc., 1 Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Martin N. Kenworthy
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Fabrice Gallou
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - John Lopez
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - Stefan G. Koenig
- Small
Molecule
Pharmaceutical Sciences, Genentech, Inc.,
A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Philippa R. Payne
- Outsourced
Manufacturing, Pharmaceutical Development & Manufacturing, Gilead Alberta ULC, 1021 Hayter Rd NW, Edmonton, T6S 1A1, Canada
| | - Stefan Eissler
- Bachem
AG, Hauptstrasse 144, 4416 Bubendorf, Switzerland
| | - Balasubramanian Arumugam
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Changfeng Li
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Subha Mukherjee
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | | | | | - Paul Richardson
- Chemistry, Pfizer, 10578 Science Center Drive (CB6), San Diego, California 09121, United States
| | | | | | | |
Collapse
|
6
|
Virdi J, Dusunge A, Handa S. Aqueous Micelles as Solvent, Ligand, and Reaction Promoter in Catalysis. JACS AU 2024; 4:301-317. [PMID: 38425936 PMCID: PMC10900500 DOI: 10.1021/jacsau.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Water is considered to be the most sustainable and safest solvent. Micellar catalysis is a significant contributor to the chemistry in water. It promotes pathways involving water-sensitive intermediates and transient catalytic species under micelles' shielding effect while also replacing costly ligands and dipolar-aprotic solvents. However, there is a lack of critical information about micellar catalysis. This includes why it works better than traditional catalysis in organic solvents, why specific rules in micellar catalysis differ from those of conventional catalysis, and how the limitations of micellar catalysis can be addressed in the future. This Perspective aims to highlight the current gaps in our understanding of micellar catalysis and provide an analysis of designer surfactants' origin and essential components. This will also provide a fundamental understanding of micellar catalysis, including how aqueous micelles can simultaneously perform multiple functions such as solvent, ligand, and reaction promoter.
Collapse
Affiliation(s)
- Jagdeep
K. Virdi
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| | - Ashish Dusunge
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| | - Sachin Handa
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
7
|
Domínguez de María P, Kara S, Gallou F. Biocatalysis in Water or in Non-Conventional Media? Adding the CO 2 Production for the Debate. Molecules 2023; 28:6452. [PMID: 37764228 PMCID: PMC10536496 DOI: 10.3390/molecules28186452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Biocatalysis can be applied in aqueous media and in different non-aqueous solutions (non-conventional media). Water is a safe solvent, yet many synthesis-wise interesting substrates cannot be dissolved in aqueous solutions, and thus low concentrations are often applied. Conversely, non-conventional media may enable higher substrate loadings but at the cost of using (fossil-based) organic solvents. This paper determines the CO2 production-expressed as kg CO2·kg product-1-of generic biotransformations in water and non-conventional media, assessing both the upstream and the downstream. The key to reaching a diminished environmental footprint is the type of wastewater treatment to be implemented. If the used chemicals enable a conventional (mild) wastewater treatment, the production of CO2 is limited. If other (pre)treatments for the wastewater are needed to eliminate hazardous chemicals and solvents, higher environmental impacts can be expected (based on CO2 production). Water media for biocatalysis are more sustainable during the upstream unit-the biocatalytic step-than non-conventional systems. However, processes with aqueous media often need to incorporate extractive solvents during the downstream processing. Both strategies result in comparable CO2 production if extractive solvents are recycled at least 1-2 times. Under these conditions, a generic industrial biotransformation at 100 g L-1 loading would produce 15-25 kg CO2·kg product-1 regardless of the applied media.
Collapse
Affiliation(s)
| | - Selin Kara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Fabrice Gallou
- Chemical and Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Fabris F, Illner M, Repke JU, Scarso A, Schwarze M. Is Micellar Catalysis Green Chemistry? Molecules 2023; 28:4809. [PMID: 37375364 DOI: 10.3390/molecules28124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Many years ago, twelve principles were defined for carrying out chemical reactions and processes from a green chemistry perspective. It is everyone's endeavor to take these points into account as far as possible when developing new processes or improving existing ones. Especially in the field of organic synthesis, a new area of research has thus been established: micellar catalysis. This review article addresses the question of whether micellar catalysis is green chemistry by applying the twelve principles to micellar reaction media. The review shows that many reactions can be transferred from an organic solvent to a micellar medium, but that the surfactant also has a crucial role as a solubilizer. Thus, the reactions can be carried out in a much more environmentally friendly manner and with less risk. Moreover, surfactants are being reformulated in their design, synthesis, and degradation to add extra advantages to micellar catalysis to match all the twelve principles of green chemistry.
Collapse
Affiliation(s)
- Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, Mestre, 30172 Venezia, Italy
| | - Markus Illner
- Process Dynamics and Operations Group, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. KWT9, 10623 Berlin, Germany
| | - Jens-Uwe Repke
- Process Dynamics and Operations Group, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. KWT9, 10623 Berlin, Germany
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, Mestre, 30172 Venezia, Italy
| | - Michael Schwarze
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC-08, 10623 Berlin, Germany
| |
Collapse
|
9
|
Hedouin G, Ogulu D, Kaur G, Handa S. Aqueous micellar technology: an alternative beyond organic solvents. Chem Commun (Camb) 2023; 59:2842-2853. [PMID: 36753294 DOI: 10.1039/d3cc00127j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e., the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water.
Collapse
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Deborah Ogulu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Gaganpreet Kaur
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Sachin Handa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
10
|
Kincaid JA, Wong MJ, Akporji N, Gallou F, Fialho DM, Lipshutz BH. Introducing Savie: A Biodegradable Surfactant Enabling Chemo- and Biocatalysis and Related Reactions in Recyclable Water. J Am Chem Soc 2023; 145:4266-4278. [PMID: 36753354 PMCID: PMC9951251 DOI: 10.1021/jacs.2c13444] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Indexed: 02/09/2023]
Abstract
Savie is a biodegradable surfactant derived from vitamin E and polysarcosine (PSar) developed for use in organic synthesis in recyclable water. This includes homogeneous catalysis (including examples employing only ppm levels of catalyst), heterogeneous catalysis, and biocatalytic transformations, including a multistep chemoenzymatic sequence. Use of Savie frequently leads to significantly higher yields than do conventional surfactants, while obviating the need for waste-generating organic solvents.
Collapse
Affiliation(s)
- Joseph
R. A. Kincaid
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Madison J. Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Nnamdi Akporji
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | | | - David M. Fialho
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
11
|
Kitanosono T, Lu F, Masuda K, Yamashita Y, Kobayashi S. Efficient Recycling of Catalyst‐Solvent Couples from Lewis Acid‐Catalyzed Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2022; 61:e202202335. [DOI: 10.1002/anie.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Fangqiu Lu
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koichiro Masuda
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yasuhiro Yamashita
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shu Kobayashi
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
12
|
Lorenzetto T, Frigatti D, Fabris F, Scarso A. Nanoconfinement Effects of Micellar Media in Asymmetric Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Davide Frigatti
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| |
Collapse
|
13
|
Kitanosono T, Lu F, Masuda K, Yamashita Y, Kobayashi S. Efficient Recycling of Catalyst–Solvent Couples from Lewis Acid‐Catalyzed Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taku Kitanosono
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | - Fangqiu Lu
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | - Koichiro Masuda
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | | | - Shu Kobayashi
- The University of Tokyo Department of Chemistry, School of Science 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| |
Collapse
|
14
|
Lorenzetto T, Frigatti D, Fabris F, Scarso A. Minimalistic β-Sitosterol based Designer Surfactants for Efficient Cross-Coupling in Water. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ceriani C, Pallini F, Mezzomo L, Sassi M, Mattiello S, Beverina L. Micellar catalysis beyond the hydrophobic effect: Efficient palladium catalyzed Suzuki-Miyaura coupling of water and organic solvent insoluble pigments with food grade surfactants. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Akporji N, Singhania V, Dussart-Gautheret J, Gallou F, Lipshutz BH. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chem Commun (Camb) 2021; 57:11847-11850. [PMID: 34698744 DOI: 10.1039/d1cc04774d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bio-catalytic reactions involving ene-reductases (EREDs) in tandem with chemo-catalysis in water can be greatly enhanced by the presence of nanomicelles derived from the surfactant TPGS-750-M. Transformations are provided that illustrate the variety of sequences now possible in 1-pot as representative examples of this environmentally attractive approach to organic synthesis.
Collapse
Affiliation(s)
- Nnamdi Akporji
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Vani Singhania
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Jade Dussart-Gautheret
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
17
|
Li X, Iyer KS, Thakore RR, Leahy DK, Bailey JD, Lipshutz BH. Bisulfite Addition Compounds as Substrates for Reductive Aminations in Water. Org Lett 2021; 23:7205-7208. [PMID: 34472877 DOI: 10.1021/acs.orglett.1c02604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly valued products resulting from reductive aminations utilizing shelf-stable bisulfite addition compounds of aldehydes can be made under aqueous micellar catalysis conditions. Readily available α-picolineborane serves as the stoichiometric hydride source. Recycling of the aqueous reaction medium is easily accomplished, and several applications to targets in the pharmaceutical industry are documented.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Karthik S Iyer
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ruchita R Thakore
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - David K Leahy
- Process Chemistry Development, Takeda Pharmaceuticals, 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - J Daniel Bailey
- Process Chemistry Development, Takeda Pharmaceuticals, 35 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Pawlas J, Rasmussen JH. Circular Aqueous Fmoc/t-Bu Solid-Phase Peptide Synthesis. CHEMSUSCHEM 2021; 14:3231-3236. [PMID: 34270883 DOI: 10.1002/cssc.202101028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Circular economy and aqueous synthesis are attractive concepts for sustainable chemistry. Here it is reported that the two can be combined in the universal method for peptide chemistry, fluorenylmethoxycarbonyl(Fmoc)/t-Bu solid-phase peptide synthesis (SPPS). It was demonstrated that Fmoc/t-Bu SPPS could be performed under aqueous conditions using standard Fmoc amino acids (AAs) employing TentaGel S as resin and 4 : 1 mixture of water with inexpensive green solvent PolarClean. This resin/solvent combination played a crucial dual role by virtue of improving resin swelling and solubility of starting materials. In a model coupling, TCFH and 2,4,6-collidine afforded a full conversion at only 1.3 equiv. AA, and these conditions were used in SPPS of Leu enkephaline amide affording the model peptide in 85 % yield and 86 % purity. A method to recycle the waste by filtration through a mixed ion exchange resin was developed, allowing reusing the waste without affecting quality of the peptide. The method herein obviates the use of unconventional or processed AAs in aqueous SPPS while using lower amounts of starting materials. By recycling/reusing SPPS waste the hazardous dipolar aprotic solvents used in SPPS were not only replaced with an aqueous medium, solvent use was also significantly reduced. This opens up a new direction in aqueous peptide chemistry in which efficient use of inexpensive starting materials and waste minimization is coupled with the universal Fmoc/t-Bu SPPS.
Collapse
Affiliation(s)
- Jan Pawlas
- PolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061, Limhamn, Sweden
| | - Jon H Rasmussen
- PolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061, Limhamn, Sweden
| |
Collapse
|
19
|
“TPG-lite”: A new, simplified “designer” surfactant for general use in synthesis under micellar catalysis conditions in recyclable water. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|