1
|
Borghesani V. Uronium peptide coupling agents: Another case of occupational airborne allergic sensitization induced by HBTU. J Pept Sci 2025; 31:e3649. [PMID: 39126208 PMCID: PMC11618543 DOI: 10.1002/psc.3649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Uronium peptide coupling agents (HBTU, HATU, and HCTU) create a special hazard as they are immune sensitizers. Few reported cases are mentioned in the literature; despite that, it is important to raise the awareness on the subject and to highlight the risk and potential symptoms that could occur to those who directly work in contact with uronium peptide coupling agents, as well as to the safety deputies in the universities and industries. Based on a personal experience, the health impact of laboratory exposure to HBTU is described, and the insights gained from the experience are developed. A skin irritation reaction and allergy symptoms induced by HBTU exposure are shown here as well as the rate of worsening of symptoms since the first allergic reaction. Recommendations for handling coupling agents more safely in the research laboratory will also be given, and a casuistry of the matter to help other lab-users to recognize, assess, minimize, prepare for emergencies (RAMP) process.
Collapse
Affiliation(s)
- Valentina Borghesani
- Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| |
Collapse
|
2
|
Mizushima G, Fujita H, Kunishima M. Development of a Triazinyluronium-Based Dehydrative Condensing Reagent with No Heteroatomic Bonds. J Org Chem 2024; 89:18660-18664. [PMID: 39626268 DOI: 10.1021/acs.joc.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A triazinyluronium-based dehydrative condensing reagent, 2-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (DMT-TU), has been developed. Unlike commonly used guanidinium- and uronium-based reagents, DMT-TU does not contain high-energy N-N and N-O bonds, reducing its explosivity, as suggested by differential scanning calorimetry. Using DMT-TU in the presence of iPr2EtN at room temperature, carboxylic acids and amines were effectively converted to their corresponding amides. Additionally, peptide bond formation with DMT-TU exhibited suppressed racemization ratios.
Collapse
Affiliation(s)
- Gaku Mizushima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
3
|
Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024; 10:e40563. [PMID: 39654719 PMCID: PMC11626046 DOI: 10.1016/j.heliyon.2024.e40563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is known as the main cause of mortality in the world, and every year, the rate of incidence and death due to cancer is increasing. Bioactive peptides are one of the novel therapeutic options that are considered a suitable alternative to toxic chemotherapy drugs because they limit side effects with their specific function. In fact, bioactive peptides are short amino acid sequences that obtain diverse physiological functions to maintain human health after being released from parent proteins. This group of biological molecules that can be isolated from different types of natural protein sources has attracted much attention in the field of pharmaceutical and functional foods production. The current article describes the therapeutic benefits of bioactive peptides and specifically and extensively reviews their role in cancer treatment, available sources for discovering anticancer peptides, mechanisms of action, production methods, and existing challenges.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Wang Z, Li M, Xu S, Sun L, Li L. High-throughput relative quantification of fatty acids by 12-plex isobaric labeling and microchip capillary electrophoresis - Mass spectrometry. Anal Chim Acta 2024; 1318:342905. [PMID: 39067909 PMCID: PMC11299455 DOI: 10.1016/j.aca.2024.342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Fatty acids (FAs) are essential cellular components and play important roles in various biological processes. Importantly, FAs produced by microorganisms from renewable sugars are considered sustainable substrates for biodiesels and oleochemicals. Their complex structures and diverse functional roles in biochemical processes necessitate the development of efficient and accurate methods for their quantitative analysis. RESULTS Here, we developed a novel method for relative quantification of FAs by combining 12-plex isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) labeling and microchip capillary electrophoresis-mass spectrometry (CE-MS). This method enables simultaneous quantification of 12 samples in a single MS analysis. DiLeuEN labeling introduced tertiary amine center structure into FAs, which makes them compatible with the positive mode separation of commercial microchip CE systems and further improves the sensitivity. The CE separation parameters were optimized, and the quantification accuracy was assessed using FA standards. Microchip CE-MS detection exhibited high sensitivity with a femtomole level detection limit and a total analysis time within 8 min. Finally, the applicability of our method to complex biological samples was demonstrated by analyzing FAs produced by four industrially relevant yeast strains (Saccharomyces cerevisiae, Yarrowia lipolytica YB-432, Yarrowia lipolytica Po1f and Rhodotorula glutinis). The analysis time for each sample is less than 1 min. SIGNIFICANCE This work addresses the current challenges in the field by introducing a method that combines microchip-based capillary electrophoresis separation with multiplex isobaric labeling. Our method not only offers remarkable sensitivity and rapid analysis speed but also the capability to quantify fatty acids across multiple samples simultaneously, which holds significant potential for extensive application in FA quantitative studies in diverse research areas, promising an enhanced understanding of FA functions and mechanisms.
Collapse
Affiliation(s)
- Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Liang Sun
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Wróblewska A, Bak-Sypien II, Paluch P, Wielgus E, Zając J, Jeziorna A, Kaźmierski S, Potrzebowski MJ. Solvent-Free Mechanosynthesis of Oligopeptides by Coupling Peptide Segments of Different Lengths - Elucidating the Role of Cesium Carbonate in Ball Mill Processes. Chemistry 2024; 30:e202400177. [PMID: 38644348 DOI: 10.1002/chem.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.
Collapse
Affiliation(s)
- Aneta Wróblewska
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Irena I Bak-Sypien
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Piotr Paluch
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Ewelina Wielgus
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Justyna Zając
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Agata Jeziorna
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Sławomir Kaźmierski
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Marek J Potrzebowski
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| |
Collapse
|
6
|
Schlichter L, Jersch J, Demokritov SO, Ravoo BJ. Multi-Stimuli-Responsive Water-Dispersible Magnetite Nanoparticles Using Arylazopyrazole-Modified Polymer Ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13669-13675. [PMID: 38875303 DOI: 10.1021/acs.langmuir.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In order to design new nanomaterials with improved functionalities, magnetite nanoparticles (MNP) modified with arylazopyrazole (AAP) molecular photoswitches are presented. Water dispersibility is achieved by using poly(acrylic acid) (pAA) as a multidentate ligand, which is modified with AAP by amide coupling. The polymer ligand stabilizes the MNP, allows for E-Z isomerization of the photoswitch, and provides pH responsiveness. Three different AAP are synthesized and attached to pAA via amide coupling giving pAA-AAP with photoswitches substituted statistically along the hydrophilic polymer backbone. MNP are synthesized by coprecipitation and pAA-AAP is introduced as a stabilizing agent in situ. Photoisomerization of pAA-AAP and pAA-AAP@MNP is investigated showing good photostationary states and cyclability. The MNP can be assembled and dispersed reversibly in water either by applying a magnetic field or by a change in pH.
Collapse
Affiliation(s)
- Lisa Schlichter
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Johann Jersch
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
| | - Sergej O Demokritov
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
7
|
Yuan S, Pei W, Di X, Qin Y, Jin H, Meng Z, Hou X. Total Synthesis of (-)-Piericone D. J Org Chem 2024; 89:8782-8788. [PMID: 38819141 DOI: 10.1021/acs.joc.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The total synthesis of (-)-piericone D, a potential antithrombotic dihydrochalcone featuring an [3.3.0] octane core, is reported. Salient features of our synthesis include a stereoselective β-O-glycosylation to install the asebogenin aglycone and a late-stage global deprotection followed by simultaneous lactonization. The convergent synthesis paved the way for further structure-activity relationship (SAR) studies of (-)-piericone D.
Collapse
Affiliation(s)
- Shaopan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Lingang Lab, Shanghai 200031, China
| | - Wanqing Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Lingang Lab, Shanghai 200031, China
| | - Xuan Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yali Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongming Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | - Xiaoli Hou
- Department of Clinical Pharmacy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
8
|
Mukherjee S, Rogers A, Creech G, Hang C, Ramirez A, Dummeldinger M, Brueggemeier S, Mapelli C, Zaretsky S, Huang M, Black R, Peddicord MB, Cuniere N, Kempson J, Pawluczyk J, Allen M, Parsons R, Sfouggatakis C. Process Development of a Macrocyclic Peptide Inhibitor of PD-L1. J Org Chem 2024; 89:6651-6663. [PMID: 38663026 DOI: 10.1021/acs.joc.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).
Collapse
Affiliation(s)
- Subha Mukherjee
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Amanda Rogers
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Gardner Creech
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chao Hang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael Dummeldinger
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Shawn Brueggemeier
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Claudio Mapelli
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Serge Zaretsky
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Masano Huang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Regina Black
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael B Peddicord
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Nicolas Cuniere
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Joseph Pawluczyk
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Martin Allen
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Rodney Parsons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
9
|
Lee SE, Kim Y, Lee YH, Lim HN. C-C Bond Cleavage-Induced C- to N-Acyl Transfer for Synthesis of Amides. Org Lett 2024; 26:3646-3651. [PMID: 38656111 DOI: 10.1021/acs.orglett.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A new approach for the preparation of amides was developed using C-C bond cleavage that initiates C- to N-acyl transfer, employing activated ketones as acylation reagents and amine nucleophiles. The reaction was operational under the coupling reagent system that is commonly utilized for peptide bond formations. The method enables practical preparation of amides using linear and cyclic ketone substrates under mild conditions.
Collapse
Affiliation(s)
- Su Eun Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Youngsoo Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yong Ho Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
10
|
García-Gros J, Cajal Y, Marqués AM, Rabanal F. Synthesis of the Antimicrobial Peptide Murepavadin Using Novel Coupling Agents. Biomolecules 2024; 14:526. [PMID: 38785933 PMCID: PMC11117477 DOI: 10.3390/biom14050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, murepavadin is a cyclic antibacterial peptide in development. The synthesis of murepavadin was undertaken in order to optimize the preparative protocol and scale-up, in particular, the use of new activation reagents. In our hands, classical approaches using carbodiimide/hydroxybenzotriazole rendered low yields. The use of novel carbodiimide and reagents based on OxymaPure® and Oxy-B is discussed together with the proper use of chromatographic conditions for the adequate characterization of peptide crudes. Higher yields and purities were obtained. Finally, the antimicrobial activity of different synthetic batches was tested in three Pseudomonas aeruginosa strains, including highly resistant ones. All murepavadin batches yielded the same highly active MIC values and proved that the chiral integrity of the molecule was preserved throughout the whole synthetic procedure.
Collapse
Affiliation(s)
- Júlia García-Gros
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Yolanda Cajal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Maria Marqués
- Laboratory of Microbiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
11
|
Procopio D, Siciliano C, Di Gioia ML. Reactive deep eutectic solvents for EDC-mediated amide synthesis. Org Biomol Chem 2024; 22:1400-1408. [PMID: 38126479 DOI: 10.1039/d3ob01673k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The sustainability of amide bond formation is an ever-present topic in the pharmaceutical industry, as it represents the common motif in many clinically approved drugs. Despite many procedures for accomplishing eco-friendly amide synthesis having been developed, this transformation still remains a contemporary challenge. Herein, we report a greener approach for amide synthesis by using Reactive Deep Eutectic Solvents (RDESs) acting as both the reaction medium and reactants. The procedure not only avoids the use of hazardous solvents but also provides operationally simple product recovery with high purity and efficiency, without chromatographic purification. This approach was efficiently applied to the synthesis of a key intermediate in the production of an active pharmaceutical ingredient like atenolol. The green metrics of the gram-scale procedure were compared to the conventional industrial strategy showing an advancement in the greening of amide synthesis.
Collapse
Affiliation(s)
- Debora Procopio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.
| |
Collapse
|
12
|
Nobuta T, Tsuchiya N, Suto Y, Yamagiwa N. Hexylsilane-mediated direct amidation of amino acids with a catalytic amount of 1,2,4-triazole. Org Biomol Chem 2024; 22:703-707. [PMID: 38044816 DOI: 10.1039/d3ob01722b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In this study, we report amino acid amidation using hexylsilane and a catalytic amount of 1,2,4-triazole. The conventional protection/deprotection method for the α-amino group of amino acids is not required. The corresponding α-amino amides were obtained in moderate to good yields with low to no racemization.
Collapse
Affiliation(s)
- Tomoya Nobuta
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui Takasaki, Gumma, 370-0033, Japan.
| | - Nozomi Tsuchiya
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui Takasaki, Gumma, 370-0033, Japan.
| | - Yutaka Suto
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui Takasaki, Gumma, 370-0033, Japan.
| | - Noriyuki Yamagiwa
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui Takasaki, Gumma, 370-0033, Japan.
| |
Collapse
|
13
|
Uehara D, Adachi S, Tsubouchi A, Okada Y, Zhdankin VV, Yoshimura A, Saito A. Peptide coupling using recyclable bicyclic benziodazolone. Chem Commun (Camb) 2024; 60:956-959. [PMID: 38131348 DOI: 10.1039/d3cc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We report a greener peptide coupling using bicyclic benziodazolone and triarylphosphine as coupling reagents. Bicyclic benziodazolone also works as a base and can be recovered as the corresponding iodine(I) compound after use, which can be converted to the original iodine(III) reagent by electrolytic oxidation.
Collapse
Affiliation(s)
- Daigo Uehara
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Sota Adachi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Akira Tsubouchi
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN, 55812, USA
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
14
|
Hansen PR, Oddo A. Fmoc Solid-Phase Peptide Synthesis. Methods Mol Biol 2024; 2821:33-55. [PMID: 38997478 DOI: 10.1007/978-1-0716-3914-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Synthetic peptides are important as drugs and in research. Currently, the method of choice for producing these compounds is solid-phase peptide synthesis. Here, we describe the scope and limitations of Fmoc solid-phase peptide synthesis. Furthermore, we provide a detailed protocol for Fmoc peptide synthesis.
Collapse
Affiliation(s)
- Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- , Måløv, Denmark
| |
Collapse
|
15
|
Zhong W, Wan C, Zhou Z, Dai C, Zhang Y, Lu F, Yin F, Li Z. 4-Iodine N-Methylpyridinium-Mediated Peptide Synthesis. Org Lett 2023; 25:8661-8665. [PMID: 38009639 DOI: 10.1021/acs.orglett.3c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Through systematic optimization of halopyridinium compounds, we established a peptide coupling protocol utilizing 4-iodine N-methylpyridinium (4IMP) for solid-phase peptide synthesis (SPPS). The 4IMP coupling reagent is easily prepared, bench stable, and cost-effective. Employing 4IMP in the SPPS process has showcased remarkable chemoselectivity and efficiency, effectively eliminating racemization and epimerization. This achievement has been substantiated through the successful synthesis of a range of peptides via the direct utilization of commercially available amino acid substrates for SPPS.
Collapse
Affiliation(s)
- Wanjin Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Chuan Dai
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| |
Collapse
|
16
|
Mattellone A, Corbisiero D, Cantelmi P, Martelli G, Palladino C, Tolomelli A, Cabri W, Ferrazzano L. Fast Solution-Phase and Liquid-Phase Peptide Syntheses (SolPSS and LPPS) Mediated by Biomimetic Cyclic Propylphosphonic Anhydride (T3P ®). Molecules 2023; 28:7183. [PMID: 37894662 PMCID: PMC10609394 DOI: 10.3390/molecules28207183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The growing applications of peptide-based therapeutics require the development of efficient protocols from the perspective of an industrial scale-up. T3P® (cyclic propylphosphonic anhydride) promotes amidation in the solution-phase through a biomimetic approach, similar to the activation of carboxylic moiety catalyzed by ATP-grasp enzymes in metabolic pathways. The T3P® induced coupling reaction was applied in this study to the solution-phase peptide synthesis (SolPPS). Peptide bond formation occurred in a few minutes with high efficiency and no epimerization, generating water-soluble by-products, both using N-Boc or N-Fmoc amino acids. The optimized protocol, which was successfully applied to the iterative synthesis of a pentapeptide, also allowed for a decrease in the solvent volume, thus improving process sustainability. The protocol was finally extended to the liquid-phase peptide synthesis (LPPS), where the isolation of the peptide was performed using precipitation, thus also showing the suitability of this coupling reagent to this emerging technique.
Collapse
Affiliation(s)
- Alexia Mattellone
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
| | - Dario Corbisiero
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
| | - Paolo Cantelmi
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
| | - Giulia Martelli
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
| | - Chiara Palladino
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
| | - Alessandra Tolomelli
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
- Consorzio C.I.N.M.P.I.S. (National Interuniversity Research Consortium in Innovative Synthesis Methodologies and Processes) c/o, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy
| | - Walter Cabri
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
- Consorzio C.I.N.M.P.I.S. (National Interuniversity Research Consortium in Innovative Synthesis Methodologies and Processes) c/o, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy
| | - Lucia Ferrazzano
- Tolomelli-Cabri/P4I Lab—Peptidomimetics and Peptides Targeting Protein-Protein Interaction, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Gobetti 87, 40129 Bologna, Italy; (A.M.); (D.C.); (P.C.); (G.M.); (C.P.); (L.F.)
| |
Collapse
|
17
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
18
|
Zhou Y, Li H, Huang Y, Li J, Deng G, Chen G, Xi Z, Zhou C. Suppression of alpha-carbon racemization in peptide synthesis based on a thiol-labile amino protecting group. Nat Commun 2023; 14:5324. [PMID: 37658053 PMCID: PMC10474026 DOI: 10.1038/s41467-023-41115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
In conventional solid-phase peptide synthesis (SPPS), α-amino groups are protected with alkoxycarbonyl groups (e.g., 9-fluorenylmethoxycarbonyl [Fmoc]). However, during SPPS, inherent side reactions of the protected amino acids (e.g., α-C racemization and aspartimide formation) generate by-products that are hard to remove. Herein, we report a thiol-labile amino protecting group for SPPS, the 2,4-dinitro-6-phenyl-benzene sulfenyl (DNPBS) group, which is attached to the α-amino group via a S-N bond and can be quantitatively removed in minutes under nearly neutral conditions (1 M p-toluenethiol/pyridine). The use of DNPBS greatly suppresses the main side reactions observed during conventional SPPS. Although DNPBS SPPS is not as efficient as Fmoc SPPS, especially for synthesis of long peptides, DNPBS and Fmoc are orthogonal protecting groups; and thus DNPBS SPPS and Fmoc SPPS can be combined to synthesize peptides that are otherwise difficult to obtain.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi Huang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guiyu Deng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Rajendran N, Kamaraj K, Janakiraman S, Saral M, Dixneuf PH, Bheeter CB. A sustainable metal and base-free direct amidation of esters using water as a green solvent. RSC Adv 2023; 13:14958-14962. [PMID: 37200700 PMCID: PMC10186333 DOI: 10.1039/d3ra02637j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Herein, we report a simple and efficient synthetic approach for direct amidation of esters via C(acyl)-O bond cleavage without any additional reagents or catalysts, using only water as a green solvent. Subsequently, the reaction byproduct is recovered and utilized for the next phase of ester synthesis. This method emphasized metal-free, additive-free, and base-free characteristics making it a new, sustainable, and eco-friendly way to realize direct amide bond formation. In addition, the synthesis of the drug molecule diethyltoluamide and the Gram-scale synthesis of a representative amide are demonstrated.
Collapse
Affiliation(s)
- Nanthini Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Kiruthigadevi Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Saranya Janakiraman
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Mary Saral
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | | | - Charles Beromeo Bheeter
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| |
Collapse
|
20
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
21
|
Hedouin G, Ogulu D, Kaur G, Handa S. Aqueous micellar technology: an alternative beyond organic solvents. Chem Commun (Camb) 2023; 59:2842-2853. [PMID: 36753294 DOI: 10.1039/d3cc00127j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e., the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water.
Collapse
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Deborah Ogulu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Gaganpreet Kaur
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Sachin Handa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
22
|
Razaghpour M, Mohammad Ali Malek R, Montazer M, Ramezanpour S. Cellulose cross-linking with folic acid at room via diverse-based coupling reagents attaining multifunctional features. Carbohydr Polym 2023; 302:120376. [PMID: 36604054 DOI: 10.1016/j.carbpol.2022.120376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Here, cellulose was cross-linked with folic acid (FA) using tetrafluoroborate (TBTU) and carbodiimide (DIC) as coupling reagents through the pad method at room temperature. The interactions between FA and cellulose were proposed and determined with FTIR, and UV-visible also confirmed with nitrogen content. The newly formed ester peak showed the grafting of FA to the cellulose through esterification followed by cellulose cross-linking. The surface morphology of treated fabrics indicated no significant changes and also remained similar after 5 washing cycles. This had no negative impacts on the various physical and mechanical fabric features. The fabric color was changed with reasonable fastness to laundering and light. More FA showed higher N content indicating more bacterial killing for Pseudomonas aeroginosa (Psa) and Methicillin-Resistant Staphylococcus (MRSA). The reasonable viability of L929 and MCF-7 cells showed for treated fabric with FA below 5 %.
Collapse
Affiliation(s)
- Mojgan Razaghpour
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 424, Hafez Ave., Tehran, P.O. Box: 15875-4413, Iran
| | - Reza Mohammad Ali Malek
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 424, Hafez Ave., Tehran, P.O. Box: 15875-4413, Iran.
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Functional Fibrous Structures & Environmental Enhancement (FFSEE), No. 424, Hafez Ave., Tehran, P.O. Box: 15875-4413, Iran
| | - Soruor Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
23
|
Tamboli Y, Kilbile JT, Merwade AY. Large-Scale Amide Coupling in Aqueous Media: Process for the Production of Diazabicyclooctane β-Lactamase Inhibitors. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yasinalli Tamboli
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad431 006, India
| | - Jaydeo T. Kilbile
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad431 006, India
| | - Arvind Y. Merwade
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad431 006, India
| |
Collapse
|
24
|
Gui L, Adjiman CS, Galindo A, Sayyed FB, Kolis SP, Armstrong A. Uncovering the Most Kinetically Influential Reaction Pathway Driving the Generation of HCN from Oxyma/DIC Adduct: A Theoretical Study. Ind Eng Chem Res 2023; 62:874-880. [PMID: 36692415 PMCID: PMC9853495 DOI: 10.1021/acs.iecr.2c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
The combination of ethyl (hydroxyimino)cyanoacetate (Oxyma) and diisopropylcarbodiimide (DIC) has demonstrated superior performance in amino acid activation for peptide synthesis. However, it was recently reported that Oxyma and DIC could react to generate undesired hydrogen cyanide (HCN) at 20 °C, raising safety concerns for the practical use of this activation strategy. To help minimize the risks, there is a need for a comprehensive investigation of the mechanism and kinetics of the generation of HCN. Here we show the results of the first systematic computational study of the underpinning mechanism, including comparisons with experimental data. Two pathways for the decomposition of the Oxyma/DIC adduct are derived to account for the generation of HCN and its accompanying cyclic product. These two mechanisms differ in the electrophilic carbon atom attacked by the nucleophilic sp2-nitrogen in the cyclization step and in the cyclic product generated. On the basis of computed "observed" activation energies, ΔG obs ⧧, the mechanism that proceeds via the attack of the sp2-nitrogen at the oxime carbon is identified as the most kinetically favorable one, a conclusion that is supported by closer agreement between predicted and experimental 13C NMR data. These results can provide a theoretical basis to develop a design strategy for suppressing HCN generation when using Oxyma/DIC for amino acid activation.
Collapse
Affiliation(s)
- Lingfeng Gui
- Department
of Chemical Engineering, The Sargent Centre for Process Systems Engineering
and Institute for Molecular Science and Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Claire S. Adjiman
- Department
of Chemical Engineering, The Sargent Centre for Process Systems Engineering
and Institute for Molecular Science and Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Amparo Galindo
- Department
of Chemical Engineering, The Sargent Centre for Process Systems Engineering
and Institute for Molecular Science and Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Fareed Bhasha Sayyed
- Synthetic
Molecule Design and Development, Eli Lilly
Services India Pvt Ltd, Devarabeesanahalli, Bengaluru560103, India
| | - Stanley P. Kolis
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Lilly Corporate
Center, Indianapolis, Indiana46285, United States
| | - Alan Armstrong
- Department
of Chemistry and Institute for Molecular Science and Engineering, Imperial College London, Molecular Sciences Research Hub, White City Campus, LondonW12 0BZ, U.K.,E-mail:
| |
Collapse
|
25
|
Kuranaga T. Total syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. J Nat Med 2023; 77:1-11. [PMID: 36348140 PMCID: PMC9810689 DOI: 10.1007/s11418-022-01662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Peptidic natural products have received much attention as potential drug leads, and biosynthetic studies of peptidic natural products have contributed to the field of natural product chemistry over the past several decades. However, the key biosynthetic intermediates are generally not isolated from natural sources, and this can hamper a detailed analysis of biosynthesis. Furthermore, reported unusual structures, which are targets for biosynthetic studies, are sometimes the results of structural misassignments. Chemical synthesis techniques are imperative in solving these problems. This review focuses on the chemical syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. These studies can provide the key biosynthetic intermediates that can reveal the biosynthetic pathways and/or true structures of these natural products.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
26
|
Manne SR, Rustler K, Bruckdorfer T, de la Torre BG, Albericio F. Incorporation of pseudoproline monomer (Fmoc-Thr[ψMe,Mepro]–OH) facilitates efficient solid-phase synthesis of difficult peptides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Akintayo DC, Manne SR, de la Torre BG, Li Y, Albericio F. A Practical Peptide Synthesis Workflow Using Amino-Li-Resin. Methods Protoc 2022; 5:mps5050072. [PMID: 36287044 PMCID: PMC9610658 DOI: 10.3390/mps5050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Herein we report a practical approach for peptide synthesis using second-generation fibrous polyacrylamide resin (Li-resin, “Li” is coming from the name of its inventor, Yongfu Li). This resin with the corresponding handle was used for solid phase peptide synthesis (SPPS) using a fluorenylmethoxycarbonyl (Fmoc) approach. We reveal that the most appropriate mixing and filtration strategy when using amino-Li-resin in SPPS is via shaking and gravity filtration, instead of mechanical stirring and suction filtration used with other resins. The strategy was demonstrated with the SPPS of H-Tyr-Ile-Ile-Phe-Leu-NH2, which contains the difficult sequence Ile-Ile. The peptide was obtained with excellent purity and yield. We are confident that this strategy will be rapidly implemented by other peptide laboratories.
Collapse
Affiliation(s)
- Damilola Caleb Akintayo
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Srinivasa Rao Manne
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.)
| | - Yongfu Li
- Biotide Core, LLC, 33815 SE Eastgate Circle, Corvallis, OR 97333, USA
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.)
| |
Collapse
|
28
|
Borsley S, Leigh DA, Roberts BMW, Vitorica-Yrezabal IJ. Tuning the Force, Speed, and Efficiency of an Autonomous Chemically Fueled Information Ratchet. J Am Chem Soc 2022; 144:17241-17248. [PMID: 36074864 PMCID: PMC9501901 DOI: 10.1021/jacs.2c07633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Autonomous chemically fueled molecular machines that
function through
information ratchet mechanisms underpin the nonequilibrium processes
that sustain life. These biomolecular motors have evolved to be well-suited
to the tasks they perform. Synthetic systems that function through
similar mechanisms have recently been developed, and their minimalist
structures enable the influence of structural changes on machine performance
to be assessed. Here, we probe the effect of changes in the fuel and
barrier-forming species on the nonequilibrium operation of a carbodiimide-fueled
rotaxane-based information ratchet. We examine the machine’s
ability to catalyze the fuel-to-waste reaction and harness energy
from it to drive directional displacement of the macrocycle. These
characteristics are intrinsically linked to the speed, force, power,
and efficiency of the ratchet output. We find that, just as for biomolecular
motors and macroscopic machinery, optimization of one feature (such
as speed) can compromise other features (such as the force that can
be generated by the ratchet). Balancing speed, power, efficiency,
and directionality will likely prove important when developing artificial
molecular motors for particular applications.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Benjamin M W Roberts
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | |
Collapse
|
29
|
Manne S, Chakraborty A, Rustler K, Bruckdorfer T, de la Torre BG, Albericio F. Solid-Phase Synthesis of an "Inaccessible" hGH-Derived Peptide Using a Pseudoproline Monomer and SIT-Protection for Cysteine. ACS OMEGA 2022; 7:28487-28492. [PMID: 35990446 PMCID: PMC9386842 DOI: 10.1021/acsomega.2c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The solid-phase peptide synthesis (SPPS) of the C-terminal sequence of hGH with one extra Tyr attached to its N-terminus (total of 16 residues with a disulfide bridge) has been accomplished for the first time by optimizing several synthetic parameters. First of all, the two Ser residues (positions 9 and 13 of the molecule) have been introduced as a single amino acid, Fmoc-Ser(ψMe,Mepro)-OH, demonstrating that the acylation of these hindered moieties is possible. This allows us to avoid the use of the corresponding dipeptides, Fmoc-AA-Ser(ψMe,Mepro)-OH, which are very often not commercially available or very costly. The second part of the sequence has been elongated via a double coupling approach using two of the most effective coupling methods (DIC-OxymaPure and HATU-DIEA). Finally, the disulfide bridging has been carried out very smoothly by a chemoselective thiol-disulfide interchange reaction between a SIT (sec-isoamyl mercaptan)-protected Cys residue and the free thiol of the second Cys. The synthesis of this short peptide has evidenced that SPPS is a multifactorial process which should be optimized in each case.
Collapse
Affiliation(s)
- Srinivasa
Rao Manne
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Amit Chakraborty
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Karin Rustler
- Iris
Biotech GmbH, Adalbert-Zoellner-Str. 1, 95615 Marktredwitz, Germany
| | - Thomas Bruckdorfer
- Iris
Biotech GmbH, Adalbert-Zoellner-Str. 1, 95615 Marktredwitz, Germany
| | - Beatriz G. de la Torre
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Ng XQ, Kang MH, Toh RW, Isoni V, Wu J, Zhao Y. A green access to supported cinchona alkaloid amide catalysts for heterogeneous enantioselective allylsilylation of aldehydes and process intensity evaluation in batch and flow. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Maxfield K, Payne M, Chamberland S. Total Synthesis and Biological Evaluation of Clavatadines C-E. ACS OMEGA 2022; 7:22915-22929. [PMID: 35811874 PMCID: PMC9260760 DOI: 10.1021/acsomega.2c02913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We described herein the application of a convergent and protecting-group avoidant approach that led to the first total synthesis of the marine natural products clavatadine D (4) and E (5), and the second total synthesis of clavatadine C (3). In each case, a key amide-coupling afforded an immediate precursor of each natural product in a rapid manner from structurally similar western and eastern portions that derived from an ester of l-tyrosine and butane-1,4-diamine, respectively. A deprotection step free of detectable byproducts cleanly provided the remaining known members of the clavatadine family of natural products. Each total synthesis required five steps (longest linear sequence) with overall yields of 30-37%, 26-39%, and 28-50% for clavatadine C (3), D (4), and E (5), respectively. A screen of their potential anticancer activity against the NCI-60 cell line panel revealed cytotoxicity levels up to 38% across a broad spectrum of tumor types. Although clavatadine C (3) was relatively benign, clavatadine D (4) exhibited 20-38% growth inhibition against a wide array of cancer cell types including leukemia, non-small-cell lung, colon, ovarian, and breast. Clavatadine E (5) was active against two types of human brain tumors.
Collapse
|
32
|
Nakashima E, Yamamoto H. Biomimetic Peptide Catalytic Bond‐Forming Utilizing a Mild Brønsted Acid. Chemistry 2022; 28:e202103989. [DOI: 10.1002/chem.202103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Erika Nakashima
- College of Engineering Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Frontier Research Insititute Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
33
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
34
|
Magano J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Magano
- Chemical Research & Development, Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
35
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
36
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
37
|
Bolduc TG, Lee C, Chappell WP, Sammis GM. Thionyl Fluoride-Mediated One-Pot Substitutions and Reductions of Carboxylic Acids. J Org Chem 2022; 87:7308-7318. [PMID: 35549478 DOI: 10.1021/acs.joc.2c00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields).
Collapse
Affiliation(s)
- Trevor G Bolduc
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cayo Lee
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - William P Chappell
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
38
|
Graham JC, Trejo-Martin A, Chilton ML, Kostal J, Bercu J, Beutner GL, Bruen US, Dolan DG, Gomez S, Hillegass J, Nicolette J, Schmitz M. An Evaluation of the Occupational Health Hazards of Peptide Couplers. Chem Res Toxicol 2022; 35:1011-1022. [PMID: 35532537 PMCID: PMC9214767 DOI: 10.1021/acs.chemrestox.2c00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide couplers (also known as amide bond-forming reagents or coupling reagents) are broadly used in organic chemical syntheses, especially in the pharmaceutical industry. Yet, occupational health hazards associated with this chemical class are largely unexplored, which is disconcerting given the intrinsic reactivity of these compounds. Several case studies involving occupational exposures reported adverse respiratory and dermal health effects, providing initial evidence of chemical sensitization. To address the paucity of toxicological data, a pharmaceutical cross-industry task force was formed to evaluate and assess the potential of these compounds to cause eye and dermal irritation as well as corrosivity and dermal sensitization. The goal of our work was to inform health and safety professionals as well as pharmaceutical and organic chemists of the occupational health hazards associated with this chemical class. To that end, 25 of the most commonly used peptide couplers and five hydrolysis products were selected for in vivo, in vitro, and in silico testing. Our findings confirmed that dermal sensitization is a concern for this chemical class with 21/25 peptide couplers testing positive for dermal sensitization and 15 of these being strong/extreme sensitizers. We also found that dermal corrosion and irritation (8/25) as well as eye irritation (9/25) were health hazards associated with peptide couplers and their hydrolysis products (4/5 were dermal irritants or corrosive and 4/5 were eye irritants). Resulting outcomes were synthesized to inform decision making in peptide coupler selection and enable data-driven hazard communication to workers. The latter includes harmonized hazard classifications, appropriate handling recommendations, and accurate safety data sheets, which support the industrial hygiene hierarchy of control strategies and risk assessment. Our study demonstrates the merits of an integrated, in vivo -in silico analysis, applied here to the skin sensitization endpoint using the Computer-Aided Discovery and REdesign (CADRE) and Derek Nexus programs. We show that experimental data can improve predictive models by filling existing data gaps while, concurrently, providing computational insights into key initiating events and elucidating the chemical structural features contributing to adverse health effects. This interactive, interdisciplinary approach is consistent with Green Chemistry principles that seek to improve the selection and design of less hazardous reagents in industrial processes and applications.
Collapse
Affiliation(s)
- Jessica C Graham
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Martyn L Chilton
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, UK
| | - Jakub Kostal
- The George Washington University, Washington, D.C. 20052, United States
| | - Joel Bercu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gregory L Beutner
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Uma S Bruen
- Organon, Inc., 30 Hudson Street, Jersey City, New Jersey 07302, United States
| | - David G Dolan
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States
| | - Stephen Gomez
- Theravance Biopharma US, Inc., South San Francisco, California 94080, United States
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - John Nicolette
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Matthew Schmitz
- Takeda Pharmaceutical Company Limited, 35 Landsdowne St., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Alfano AI, Lange H, Brindisi M. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. CHEMSUSCHEM 2022; 15:e202102708. [PMID: 35015338 PMCID: PMC9304223 DOI: 10.1002/cssc.202102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Indexed: 06/03/2023]
Abstract
Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| | - Heiko Lange
- University of Milano-Bicocca Department of Earth and Environmental SciencesPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| |
Collapse
|
40
|
Alberts EM, Fernando PUAI, Thornell TL, George HE, Koval AM, Shukla MK, Weiss CA, Moores LC. Toward bioinspired polymer adhesives: activation assisted via HOBt for grafting of dopamine onto poly(acrylic acid). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211637. [PMID: 35360348 PMCID: PMC8965409 DOI: 10.1098/rsos.211637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
The design of bioinspired polymers has long been an area of intense study, however, applications to the design of concrete admixtures for improved materials performance have been relatively unexplored. In this work, we functionalized poly(acrylic acid) (PAA), a simple analogue to polycarboxylate ether admixtures in concrete, with dopamine to form a catechol-bearing polymer (PAA-g-DA). Synthetic routes using hydroxybenzotriazole (HOBt) as an activating agent were examined for their ability in grafting dopamine to the PAA backbone. Previous literature using the traditional coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to graft dopamine to PAA were found to be inconsistent and the sensitivity of EDC coupling reactions necessitated a search for an alternative. Additionally, HOBt allowed for greater control over per cent functionalization of the backbone, is a simple, robust reaction, and showed potential for scalability. This finding also represents a novel synthetic pathway for amide bond formation between dopamine and PAA. Finally, we performed preliminary adhesion studies of our polymer on rose granite specimens and demonstrated a 56% improvement in the mean adhesion strength over unfunctionalized PAA. These results demonstrate an early study on the potential of PAA-g-DA to be used for improving the bonds within concrete.
Collapse
Affiliation(s)
| | - P. U. Ashvin Iresh Fernando
- Bennett Aerospace, 1100 Crescent Green, #250, Cary, NC 27518, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Travis L. Thornell
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Hannah E. George
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, MS 39406, USA
| | - Ashlyn M. Koval
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Manoj K. Shukla
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Charles A. Weiss
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Lee C. Moores
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
41
|
Li Y, Li J, Bao G, Yu C, Liu Y, He Z, Wang P, Ma W, Xie J, Sun W, Wang R. NDTP Mediated Direct Rapid Amide and Peptide Synthesis without Epimerization. Org Lett 2022; 24:1169-1174. [PMID: 34994572 DOI: 10.1021/acs.orglett.1c04258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we explored an unprecedented mild, nonirritating, conveniently available, and recyclable coupling reagent NDTP, which could activate the carboxylic acids via acyl thiocyanide and enable the rapid amide and peptide synthesis at very mild conditions. In addition, the methodology was compatible with Fmoc-SPPS, which may provide an alternative to peptide manufacturing.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Jingyue Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Yuyang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Peng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China.,Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| |
Collapse
|
42
|
Koteva K, Sychantha D, Rotondo CM, Hobson C, Britten JF, Wright GD. Three-Dimensional Structure and Optimization of the Metallo-β-Lactamase Inhibitor Aspergillomarasmine A. ACS OMEGA 2022; 7:4170-4184. [PMID: 35155911 PMCID: PMC8829947 DOI: 10.1021/acsomega.1c05757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The aminopolycarboxylic acid aspergillomarasmine A (AMA) is a natural Zn2+ metallophore and inhibitor of metallo-β-lactamases (MBLs) which reverses β-lactam resistance. The first crystal structure of an AMA coordination complex is reported and reveals a pentadentate ligand with distorted octahedral geometry. We report the solid-phase synthesis of 23 novel analogs of AMA involving structural diversification of each subunit (l-Asp, l-APA1, and l-APA2). Inhibitory activity was evaluated in vitro using five strains of Escherichia coli producing globally prevalent MBLs. Further in vitro assessment was performed with purified recombinant enzymes and intracellular accumulation studies. Highly constrained structure-activity relationships were demonstrated, but three analogs revealed favorable characteristics where either Zn2+ affinity or the binding mode to MBLs were improved. This study identifies compounds that can further be developed to produce more potent and broader-spectrum MBL inhibitors with improved pharmacodynamic/pharmacokinetic properties.
Collapse
Affiliation(s)
- Kalinka Koteva
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Sychantha
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Caitlyn M. Rotondo
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Christian Hobson
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Willow
Biosciences, 2250 Boundary
Rd, Burnaby, BC V5M 3Z3, Canada
| | - James F. Britten
- McMaster
Analytical X-ray Diffraction Facility (MAX), McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gerard D. Wright
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
43
|
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031445. [PMID: 35163367 PMCID: PMC8836030 DOI: 10.3390/ijms23031445] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides are a group of biological molecules that are normally buried in the structure of parent proteins and become active after the cleavage of the proteins. Another group of peptides is actively produced and found in many microorganisms and the body of organisms. Today, many groups of bioactive peptides have been marketed chemically or recombinantly. This article reviews the various production methods and sources of these important/ubiquitous and useful biomolecules. Their applications, such as antimicrobial, antihypertensive, antioxidant activities, blood-lipid-lowering effect, opioid role, antiobesity, ability to bind minerals, antidiabetic, and antiaging effects, will be explored. The types of pathways proposed for bioactive applications will be in the next part of the article, and at the end, the future perspectives of bioactive peptides will be reviewed. Reading this article is recommended for researchers interested in various fields of physiology, microbiology, biochemistry, and nanotechnology and food industry professionals.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ali Khani
- Department of Radiation Sciences, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Eghbalpour
- Department of Obstetrics and Gynecology Surgery, Babol University of Medical Sciences, Babol 4717647745, Iran;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-974-5816
| |
Collapse
|
44
|
Ma Y, Liu Y, Wang J, Chen X, Yin H, Chi Q, Jia S, Du S, Qi Y, Wang K. DIC/Oxyma Based Efficient Synthesis and Activity Evaluation of Spider Peptide Toxin GsMTx4. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Yin H, Chen X, Fu X, Ma Y, Xu Y, Zhang T, Liang S, Du S, Qi Y, Wang K. Efficient Chemical Synthesis and Oxidative Folding Studies of Scorpion Toxin Peptide WaTx. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Mikshiev VY, Tolstoy P, Tupikina EY, Puzyk AM, Vovk MA. Acid catalysis through N-protonation in undistorted carboxamides: improvement of amide proton sponge acylating ability. NEW J CHEM 2022. [DOI: 10.1039/d2nj02975h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid catalysis of weakly distorted or undistorted carboxamides in acyl-migration reactions proceeding through N-protonation is the process with low probability in contrast to O-protonation. This circumstance made the experimental study...
Collapse
|
47
|
Lee C, Thomson BJ, Sammis GM. Rapid and column-free syntheses of acyl fluorides and peptides using ex situ generated thionyl fluoride. Chem Sci 2021; 13:188-194. [PMID: 35059166 PMCID: PMC8694322 DOI: 10.1039/d1sc05316g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 01/28/2023] Open
Abstract
Thionyl fluoride (SOF2) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the ex situ generation of SOF2 and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.
Collapse
Affiliation(s)
- Cayo Lee
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J Thomson
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
48
|
Ren JW, Tong MN, Zhao YF, Ni F. Synthesis of Dipeptide, Amide, and Ester without Racemization by Oxalyl Chloride and Catalytic Triphenylphosphine Oxide. Org Lett 2021; 23:7497-7502. [PMID: 34553596 DOI: 10.1021/acs.orglett.1c02614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient triphenylphosphine oxide-catalyzed amidation and esterification for the rapid synthesis of a series of dipeptides, amides, and esters is described. This reaction is applicable to challenging couplings of hindered carboxylic acids with weakly nucleophilic amines or alcohols, giving the products in good yields (67-90%) without racemization. This system employs the highly reactive intermediate Ph3PCl2 as the activator of the carboxylate in a catalytic manner and drives the reaction to completion in a short reaction time (less than 10 min).
Collapse
Affiliation(s)
- Ji-Wei Ren
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Meng-Nan Tong
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
49
|
Nagaya A, Murase S, Mimori Y, Wakui K, Yoshino M, Matsuda A, Kobayashi Y, Kurasaki H, Cary DR, Masuya K, Handa M, Nishizawa N. Extended Solution-phase Peptide Synthesis Strategy Using Isostearyl-Mixed Anhydride Coupling and a New C-Terminal Silyl Ester-Protecting Group for N-Methylated Cyclic Peptide Production. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akihiro Nagaya
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Shota Murase
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Yuji Mimori
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Kazuya Wakui
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Madoka Yoshino
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Ayumu Matsuda
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yutaka Kobayashi
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Haruaki Kurasaki
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Douglas R. Cary
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Keiichi Masuya
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Michiharu Handa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| | - Naoki Nishizawa
- Chemical Research Laboratories, Nissan Chemical Corporation, 2-10-1, Tsuboi-Nishi, Funabashi 274-8507, Chiba, Japan
| |
Collapse
|
50
|
Ford EM, Kloxin AM. Rapid Production of Multifunctional Self-Assembling Peptides for Incorporation and Visualization within Hydrogel Biomaterials. ACS Biomater Sci Eng 2021; 7:4175-4195. [PMID: 34283566 DOI: 10.1021/acsbiomaterials.1c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides are of continued interest for therapeutic applications, from soluble and immobilized ligands that promote desired binding or uptake to self-assembled supramolecular structures that serve as scaffolds in vitro and in vivo. These applications require efficient and scalable synthetic approaches because of the large amounts of material that often are needed for studies of bulk material properties and their translation. In this work, we establish new methods for the synthesis, purification, and visualization of assembling peptides, with a focus on multifunctional collagen mimetic peptides (mfCMPs) relevant for formation and integration within hydrogel-based biomaterials. First, a methodical approach useful for the microwave-assisted synthesis of assembling peptide sequences prone to deletions was established, beginning with the identification of the deleted residues and their locations and followed by targeted use of dual chemistry couplings for those specific residues. Second, purification techniques that integrate the principles of heating and ion displacement with traditional chromatography and dialysis were implemented to improve separation and isolation of the desired multifunctional peptide product, which contained blocks for thermoresponsiveness and ionic interactions. Third, an approach for fluorescent labeling of these mfCMPs, which is orthogonal to their assembly and their covalent incorporation into a bulk hydrogel material, was established, allowing visualization of the resulting hierarchical fibrillar structures in three dimensions within hydrogels using confocal microscopy. The methods presented in this work allow the production of multifunctional peptides in scalable quantities and with minimal deletions, enabling future studies for better understanding of composition-structure-property relationships and for translating these biomaterials into a range of applications. Although mfCMPs are the focus of this work, the methods demonstrated could prove useful for other assembling peptide systems and for the production of peptides more broadly for therapeutic applications.
Collapse
Affiliation(s)
- Eden M Ford
- Department of Chemical and Biomolecular Engineering University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Material Science and Engineering University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|