1
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
2
|
Düşünceli SD, Şahan MH, Kaloğlu M, Üstün E, Özdemir İ. Applications of quinoxaline‐bridged bis(benzimidazolium) salts as ligand sources for the palladium‐catalyzed Suzuki and Heck cross‐coupling reactions in an aqueous medium. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serpil Demir Düşünceli
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
- Catalysis Research and Application Center İnönü University Malatya Turkey
- Drug Application and Research Center İnönü University Malatya Turkey
| | - Mehmet Hanifi Şahan
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
| | - Murat Kaloğlu
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
- Catalysis Research and Application Center İnönü University Malatya Turkey
- Drug Application and Research Center İnönü University Malatya Turkey
| | - Elvan Üstün
- Faculty of Science and Art, Department of Chemistry Ordu University Ordu Turkey
| | - İsmail Özdemir
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
- Catalysis Research and Application Center İnönü University Malatya Turkey
- Drug Application and Research Center İnönü University Malatya Turkey
| |
Collapse
|
3
|
Morán‐González L, Pedregal JR, Besora M, Maseras F. Understanding the Binding Properties of N‐heterocyclic Carbenes through BDE Matrix App. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucía Morán‐González
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 Tarragona 43007 Catalonia Spain
| | - Jaime Rodríguez‐Guerra Pedregal
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 Tarragona 43007 Catalonia Spain
| | - Maria Besora
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili c/Marcel⋅lí Domingo s/n Tarragona 43007 Catalonia Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 Tarragona 43007 Catalonia Spain
| |
Collapse
|
4
|
D'Alterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Chemistry 2021; 27:13481-13493. [PMID: 34269488 PMCID: PMC8518397 DOI: 10.1002/chem.202101880] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/14/2022]
Abstract
The story of C-C bond formation includes several reactions, and surely Suzuki-Miyaura is among the most outstanding ones. Herein, a brief historical overview of insights regarding the reaction mechanism is provided. In particular, the formation of the catalytically active species is probably the main concern, thus the preactivation is in competition with, or even assumes the role of the rate determining step (rds) of the overall reaction. Computational chemistry is key in identifying the rds and thus leading to milder conditions on an experimental level by means of predictive catalysis.
Collapse
Affiliation(s)
- Massimo C D'Alterio
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
- Dipartimento di Scienze Chimiche, Università di Napoli, Federico II Via Cintia, I-80126, Napoli, Italy
| | - Èric Casals-Cruañas
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Building S3, Krijgslaan 281, 9000, Gent, Belgium
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche, Università di Napoli, Federico II Via Cintia, I-80126, Napoli, Italy
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Building S3, Krijgslaan 281, 9000, Gent, Belgium
| | - Albert Poater
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
5
|
Pablo Martínez J, Solà M, Poater A. Predictive Catalysis in Olefin Metathesis with Ru-based Catalysts with Annulated C 60 Fullerenes in the N-heterocyclic Carbenes. Chemistry 2021; 27:18074-18083. [PMID: 34523164 DOI: 10.1002/chem.202100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 11/09/2022]
Abstract
Predictive catalysis must be the tool that does not replace experiments, but acts as a selective agent, so that synthetic strategies of maximum profitability are used in the laboratory in a surgical way. Here, nanotechnology has been used in olefin metathesis from homogeneous Ru-NHC catalysts, specifically annulating a C60 fullerene to the NHC ligand. Based on results with the C60 in the backbone, a sterile change with respect to the catalysis of the metal center, an attempt has been made to bring C60 closer to the metal, by attaching it to one of the two C-N bonds of the imidazole group of the SIMes (1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) ligand (reference NHC ligand of the 2nd generation Grubbs catalysts) to increase the steric pressure of C60 in the first sphere of reactivity of the metal. The DFT calculated thermodynamics and the kinetics of SIMes-derived systems show that they are efficient catalysts for olefin metathesis.
Collapse
Affiliation(s)
- Juan Pablo Martínez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| |
Collapse
|
6
|
Transue WJ, Dai Y, Riu MLY, Wu G, Cummins CC. 31P NMR Chemical Shift Tensors: Windows into Ruthenium Phosphinidene Complex Electronic Structures. Inorg Chem 2021; 60:9254-9258. [PMID: 34152768 DOI: 10.1021/acs.inorgchem.1c01099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of octamethylcalix[4]pyrrole/ruthenium phosphinidene complexes (Na2[1=PR]) can be accessed by phosphinidene transfer from the corresponding RPA (A = C14H10, anthracene) compounds (R = tBu, iPr, OEt, NH2, NMe2, NEt2, NiPr2, NA, dimethylpiperidino). Isolation of the tert-butyl and dimethylamino derivatives allowed comparative studies of their 31P nuclear shielding tensors by magic-angle-spinning solid-state nuclear magnetic resonance spectroscopy. Density functional theory and natural chemical shielding analyses reveal the relationship between the 31P chemical shift tensor and the local ruthenium/phosphorus electronic structure. The general trend observed in the 31P isotropic chemical shifts for the ruthenium phosphinidene complexes was controlled by the degree of deshielding in the δ11 principal tensor component, which can be linked to the σRuP/πRuP* energy gap. A "δ22-δ33 crossover" effect for R = tBu was also observed, which was caused by different degrees of deshielding associated with polarizations of the σPR and σPR* natural bond orbitals.
Collapse
Affiliation(s)
- Wesley J Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yizhe Dai
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Swart MR, Twigge L, Erasmus E, Marais C, Bezuidenhoudt BCB. Olefin Metathesis,
p
‐Cresol, and the Second Generation Grubbs Catalyst: Fitting the Pieces. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marthinus R. Swart
- Department of Chemistry University of the Free State PO Box 339 Bloemfontein 9300 South Africa
| | - Linette Twigge
- Department of Chemistry University of the Free State PO Box 339 Bloemfontein 9300 South Africa
| | - Elizabeth Erasmus
- Department of Chemistry University of the Free State PO Box 339 Bloemfontein 9300 South Africa
| | - Charlene Marais
- Department of Chemistry University of the Free State PO Box 339 Bloemfontein 9300 South Africa
| | | |
Collapse
|
8
|
Gordon CP, Lätsch L, Copéret C. Nuclear Magnetic Resonance: A Spectroscopic Probe to Understand the Electronic Structure and Reactivity of Molecules and Materials. J Phys Chem Lett 2021; 12:2072-2085. [PMID: 33617260 DOI: 10.1021/acs.jpclett.0c03520] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This Perspective focuses on the ability of chemical shift to identify and characterize the electronic structure and associated reactivity of molecules and materials. After a general introduction on NMR parameters, we will show selected examples where the chemical shift of various NMR active nuclei has been used to investigate and understand electronic properties, with a particular focus on organometallic compounds and inorganic materials with relevance to catalysis. We will demonstrate how the NMR parameter of probe molecules and ligands can be used to elucidate the nature of active sites and how they can help to understand and predict their reactivity. Lastly, we will give an overview over recent advances in deciphering metal NMR parameters. Overall, we show how chemical shift is a reactivity descriptor that can be analyzed and understood on a molecular level.
Collapse
Affiliation(s)
- Christopher P Gordon
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| | - Lukas Lätsch
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| |
Collapse
|