1
|
Eisenberg JB, Lee K, Yuan X, Schmidt JR, Choi KS. The Impact of Electron Donating and Withdrawing Groups on Electrochemical Hydrogenolysis and Hydrogenation of Carbonyl Compounds. J Am Chem Soc 2024; 146:15309-15319. [PMID: 38771660 DOI: 10.1021/jacs.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The hydrogenolysis or hydrodeoxygenation of a carbonyl group, where the C═O group is converted to a CH2 group, is of significant interest in a variety of fields. A challenge in electrochemically achieving hydrogenolysis of a carbonyl group with high selectivity is that electrochemical hydrogenation of a carbonyl group, which converts the C═O group to an alcohol group (CH-OH), is demonstrated not to be the initial step of hydrogenolysis. Instead, hydrogenation and hydrogenolysis occur in parallel, and they are competing reactions. This means that although both hydrogenolysis and hydrogenation require adding H atoms to the carbonyl group, they involve different intermediates formed on the electrode surface. Thus, revealing the difference in intermediates, transition states, and kinetic barriers for hydrogenolysis and hydrogenation pathways is the key to understanding and controlling hydrogenolysis/hydrogenation selectivity of carbonyl compounds. In this study, we aimed to identify features of reactant molecules that can affect their hydrogenolysis/hydrogenation selectivity on a Zn electrode that was previously shown to promote hydrogenolysis over hydrogenation. In particular, we examined the electrochemical reduction of para-substituted benzaldehyde compounds with substituent groups having different electron donating/withdrawing abilities. Our results show a strikingly systematic impact of the substituent group where a stronger electron-donating group promotes hydrogenolysis and a stronger electron-withdrawing group promotes hydrogenation. These experimental results are presented with computational results explaining the substituent effects on the thermodynamics and kinetics of electrochemical hydrogenolysis and hydrogenation pathways, which also provide critically needed information and insights into the transition states involved with these pathways.
Collapse
Affiliation(s)
- Jonah B Eisenberg
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kwanpyung Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Yuan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Chen H, Iyer J, Liu Y, Krebs S, Deng F, Jentys A, Searles DJ, Haider MA, Khare R, Lercher JA. Mechanism of Electrocatalytic H 2 Evolution, Carbonyl Hydrogenation, and Carbon-Carbon Coupling on Cu. J Am Chem Soc 2024; 146:13949-13961. [PMID: 38739624 PMCID: PMC11117180 DOI: 10.1021/jacs.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.
Collapse
Affiliation(s)
- Hongwen Chen
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Jayendran Iyer
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Yue Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| | - Simon Krebs
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Fuli Deng
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Andreas Jentys
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia
- ARC Centre
of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane 4072, QLD, Australia
| | - M. Ali Haider
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Indian
Institute of Technology Delhi−Abu Dhabi, Khalifa City B, Abu Dhabi, United Arab Emirates
| | - Rachit Khare
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland 99352, Washington, United States
| |
Collapse
|
3
|
Si D, Teng X, Xiong B, Chen L, Shi J. Electrocatalytic functional group conversion-based carbon resource upgrading. Chem Sci 2024; 15:6269-6284. [PMID: 38699249 PMCID: PMC11062096 DOI: 10.1039/d4sc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/23/2024] [Indexed: 05/05/2024] Open
Abstract
The conversions of carbon resources, such as alcohols, aldehydes/ketones, and ethers, have been being one of the hottest topics most recently for the goal of carbon neutralization. The emerging electrocatalytic upgrading has been regarded as a promising strategy aiming to convert carbon resources into value-added chemicals. Although exciting progress has been made and reviewed recently in this area by mostly focusing on the explorations of valuable anodic oxidation or cathodic reduction reactions individually, however, the reaction rules of these reactions are still missing, and how to purposely find or rationally design novel but efficient reactions in batches is still challenging. The properties and transformations of key functional groups in substrate molecules play critically important roles in carbon resources conversion reactions, which have been paid more attention to and may offer hidden keys to achieve the above goal. In this review, the properties of functional groups are addressed and discussed in detail, and the reported electrocatalytic upgrading reactions are summarized in four categories based on the types of functional groups of carbon resources. Possible reaction pathways closely related to functional groups will be summarized from the aspects of activation, cleavage and formation of chemical bonds. The current challenges and future opportunities of electrocatalytic upgrading of carbon resources are discussed at the end of this review.
Collapse
Affiliation(s)
- Di Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xue Teng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingyan Xiong
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University Shanghai 200072 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
4
|
Liu Z, Yu X, Li J, Wei D, Peng J, Jiang H, Liu H, Mahmud S. Electrocatalytic hydrogenation of indigo by NiMoS: energy saving and conversion improving. Dalton Trans 2023; 52:17438-17448. [PMID: 37947491 DOI: 10.1039/d3dt02272b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
Abstract
An NiMo alloy bonded with sulfur (NiMoS) exhibits enhanced surface affinity toward water and organic molecules, thereby enhancing electrocatalytic hydrogenation (ECH) reactions through synergistic effects. In industrial processes, indigo, an ancient dye employed in the denim industry, is typically chemically reduced using sodium dithionite. However, this process generates an excess of toxic sulfide, which heavily contaminates the environment. ECH is a sustainable alternative for indigo reduction due to its reduced reliance on chemicals and energy consumption. In this study, carbon-felt (CF)-supported NiMoS was synthesized in a two-step process. First, the NiMo alloy was electrodeposited onto the CF surface, followed by sulfidation in an oven at 600 °C. NiMoS exhibits a larger electrochemically active surface area and a smaller charge transfer resistance compared to pure Ni and NiMo. Furthermore, NiMoS demonstrates excellent thermodynamic and kinetic properties for water splitting in strong alkaline solutions (1.0 M KOH). Additionally, optimal reaction conditions for the ECH of indigo were explored. Under the conditions of a 1.0 M KOH hydroxide medium with 10% methanol (v/v), an indigo concentration of 5 g L-1, a reaction temperature of 70 °C, and a current density of 10 mA cm-2, NiMoS/CF achieved remarkable improvements in both conversion (99.2%) and Faraday efficiency (38.1%). The results of this experimental work offer valuable insights into the design and application of novel catalytic materials for the ECH of vat dyes, opening up new possibilities for sustainable and environmentally friendly processes in the dye industry.
Collapse
Affiliation(s)
- Zihao Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Xunkai Yu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Jie Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Junjun Peng
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Huiyu Jiang
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Huihong Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Sakil Mahmud
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| |
Collapse
|
5
|
Kleinhaus JT, Wolf J, Pellumbi K, Wickert L, Viswanathan SC, Junge Puring K, Siegmund D, Apfel UP. Developing electrochemical hydrogenation towards industrial application. Chem Soc Rev 2023; 52:7305-7332. [PMID: 37814786 DOI: 10.1039/d3cs00419h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.
Collapse
Affiliation(s)
- Julian T Kleinhaus
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Jonas Wolf
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Leon Wickert
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sangita C Viswanathan
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
6
|
Ju W, Bagger A, Saharie NR, Möhle S, Wang J, Jaouen F, Rossmeisl J, Strasser P. Electrochemical carbonyl reduction on single-site M-N-C catalysts. Commun Chem 2023; 6:212. [PMID: 37777576 PMCID: PMC10542751 DOI: 10.1038/s42004-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Electrochemical conversion of organic compounds holds promise for advancing sustainable synthesis and catalysis. This study explored electrochemical carbonyl hydrogenation on single-site M-N-C (Metal Nitrogen-doped Carbon) catalysts using formaldehyde, acetaldehyde, and acetone as model reactants. We strive to correlate and understand the selectivity dependence on the nature of the metal centers. Density Functional Theory calculations revealed similar binding energetics for carbonyl groups through oxygen-down or carbon-down adsorption due to oxygen and carbon scaling. Fe-N-C exhibited specific oxyphilicity and could selectively reduce aldehydes to hydrocarbons. By contrast, the carbophilic Co-N-C selectively converted acetaldehyde and acetone to ethanol and 2-propanol, respectively. We claim that the oxyphilicity of the active sites and consequent adsorption geometry (oxygen-down vs. carbon-down) are crucial in controlling product selectivity. These findings offer mechanistic insights into electrochemical carbonyl hydrogenation and can guide the development of efficient and sustainable electrocatalytic valorization of biomass-derived compounds.
Collapse
Affiliation(s)
- Wen Ju
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany
| | - Alexander Bagger
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | | | - Sebastian Möhle
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany
| | - Jingyi Wang
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany
| | - Frederic Jaouen
- Institute Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jan Rossmeisl
- Department of Chemistry, University Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peter Strasser
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Du Y, Chen X, Liang C. Selective electrocatalytic hydrogenation of phenols over ternary Pt3RuSn alloy. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Page JR, Manfredi Z, Bliznakov S, Valla JA. Recent Progress in Electrochemical Upgrading of Bio-Oil Model Compounds and Bio-Oils to Renewable Fuels and Platform Chemicals. MATERIALS (BASEL, SWITZERLAND) 2023; 16:394. [PMID: 36614733 PMCID: PMC9822173 DOI: 10.3390/ma16010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Sustainable production of renewable carbon-based fuels and chemicals remains a necessary but immense challenge in the fight against climate change. Bio-oil derived from lignocellulosic biomass requires energy-intense upgrading to produce usable fuels or chemicals. Traditional upgrading methods such as hydrodeoxygenation (HDO) require high temperatures (200−400 °C) and 200 bar of external hydrogen. Electrochemical hydrogenation (ECH), on the other hand, operates at low temperatures (<80 °C), ambient pressure, and does not require an external hydrogen source. These environmental and economically favorable conditions make ECH a promising alternative to conventional thermochemical upgrading processes. ECH combines renewable electricity with biomass conversion and harnesses intermediately generated electricity to produce drop-in biofuels. This review aims to summarize recent studies on bio-oil upgrading using ECH focusing on the development of novel catalytic materials and factors impacting ECH efficiency and products. Here, electrode design, reaction temperature, applied overpotential, and electrolytes are analyzed for their impacts on overall ECH performance. We find that through careful reaction optimization and electrode design, ECH reactions can be tailored to be efficient and selective for the production of renewable fuels and chemicals. Preliminary economic and environmental assessments have shown that ECH can be viable alternative to convention upgrading technologies with the potential to reduce CO2 emissions by 3 times compared to thermochemical upgrading. While the field of electrochemical upgrading of bio-oil has additional challenges before commercialization, this review finds ECH a promising avenue to produce renewable carbon-based drop-in biofuels. Finally, based on the analyses presented in this review, directions for future research areas and optimization are suggested.
Collapse
Affiliation(s)
- Jeffrey R. Page
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| | - Zachary Manfredi
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA
| | - Stoyan Bliznakov
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| | - Julia A. Valla
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Zhou L, Li Y, Lu Y, Wang S, Zou Y. pH-Induced selective electrocatalytic hydrogenation of furfural on Cu electrodes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Behrouzi L, Zand Z, Fotuhi M, Kaboudin B, Najafpour MM. Water oxidation couples to electrocatalytic hydrogenation of carbonyl compounds and unsaturated carbon–carbon bonds by nickel. Sci Rep 2022; 12:19968. [DOI: 10.1038/s41598-022-23777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
AbstractArtificial photosynthesis, an umbrella term, is a chemical process that biomimetics natural photosynthesis. In natural photosynthesis, electrons from the water-oxidation reaction are used for carbon dioxide reduction. Herein, we report the reducion of aldehydes and ketones to corresponding alcohols in a simple undivided cell. This reaction utilized inexpensive nickel foam electrodes (1 cm2) and LiClO4 (0.05 M) as a commercially accessible electrolyte in an aqueous medium. Under electrochemical conditions, a series of alcohols (21 examples) produces high selectivity in good yields (up to 100%). Usage the current method, 10 mmol (1060 mg) of benzaldehyde is also successfully reduced to benzyl alcohol (757 mg, 70% isolated yield) without any by‑products. This route to alcohols matched several green chemistry principles: (a) atom economy owing to the use of H2O as the solvent and the source of hydrogen, (b) elimination of the homogeneous metal catalyst, (c) use of smooth reaction conditions, (d) waste inhibition due to low volumetric of by-products, and (e) application of safe EtOH co-solvent. Moreover, the ability of the system to operate with alkyne and alkene compounds enhanced the practical efficiency of this process.
Collapse
|
11
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
12
|
Electrocatalytic hydrogenation and oxidation of glucose and xylose on mesoporous carbon-supported Au nanocatalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Mekazni DS, Arán-Ais RM, Feliu JM, Herrero E. Understanding the electrochemical hydrogenation of acetone on Pt single crystal electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Meyer LC, Sanyal U, Stoerzinger KA, Koh K, Fulton JL, Camaioni DM, Gutiérrez OY, Lercher JA. Influence of the Molecular Structure on the Electrocatalytic Hydrogenation of Carbonyl Groups and H 2 Evolution on Pd. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura C. Meyer
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Udishnu Sanyal
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Kelsey A. Stoerzinger
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 2043 Kelley Engineering Center, Corvallis, Oregon 97331, United States
| | - Katherine Koh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - John L. Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Donald M. Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Johannes A. Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| |
Collapse
|
15
|
Huang S, Gong B, Jin Y, Sit PHL, Lam JCH. The Structural Phase Effect of MoS 2 in Controlling the Reaction Selectivity between Electrocatalytic Hydrogenation and Dimerization of Furfural. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Bo Gong
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yangxin Jin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Patrick H.-L. Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Lee K, Jing Y, Wang Y, Yan N. A unified view on catalytic conversion of biomass and waste plastics. Nat Rev Chem 2022; 6:635-652. [PMID: 37117711 PMCID: PMC9366821 DOI: 10.1038/s41570-022-00411-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/08/2022]
Abstract
Originating from the desire to improve sustainability, producing fuels and chemicals from the conversion of biomass and waste plastic has become an important research topic in the twenty-first century. Although biomass is natural and plastic synthetic, the chemical nature of the two are not as distinct as they first appear. They share substantial structural similarities in terms of their polymeric nature and the types of bonds linking their monomeric units, resulting in close relationships between the two materials and their conversions. Previously, their transformations were mostly studied and reviewed separately in the literature. Here, we summarize the catalytic conversion of biomass and waste plastics, with a focus on bond activation chemistry and catalyst design. By tracking the historical and more recent developments, it becomes clear that biomass and plastic have not only evolved their unique conversion pathways but have also started to cross paths with each other, with each influencing the landscape of the other. As a result, this Review on the catalytic conversion of biomass and waste plastic in a unified angle offers improved insights into existing technologies, and more importantly, may enable new opportunities for future advances.
Collapse
Affiliation(s)
- Kyungho Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yaxuan Jing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Electrocatalytic hydrogenation of glucose and xylose using carbon fiber supported Au nanocatalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Liu J, Huang M, Hua Z, Dong Y, Feng Z, Sun T, Chen C. Polyoxometalate‐Based Metal Organic Frameworks: Recent Advances and Challenges. ChemistrySelect 2022. [DOI: 10.1002/slct.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiale Liu
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Mengyao Huang
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Zhongyu Hua
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Yi Dong
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Zeran Feng
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Chunxia Chen
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| |
Collapse
|
19
|
An Updated Comprehensive Literature Review of Phenol Hydrogenation Studies. Catal Letters 2022. [DOI: 10.1007/s10562-021-03714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Gu Z, Zhang Z, Ni N, Hu C, Qu J. Simultaneous Phenol Removal and Resource Recovery from Phenolic Wastewater by Electrocatalytic Hydrogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4356-4366. [PMID: 35194996 DOI: 10.1021/acs.est.1c07457] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient pollutants removal and simultaneous resource recovery from wastewater are of great significance for sustainable development. In this study, an electrocatalytic hydrogenation (ECH) approach was developed to selectively and rapidly transform phenol to cyclohexanol, which possesses high economic value and low toxicity and can be easily recovered from the aqueous solution. A three-dimensional Ru/TiO2 electrode with abundant active sites and massive microflow channels was prepared for efficient phenol transformation. A pseudo-first-order rate constant of 0.135 min-1 was observed for ECH of phenol (1 mM), which was 34-fold higher than that of traditional electrochemical oxidation (EO). Both direct electron transfer and indirect reduction by atomic hydrogen (H*) played pivotal roles in the hydrogenation of phenol ring. The ECH technique also showed excellent performance in a wide pH range of 3-11 and with a high concentration of phenol (10 mM). Moreover, the functional groups (e.g., chloro- and methyl-) on phenol showed little influence on the superiority of the ECH system. This work provides a novel and practical solution for remediation of phenolic wastewater as well as recovery of valuable organic compounds.
Collapse
Affiliation(s)
- Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Zhiyang Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Ni
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Akhade SA, Lee MS, Meyer LC, Yuk SF, Nguyen MT, Sanyal U, Egbert JD, Gutiérrez OY, Glezakou VA, Rousseau R. Impact of functional groups on the electrocatalytic hydrogenation of aromatic carbonyls to alcohols. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Yang C, Chen H, Peng T, Liang B, Zhang Y, Zhao W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63839-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Peng T, Zhuang T, Yan Y, Qian J, Dick GR, Behaghel de Bueren J, Hung SF, Zhang Y, Wang Z, Wicks J, Garcia de Arquer FP, Abed J, Wang N, Sedighian Rasouli A, Lee G, Wang M, He D, Wang Z, Liang Z, Song L, Wang X, Chen B, Ozden A, Lum Y, Leow WR, Luo M, Meira DM, Ip AH, Luterbacher JS, Zhao W, Sargent EH. Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. J Am Chem Soc 2021; 143:17226-17235. [PMID: 34617746 DOI: 10.1021/jacs.1c08348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (-OCH3) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes-molecules with uses in pharmaceutics. Using X-ray absorption spectroscopy and in situ Raman spectroscopy, we find that Rh and Au modulate the electronic structure of Pt and that this modulating steers intermediate energetics on the electrocatalyst surface to facilitate the hydrogenation of lignin monomers and suppress C-OCH3 bond cleavage. As a result, PtRhAu electrocatalysts achieve a record 58% faradaic efficiency (FE) toward 2-methoxycyclohexanol from the lignin monomer guaiacol at 200 mA cm-2, representing a 1.9× advance in FE and a 4× increase in partial current density compared to the highest productivity prior reports. We demonstrate an integrated lignin biorefinery where wood-derived lignin monomers are selectively hydrogenated and funneled to methoxylated 2-methoxy-4-propylcyclohexanol using PtRhAu electrocatalysts. This work offers an opportunity for the sustainable electrocatalytic synthesis of methoxylated pharmaceuticals from renewable biomass.
Collapse
Affiliation(s)
- Tao Peng
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Taotao Zhuang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Yan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jin Qian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Graham R Dick
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland
| | - Jean Behaghel de Bueren
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland
| | - Sung-Fu Hung
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Yun Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ziyun Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - F Pelayo Garcia de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Ning Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Armin Sedighian Rasouli
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Miao Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhe Wang
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhixiu Liang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Liang Song
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Yanwei Lum
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Wan Ru Leow
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Mingchuan Luo
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Debora Motta Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Alexander H Ip
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland
| | - Wei Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
24
|
Goyal A, Koper MTM. Understanding the role of mass transport in tuning the hydrogen evolution kinetics on gold in alkaline media. J Chem Phys 2021; 155:134705. [PMID: 34624997 DOI: 10.1063/5.0064330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this work, we present an in-depth study of the role of mass transport conditions in tuning the hydrogen evolution kinetics on gold by means of rotation rate control. Interestingly, we find that the hydrogen evolution reaction (HER) activity decreases with the increasing rotation rate of the electrode. As we increase the rotation (mass transport) rate, the locally generated hydroxyl ions (2H2O +2e- → H2 + 2OH-) are transported away from the electrode surface at an accelerated rate. This results in decreasing local pH and, because of the need to satisfy local electroneutrality, decreasing near-surface cation concentration. This decrease in the near-surface cation concentration results in the suppression of HER. This is because the cations near the surface play a central role in stabilizing the transition state for the rate determining Volmer step (*H-OHδ--cat+). Furthermore, we present a detailed analytical model that qualitatively captures the observed mass transport dependence of HER solely based on the principle of electroneutrality. Finally, we also correlate the cation identity dependence of HER on gold (Li+ < Na+ < K+) to the changes in the effective concentration of the cations in the double layer with the changes in their solvation energy.
Collapse
Affiliation(s)
- Akansha Goyal
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
25
|
Zhou L, Zhu X, Su H, Lin H, Lyu Y, Zhao X, Chen C, Zhang N, Xie C, Li Y, Lu Y, Zheng J, Johannessen B, Jiang SP, Liu Q, Li Y, Zou Y, Wang S. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Liu C, Li R, Zhou W, Liang Y, Shi Y, Li RL, Ling Y, Yu Y, Li J, Zhang B. Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Rui Li
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yu Liang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanmei Shi
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Run-Lai Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangfang Ling
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Bin Zhang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
27
|
Tan J, Zhang W, Shu Y, Lu H, Tang Y, Gao Q. Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation. Sci Bull (Beijing) 2021; 66:1003-1012. [PMID: 36654245 DOI: 10.1016/j.scib.2020.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 01/20/2023]
Abstract
Electrocatalytic hydrogenation (ECH) enables the sustainable production of chemicals under ambient condition; however, suffers from serious competition with hydrogen (H2) evolution and the use of precious metals as electrocatalysts. Herein, molybdenum disulfide is for the first time developed as an efficient and noble-metal-free catalyst for ECH via in situ intercalation of ammonia or alkyl-amine cations. This interlayer engineering regulates phase transition (2H → 1 T), and effectively ameliorates electronic configurations and surface hydrophobicity to promote the ECH of biomass-derived oxygenates, while prohibiting H2 evolution. The optimal one intercalated by dimethylamine (MoS2-DMA) is capable of hydrogenating furfural (FAL) to furfuryl alcohol with high Faradaic efficiency of 86.3%-73.3% and outstanding selectivity of >95.0% at -0.25 to -0.65 V (vs. RHE), outperforming MoS2 and other conventional metals. Such prominent performance stems from the enhanced chemisorption and surface hydrophobicity. The chemisorption of H intermediate and FAL, synchronously strengthened on the edge-sites of MoS2-DMA, accelerates the surface elementary step following Langmuir-Hinshelwood mechanism. Moreover, the improved hydrophobicity benefits FAL affinity to overcome diffusion limitation. Discovering the effective modulation of MoS2 from a typical H2 evolution electrocatalyst to a promising candidate for ECH, this study broadens the scope to exploit catalysts used for electrochemical synthesis.
Collapse
Affiliation(s)
- Jingwen Tan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yijin Shu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Haiyang Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iCHEM), Fudan University, Shanghai 200433, China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iCHEM), Fudan University, Shanghai 200433, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Sanghez de Luna G, Ho PH, Sacco A, Hernández S, Velasco-Vélez JJ, Ospitali F, Paglianti A, Albonetti S, Fornasari G, Benito P. AgCu Bimetallic Electrocatalysts for the Reduction of Biomass-Derived Compounds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23675-23688. [PMID: 33974392 PMCID: PMC8289175 DOI: 10.1021/acsami.1c02896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The electrochemical transformation of biomass-derived compounds (e.g., aldehyde electroreduction to alcohols) is gaining increasing interest due to the sustainability of this process that can be exploited to produce value-added products from biowastes and renewable electricity. In this framework, the electrochemical conversion of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is studied. Nanostructured Ag deposited on Cu is an active and selective electrocatalyst for the formation of BHMF in basic media. However, this catalyst deserves further research to elucidate the role of the morphology and size of the coated particles in its performance as well as the actual catalyst surface composition and its stability. Herein, Ag is coated on Cu open-cell foams by electrodeposition and galvanic displacement to generate different catalyst morphologies, deepening on the particle growth mechanism, and the samples are compared with bare Ag and Cu foams. The chemical-physical and electrochemical properties of the as-prepared and spent catalysts are correlated to the electroactivity in the HMF conversion and its selectivity toward the formation of BHMF during electroreduction. AgCu bimetallic nanoparticles or dendrites are formed on electrodeposited and displaced catalysts, respectively, whose surface is Cu-enriched along with electrochemical tests. Both types of bimetallic AgCu particles evidence a superior electroactive surface area as well as an enhanced charge and mass transfer in comparison with the bare Ag and Cu foams. These features together with a synergistic role between Ag and Cu superficial active sites could be related to the twofold enhanced selectivity of the Ag/Cu catalysts for the selective conversion of HMF to BHMF, that is, >80% selectivity and ∼ 100% conversion, and BHMF productivity values (0.206 and 0.280 mmol cm-2 h-1) ca. 1.5-3 times higher than those previously reported.
Collapse
Affiliation(s)
- Giancosimo Sanghez de Luna
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Phuoc H. Ho
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Adriano Sacco
- Center
for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Simelys Hernández
- Center
for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Juan-Jesús Velasco-Vélez
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Francesca Ospitali
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alessandro Paglianti
- Department
of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Stefania Albonetti
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Giuseppe Fornasari
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Patricia Benito
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
29
|
Harnisch F, Morejón MC. Hydrogen from Water is more than a Fuel: Hydrogenations and Hydrodeoxygenations for a Biobased Economy. CHEM REC 2021; 21:2277-2289. [PMID: 33734561 DOI: 10.1002/tcr.202100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
Worldwide a hydrogen-based economy is on the political agenda. Its centre forms molecular hydrogen (H2 ) that should serve mainly as energy carrier and fuel. However, currently and foreseeable in the future H2 is playing its main role as reactant in the chemical industry. Electrolytic generation and storage of H2 gas is energy demanding and may hardly become economically at the large scale. We argue that in the overall transition towards an economy that is based on biomolecules and CO2 as carbon feedstock electrochemical hydrogenations and hydrodeoxygenations in aqueous solutions need to be moved in the centre. Departing from the well-known fact that electrochemistry allows creating reactive hydrogen species from water, i. e. hydrogen in statu nascendi (H. ), at ambient temperature and pressure we illustrate the existing diversity of reactions based thereon. We focus on examples of model compounds from thermal biomass pretreatment and products from real thermal biomass pretreatment (bio-oil). Consequently, we advocate that electrochemical hydrogenations and hydrodeoxygenations have to be further explored and interweaved into existing process lines.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Environmental Microbiology, UFZ - Helmholtz-Centre for Environmental Research, 04318, Leipzig, Germany E-mail: Falk Harnisch
| | - Micjel Chávez Morejón
- Department of Environmental Microbiology, UFZ - Helmholtz-Centre for Environmental Research, 04318, Leipzig, Germany E-mail: Falk Harnisch
| |
Collapse
|
30
|
Tang C, Zheng Y, Jaroniec M, Qiao S. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew Chem Int Ed Engl 2021; 60:19572-19590. [DOI: 10.1002/anie.202101522] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry Kent State University Kent OH 44242 USA
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
31
|
Tang C, Zheng Y, Jaroniec M, Qiao S. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry Kent State University Kent OH 44242 USA
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
32
|
Electrocatalysts for Using Renewably-Sourced, Organic Electrolytes for Redox Flow Batteries. Catalysts 2021. [DOI: 10.3390/catal11030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biomass could be a source of the redox shuttles that have shown promise for operation as high potential, organic electrolytes for redox flow batteries. There is a sufficient quantity of biomass to satisfy the growing demand to buffer the episodic nature of renewably produced electricity. However, despite a century of effort, it is still not evident how to use existing information from organic electrochemistry to design the electrocatalysts or supporting electrolytes that will confer the required activity, selectivity and longevity. In this research, the use of a fiducial reaction to normalize reaction rates is shown to fail.
Collapse
|
33
|
Chen G, Liang L, Li N, Lu X, Yan B, Cheng Z. Upgrading of Bio-Oil Model Compounds and Bio-Crude into Biofuel by Electrocatalysis: A Review. CHEMSUSCHEM 2021; 14:1037-1052. [PMID: 33320411 DOI: 10.1002/cssc.202002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Limited availability of fossil energy and serious environmental pollution have caused the emergence of bio-oil, which can serve as an alternative and promising green energy source. However, bio-oil generated from the rapid pyrolysis of biomass cannot be utilized immediately owing to its corrosivity, instability, and low heating value. Herein, the electrocatalytic hydrogenation (ECH) process towards bio-oil upgrading is reviewed. Specifically, the ECH integrates the advantages of mild operating conditions, no petrochemically derived hydrogen and good controllability. The influence of different factors on the conversion of bio-oil components and product selectivity in the ECH process are presented comprehensively. In addition, various reaction mechanisms are discussed in the designed ECH systems. Finally, some challenges need to be further overcome for real bio-oil reduction in the ECH process: exploration of efficient multifunctional electrocatalysts for specific bio-oil components and determination of the dominant steps in the complicated reaction path network.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, No.135, Yaguan Road, Jinnan District, Tianjin City, P. R. China
| | - Lan Liang
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, No.135, Yaguan Road, Jinnan District, Tianjin City, P. R. China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, No.135, Yaguan Road, Jinnan District, Tianjin City, P. R. China
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, No.135, Yaguan Road, Jinnan District, Tianjin City, P. R. China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, No.135, Yaguan Road, Jinnan District, Tianjin City, P. R. China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, No.135, Yaguan Road, Jinnan District, Tianjin City, P. R. China
| |
Collapse
|
34
|
|
35
|
Sanyal U, Yuk SF, Koh K, Lee M, Stoerzinger K, Zhang D, Meyer LC, Lopez‐Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V, Rousseau R, Gutiérrez OY, Lercher JA. Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angew Chem Int Ed Engl 2021; 60:290-296. [PMID: 32770641 PMCID: PMC7821193 DOI: 10.1002/anie.202008178] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.
Collapse
Affiliation(s)
- Udishnu Sanyal
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Simuck F. Yuk
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Katherine Koh
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Mal‐Soon Lee
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Kelsey Stoerzinger
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Difan Zhang
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Laura C. Meyer
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Abhi Karkamkar
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Jamie D. Holladay
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Donald M. Camaioni
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Manh‐Thuong Nguyen
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | | | - Roger Rousseau
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Johannes A. Lercher
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- Department of Chemistry and Catalysis Research Center InstitutionTU MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
36
|
Sanyal U, Yuk SF, Koh K, Lee M, Stoerzinger K, Zhang D, Meyer LC, Lopez‐Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V, Rousseau R, Gutiérrez OY, Lercher JA. Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Udishnu Sanyal
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Simuck F. Yuk
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Katherine Koh
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Mal‐Soon Lee
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Kelsey Stoerzinger
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- School of Chemical, Biological and Environmental Engineering Oregon State University Corvallis OR 97331 USA
| | - Difan Zhang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Laura C. Meyer
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Abhi Karkamkar
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Jamie D. Holladay
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Manh‐Thuong Nguyen
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | | | - Roger Rousseau
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Center Institution TU München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
37
|
Dixit RJ, Singh A, Ramani VK, Basu S. Electrocatalytic hydrogenation of furfural paired with photoelectrochemical oxidation of water and furfural in batch and flow cells. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00080b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The simultaneous formation of furfuryl alcohol and furoic acid was achieved from electrocatalytic hydrogenation and photoelectrochemical oxidation of furfural, respectively.
Collapse
Affiliation(s)
- Ram Ji Dixit
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vijay K. Ramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis 63130, Missouri, USA
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| |
Collapse
|
38
|
|
39
|
Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chem Rev 2020; 120:11370-11419. [PMID: 32941005 DOI: 10.1021/acs.chemrev.0c00158] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sustainable energy generation calls for a shift away from centralized, high-temperature, energy-intensive processes to decentralized, low-temperature conversions that can be powered by electricity produced from renewable sources. Electrocatalytic conversion of biomass-derived feedstocks would allow carbon recycling of distributed, energy-poor resources in the absence of sinks and sources of high-grade heat. Selective, efficient electrocatalysts that operate at low temperatures are needed for electrocatalytic hydrogenation (ECH) to upgrade the feedstocks. For effective generation of energy-dense chemicals and fuels, two design criteria must be met: (i) a high H:C ratio via ECH to allow for high-quality fuels and blends and (ii) a lower O:C ratio in the target molecules via electrochemical decarboxylation/deoxygenation to improve the stability of fuels and chemicals. The goal of this review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required:(1)What organic functionalities are accessible for electrocatalytic hydrogenation under a set of reaction conditions? How do substitutions and functionalities impact the activity and selectivity of ECH?(2)What material properties cause an electrocatalyst to be active for ECH? Can general trends in ECH be formulated based on the type of electrocatalyst?(3)What are the impacts of reaction conditions (electrolyte concentration, pH, operating potential) and reactor types?
Collapse
Affiliation(s)
- Sneha A Akhade
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nirala Singh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Juan Lopez-Ruiz
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jamie D Holladay
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Yue Liu
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Abhijeet Karkamkar
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert S Weber
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Asanga B Padmaperuma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Greg A Whyatt
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michael Elliott
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johnathan E Holladay
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jonathan L Male
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
40
|
Simultaneous electrocatalytic hydrogenation of aldehydes and phenol over carbon-supported metals. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01464-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. Electrochemical Lignin Conversion. CHEMSUSCHEM 2020; 13:4318-4343. [PMID: 33448690 DOI: 10.1002/cssc.202001187] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the largest source of renewable aromatic compounds, making the recovery of aromatic compounds from this material a significant scientific goal. Recently, many studies have reported on lignin depolymerization and upgrading strategies. Electrochemical approaches are considered to be low cost, reagent free, and environmentally friendly, and can be carried out under mild reaction conditions. In this Review, different electrochemical lignin conversion strategies, including electrooxidation, electroreduction, hybrid electro-oxidation and reduction, and combinations of electrochemical and other processes (e. g., biological, solar) for lignin depolymerization and upgrading are discussed in detail. In addition to lignin conversion, electrochemical lignin fractionation from biomass and black liquor is also briefly discussed. Finally, the outlook and challenges for electrochemical lignin conversion are presented.
Collapse
Affiliation(s)
- Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Haichuan Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
- Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Parikshit Gogoi
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
| |
Collapse
|
42
|
Lopez-Ruiz JA, Qiu Y, Andrews E, Gutiérrez OY, Holladay JD. Electrocatalytic valorization into H2 and hydrocarbons of an aqueous stream derived from hydrothermal liquefaction. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01452-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Synthesis of Valeric Acid by Selective Electrocatalytic Hydrogenation of Biomass-Derived Levulinic Acid. Catalysts 2020. [DOI: 10.3390/catal10060692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The electrocatalytic hydrogenation (ECH) of biomass-derived levulinic acid (LA) is a promising strategy to synthetize fine chemicals under ambient conditions by replacing the thermocatalytic hydrogenation at high temperature and high pressure. Herein, various metallic electrodes were investigated in the ECH of LA in a H-type divided cell. The effects of potential, electrolyte concentration, reactant concentration, and temperature on catalytic performance and Faradaic efficiency were systematically explored. The high conversion of LA (93%) and excellent “apparent” selectivity to valeric acid (VA) (94%) with a Faradaic efficiency of 46% can be achieved over a metallic lead electrode in 0.5 M H2SO4 electrolyte containing 0.2 M LA at an applied voltage of −1.8 V (vs. Ag/AgCl) for 4 h. The combination of adsorbed LA and adsorbed hydrogen (Hads) on the surface of the metallic lead electrode is key to the formation of VA. Interestingly, the reaction performance did not change significantly after eight cycles, while the surface of the metallic lead cathode became rough, which may expose more active sites for the ECH of LA to VA. However, there was some degree of corrosion for the metallic lead cathode in this strong acid environment. Therefore, it is necessary to improve the leaching-resistance of the cathode for the ECH of LA in future research.
Collapse
|
44
|
May AS, Biddinger EJ. Strategies to Control Electrochemical Hydrogenation and Hydrogenolysis of Furfural and Minimize Undesired Side Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew S. May
- Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States
| | - Elizabeth J. Biddinger
- Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States
| |
Collapse
|
45
|
Singh N, Sanyal U, Ruehl G, Stoerzinger KA, Gutiérrez OY, Camaioni DM, Fulton JL, Lercher JA, Campbell CT. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Anibal J, Malkani A, Xu B. Stability of the ketyl radical as a descriptor in the electrochemical coupling of benzaldehyde. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00282h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electroreductive coupling is an emerging pathway for the renewable upgrading of biomass derived oxygenates. This work investigates electrochemical benzaldehyde reduction on Au, Cu, Pt and Pd using reactivity testing and in situ spectroscopy.
Collapse
Affiliation(s)
- Jacob Anibal
- Center for Catalytic Science and Technology
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark DE
- USA
| | - Arnav Malkani
- Center for Catalytic Science and Technology
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark DE
- USA
| | - Bingjun Xu
- Center for Catalytic Science and Technology
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark DE
- USA
| |
Collapse
|
47
|
Koh K, Sanyal U, Lee M, Cheng G, Song M, Glezakou V, Liu Y, Li D, Rousseau R, Gutiérrez OY, Karkamkar A, Derewinski M, Lercher JA. Electrochemically Tunable Proton‐Coupled Electron Transfer in Pd‐Catalyzed Benzaldehyde Hydrogenation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Katherine Koh
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Udishnu Sanyal
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Mal‐Soon Lee
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research Center TU München Lichtenbergstrasse 4 85747 Garching Germany
| | - Miao Song
- Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland Washington 99352 USA
| | | | - Yue Liu
- Department of Chemistry and Catalysis Research Center TU München Lichtenbergstrasse 4 85747 Garching Germany
| | - Dongsheng Li
- Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Roger Rousseau
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Abhijeet Karkamkar
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Miroslaw Derewinski
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences 30-239 Cracow Poland
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington 99352 USA
- Department of Chemistry and Catalysis Research Center TU München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
48
|
Koh K, Sanyal U, Lee MS, Cheng G, Song M, Glezakou VA, Liu Y, Li D, Rousseau R, Gutiérrez OY, Karkamkar A, Derewinski M, Lercher JA. Electrochemically Tunable Proton-Coupled Electron Transfer in Pd-Catalyzed Benzaldehyde Hydrogenation. Angew Chem Int Ed Engl 2019; 59:1501-1505. [PMID: 31634416 PMCID: PMC7004174 DOI: 10.1002/anie.201912241] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 11/10/2022]
Abstract
Acid functionalization of a carbon support allows to enhance the electrocatalytic activity of Pd to hydrogenate benzaldehyde to benzyl alcohol proportional to the concentration of Brønsted‐acid sites. In contrast, the hydrogenation rate is not affected when H2 is used as a reduction equivalent. The different responses to the catalyst properties are shown to be caused by differences in the hydrogenation mechanism between the electrochemical and the H2‐induced hydrogenation pathways. The enhancement of electrocatalytic reduction is realized by the participation of support‐generated hydronium ions in the proximity of the metal particles.
Collapse
Affiliation(s)
- Katherine Koh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Udishnu Sanyal
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Miao Song
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | | | - Yue Liu
- Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Dongsheng Li
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Abhijeet Karkamkar
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Miroslaw Derewinski
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.,Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Cracow, Poland
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.,Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
49
|
Lopez-Ruiz JA, Andrews E, Akhade SA, Lee MS, Koh K, Sanyal U, Yuk SF, Karkamkar AJ, Derewinski MA, Holladay J, Glezakou VA, Rousseau R, Gutiérrez OY, Holladay JD. Understanding the Role of Metal and Molecular Structure on the Electrocatalytic Hydrogenation of Oxygenated Organic Compounds. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02921] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan A. Lopez-Ruiz
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Evan Andrews
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Sneha A. Akhade
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
- Materials Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Katherine Koh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Udishnu Sanyal
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Simuck F. Yuk
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Abhijeet J. Karkamkar
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Miroslaw A. Derewinski
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Johnathan Holladay
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Jamie D. Holladay
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| |
Collapse
|
50
|
Bondue CJ, Koper MTM. Electrochemical Reduction of the Carbonyl Functional Group: The Importance of Adsorption Geometry, Molecular Structure, and Electrode Surface Structure. J Am Chem Soc 2019; 141:12071-12078. [PMID: 31274297 PMCID: PMC6676412 DOI: 10.1021/jacs.9b05397] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This
paper studies the electrochemical hydrogenation of the carbonyl
functional group of acetophenone and 4-acetylpyridine at platinum
single-crystal electrodes. Comparison with results obtained for the
hydrogenation of acetone featuring an isolated carbonyl functional
group reveals the influence of the phenyl ring and the pyridine ring,
respectively. Lack of acetone adsorption at Pt(111) and Pt(100) due
to a weak interaction between surface and carbonyl functional group
renders these surfaces inactive for the hydrogenation of acetone.
Adsorption through a strong interaction with the phenyl ring of acetophenone
activates the Pt(111) and Pt(100) surfaces for hydrogenation of the
acetyl substituent. In agreement with previous results for acetone
reduction, the Pt(100) surface is specifically active for the hydrogenolysis
reaction, breaking the C–O bond, whereas the other surfaces
only hydrogenate the carbonyl functionality. In contrast to the phenyl
ring, the pyridine ring has a very different effect: due to the dominant
interaction of the N atom of the pyridine ring with the platinum electrode,
a vertical adsorption mode is realized. The resulting large physical
distance between the carbonyl functional group and the electrode surface
inhibits the hydrogenation at all platinum surfaces. This also holds
for the Pt(110) electrode, which is otherwise active for the electrochemical
hydrogenation of the isolated carbonyl functional group of aliphatic
ketones. Our results show how the combination of molecular structure
of the reactant and surface structure of the catalyst determine the
selective electroreduction of functionalized ketones.
Collapse
Affiliation(s)
- Christoph J Bondue
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|