1
|
Li R, Wildenberg G, Boergens K, Yang Y, Weber K, Rieger J, Arcidiacono A, Klie R, Kasthuri N, King SB. OsO 2 as the Contrast-Generating Chemical Species of Osmium-Stained Biological Tissues in Electron Microscopy. Chembiochem 2024; 25:e202400311. [PMID: 39037826 DOI: 10.1002/cbic.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Electron imaging of biological samples stained with heavy metals has enabled visualization of subcellular structures critical in chemical-, structural-, and neuro-biology. In particular, osmium tetroxide (OsO4) has been widely adopted for selective lipid imaging. Despite the ubiquity of its use, the osmium speciation in lipid membranes and the process for contrast generation in electron microscopy (EM) have continued to be open questions, limiting efforts to improve staining protocols and therefore high-resolution nanoscale imaging of biological samples. Following our recent success using photoemission electron microscopy (PEEM) to image mouse brain tissues with synaptic resolution, we have used PEEM to determine the nanoscale electronic structure of Os-stained biological samples. Os(IV), in the form of OsO2, generates nanoaggregates in lipid membranes, leading to a strong spatial variation in the electronic structure and electron density of states. OsO2 has a metallic electronic structure that drastically increases the electron density of states near the Fermi level. Depositing metallic OsO2 in lipid membranes allows for strongly enhanced EM signals and conductivity of biological materials. The identification of the chemical species and understanding of the membrane contrast mechanism of Os-stained biological specimens provides a new opportunity for the development of staining protocols for high-resolution, high-contrast EM imaging.
Collapse
Affiliation(s)
- Ruiyu Li
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Gregg Wildenberg
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
- Argonne National Laboratory, Biosciences Division, Lemont, IL, USA
| | - Kevin Boergens
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Yingjie Yang
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Kassandra Weber
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Janek Rieger
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | | | - Robert Klie
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
- Argonne National Laboratory, Biosciences Division, Lemont, IL, USA
| | - Sarah B King
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Affès S, Stamatelou AM, Fontrodona X, Kabadou A, Viñas C, Teixidor F, Romero I. Enhancing Photoredox Catalysis in Aqueous Environments: Ruthenium Aqua Complex Derivatization of Graphene Oxide and Graphite Rods for Efficient Visible-Light-Driven Hybrid Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:507-519. [PMID: 38114421 PMCID: PMC10788860 DOI: 10.1021/acsami.3c13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
A ruthenium aqua photoredox catalyst has been successfully heterogeneneized on graphene oxide (GO@trans-fac-3) and graphite rods (GR@trans-fac-3) for the first time and have proven to be sustainable and easily reusable systems for the photooxidation of alcohols in water, in mild and green conditions. We report here the synthesis and total characterization of two Ru(II)-polypyridyl complexes, the chlorido trans-fac-[RuCl(bpea-pyrene)(bpy)](PF6) (trans-fac-2) and the aqua trans-fac-[Ru(bpea-pyrene)(bpy)OH2](PF6)2 (trans-fac-3), both containing the N-tridentate, 1-[bis(pyridine-2-ylmethyl)amino]methylpyrene (bpea-pyrene), and 2,2'-bipyridine (bpy) ligands. In both complexes, only a single isomer, the trans-fac, has been detected in solution and in the solid state. The aqua complex trans-fac-3 displays bielectronic redox processes in water, assigned to the Ru(IV/II) couple. The trans-fac-3 complex has been heterogenized on different types of supports, (i) on graphene oxide (GO) through π-stacking interactions between the pyrene group of the bpea-pyrene ligand and the GO and (ii) both on glassy carbon electrodes (GC) and on graphite rods (GR) through oxidative electropolymerization of the pyrene group, which yield stable heterogeneous photoredox catalysts. GO@trans-fac-3- and GR/poly trans-fac-3-modified electrodes were fully characterized by spectroscopic and electrochemical methods. Trans-fac-3 and GO@trans-fac-3 photocatalysts (without a photosensitizer) showed good catalytic efficiency in the photooxidation of alcohols in water under mild conditions and using visible light. Both photocatalysts display high selectivity values (>99%) even for primary alcohols in accordance with the presence of two-electron transfer processes (2e-/2H+). GO@trans-fac-3 keeps intact its homogeneous catalytic properties but shows an enhancement in yields. GO@trans-fac-3 can be easily recycled by filtration and reused for up to five runs without any significant loss of catalytic activity. Graphite rods (GR@trans-fac-3) were also evaluated as heterogeneous photoredox catalysts showing high turnover numbers (TON) and selectivity values.
Collapse
Affiliation(s)
- Syrine Affès
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, Girona E-17003, Spain
- Laboratoire
des Sciences des Matériaux et d’Environnement, Faculté
des Sciences, Université de Sfax, Sfax 3000, Tunisie
| | - Akrivi-Maria Stamatelou
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, Girona E-17003, Spain
| | - Xavier Fontrodona
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, Girona E-17003, Spain
| | - Ahlem Kabadou
- Laboratoire
des Sciences des Matériaux et d’Environnement, Faculté
des Sciences, Université de Sfax, Sfax 3000, Tunisie
| | - Clara Viñas
- Institut
de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra E-08193, Spain
| | - Francesc Teixidor
- Institut
de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra E-08193, Spain
| | - Isabel Romero
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, Girona E-17003, Spain
| |
Collapse
|
3
|
Brazzolotto D, Nédellec Y, Philouze C, Holzinger M, Thomas F, Le Goff A. Functionalizing Carbon Nanotubes with Bis(2,9-dialkyl-1,10-phenanthroline)copper(II) Complexes for the Oxygen Reduction Reaction. Inorg Chem 2022; 61:14997-15006. [DOI: 10.1021/acs.inorgchem.2c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
4
|
Sorrentino I, Carrière M, Jamet H, Stanzione I, Piscitelli A, Giardina P, Le Goff A. The laccase mediator system at carbon nanotubes for anthracene oxidation and femtomolar electrochemical biosensing. Analyst 2022; 147:897-904. [PMID: 35142302 DOI: 10.1039/d1an02091a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated the use of POXA1b laccase from Pleurotus ostreatus for the oxidation of anthracene into anthraquinone. We show that different pathways can occur depending on the nature of the redox mediator combined to laccase, leading to different structural isomers. The laccase combined with 2,2'-azine-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) leads to the formation of 1,4-anthraquinone and/or 1,2-anthraquinone. The unprecedented role of carbon nanotubes (CNTs) as redox mediators for oxidation of anthracene into 9,10-anthraquinone is shown and corroborated by density-functional theory (DFT) calculations. Owing to the efficient adsorption of anthraquinones at CNT electrodes, anthracene can be detected with low limit-of-detection using either laccase in solution, CNT-supported laccase or laccase immobilized at magnetic beads exploiting the adhesive property of a chimeric hydrophobin-laccase.
Collapse
Affiliation(s)
| | - Marie Carrière
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | - Hélène Jamet
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Alessandra Piscitelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| |
Collapse
|
5
|
Clerich E, Affès S, Anticó E, Fontrodona X, Teixidor F, Romero I. Molecular and supported ruthenium complexes as photoredox oxidation catalysts in water. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01504h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular Ru-OH2 complex supported on rGO through non-covalent interactions performs as a photoredox oxidation catalyst in water, without an additional photosensitizer.
Collapse
Affiliation(s)
- Enric Clerich
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Syrine Affès
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Enriqueta Anticó
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| |
Collapse
|
6
|
Mikhaylov VN, Balova IA. Alternative Transformations of N-Heterocyclic Carbene Complexes of the Group 11 Metals in Transmetalation Reactions (A Review). RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Longevial JF, Lo M, Lebrun A, Laurencin D, Clément S, Richeter S. Molecular complexes and main-chain organometallic polymers based on Janus bis(carbenes) fused to metalloporphyrins. Dalton Trans 2020; 49:7005-7014. [PMID: 32186566 DOI: 10.1039/d0dt00594k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janus bis(N-heterocyclic carbenes) composed of a porphyrin core with two N-heterocyclic carbene (NHC) heads fused to opposite pyrroles were used as bridging ligands for the preparation of metal complexes. We first focused our attention on the synthesis of gold(i) chloride complexes [(NHC)AuCl] and investigated the substitution of the chloride ligand by acetylides to obtain the corresponding [(NHC)AuC[triple bond, length as m-dash]CR] complexes. Polyacetylides were then used to obtain molecular multiporphyrinic systems with porphyrins fused to only one NHC ligand, while main-chain organometallic polymers (MCOPs) were obtained when using Janus porphyrin bis(NHCs). Interestingly, MCOPs incorporating zinc(ii) porphyrins proved to be efficient as heterogeneous photocatalysts for the generation of singlet oxygen upon visible light irradiation.
Collapse
Affiliation(s)
- Jean-François Longevial
- ICGM, Univ Montpellier, CNRS, ENSCM, CC 1701, Campus Triolet, Place Eugène Bataillon, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
9
|
Franco JH, Klunder KJ, Lee J, Russell V, de Andrade AR, Minteer SD. Enhanced electrochemical oxidation of ethanol using a hybrid catalyst cascade architecture containing pyrene-TEMPO, oxalate decarboxylase and carboxylated multi-walled carbon nanotube. Biosens Bioelectron 2020; 154:112077. [PMID: 32093895 DOI: 10.1016/j.bios.2020.112077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
The work presented herein demonstrates a hybrid bi-catalytic architecture for the complete electrochemical oxidation of ethanol. The new catalytic system contains pyrene-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) immobilized on the surface of carboxylated multi-walled carbon nanotubes (MWCNT-COOH), and oxalate decarboxylase enzyme (OxDc) immobilized onto a carbon cloth electrode. Electrolysis revealed a stable amperometric curve and an excellent current density value over a duration of 10 h. In addition, the hybrid system immobilized on the carbon electrode exhibits outstanding stability after electrolysis. Nuclear magnetic resonance (NMR) and gas chromatography (GC) demonstrate that the hybrid electrode system is able to oxidize ethanol to CO2 after 10 h of electrolysis. Overall, this study illustrates the enhancement of an enzymatic biofuel cell through the hybrid multi-catalytic systems, which exhibit high oxidation rates for all substrates involved in complete ethanol oxidation, enabling the collection of up to 12 electrons per molecule of ethanol.
Collapse
Affiliation(s)
- Jefferson Honorio Franco
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Kevin J Klunder
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Jack Lee
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Victoria Russell
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Adalgisa R de Andrade
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
10
|
Comparison of Direct and Mediated Electron Transfer for Bilirubin Oxidase from Myrothecium Verrucaria. Effects of Inhibitors and Temperature on the Oxygen Reduction Reaction. Catalysts 2019. [DOI: 10.3390/catal9121056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the processes most studied in bioenergetic systems in recent years is the oxygen reduction reaction (ORR). An important challenge in bioelectrochemistry is to achieve this reaction under physiological conditions. In this study, we used bilirubin oxidase (BOD) from Myrothecium verrucaria, a subclass of multicopper oxidases (MCOs), to catalyse the ORR to water via four electrons in physiological conditions. The active site of BOD, the T2/T3 cluster, contains three Cu atoms classified as T2, T3α, and T3β depending on their spectroscopic characteristics. A fourth Cu atom; the T1 cluster acts as a relay of electrons to the T2/T3 cluster. Graphite electrodes were modified with BOD and the direct electron transfer (DET) to the enzyme, and the mediated electron transfer (MET) using an osmium polymer (OsP) as a redox mediator, were compared. As a result, an alternative resting (AR) form was observed in the catalytic cycle of BOD. In the absence and presence of the redox mediator, the AR direct reduction occurs through the trinuclear site (TNC) via T1, specifically activated at low potentials in which T2 and T3α of the TNC are reduced and T3β is oxidized. A comparative study between the DET and MET was conducted at various pH and temperatures, considering the influence of inhibitors like H2O2, F−, and Cl−. In the presence of H2O2 and F−, these bind to the TNC in a non-competitive reversible inhibition of O2. Instead; Cl− acts as a competitive inhibitor for the electron donor substrate and binds to the T1 site.
Collapse
|
11
|
Fritea L, Gross AJ, Reuillard B, Gorgy K, Cosnier S, Le Goff A. A Diethyleneglycol‐Pyrene‐Modified Ru(II) Catalyst for the Design of Buckypaper Bioelectrodes and the Wiring of Glucose Dehydrogenases. ChemElectroChem 2019. [DOI: 10.1002/celc.201900704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Luminita Fritea
- Département de ChimieMoléculaire, DCM, Univ. Grenoble Alpes, CNRS 38000 Grenoble France
- Preclinical Disciplines Department, Faculty of Medicine and PharmacyUniversity of Oradea 10 Piata 1 Decembrie Street 410073 Oradea Romania
| | - Andrew J. Gross
- Département de ChimieMoléculaire, DCM, Univ. Grenoble Alpes, CNRS 38000 Grenoble France
| | - Bertrand Reuillard
- Département de ChimieMoléculaire, DCM, Univ. Grenoble Alpes, CNRS 38000 Grenoble France
| | - Karine Gorgy
- Département de ChimieMoléculaire, DCM, Univ. Grenoble Alpes, CNRS 38000 Grenoble France
| | - Serge Cosnier
- Département de ChimieMoléculaire, DCM, Univ. Grenoble Alpes, CNRS 38000 Grenoble France
| | - Alan Le Goff
- Département de ChimieMoléculaire, DCM, Univ. Grenoble Alpes, CNRS 38000 Grenoble France
| |
Collapse
|
12
|
Suntrup L, Stein F, Hermann G, Kleoff M, Kuss-Petermann M, Klein J, Wenger OS, Tremblay JC, Sarkar B. Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study. Inorg Chem 2018; 57:13973-13984. [DOI: 10.1021/acs.inorgchem.8b02551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lisa Suntrup
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Felix Stein
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Merlin Kleoff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Martin Kuss-Petermann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Johannes Klein
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Jean Christophe Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| |
Collapse
|
13
|
Spectro-Electrochemical Microfluidic Platform for Monitoring Multi-Step Cascade Reactions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Ozawa H, Katori N, Kita T, Oka S, Haga MA. Controlling the Molecular Direction of Dinuclear Ruthenium Complexes on HOPG Surface through Noncovalent Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11901-11910. [PMID: 28945096 DOI: 10.1021/acs.langmuir.7b02194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We synthesized three types of binuclear Ru complexes (1-3) that contain pyrene anchors for the adsorption of 1-3 onto nanocarbon materials via noncovalent π-π interactions, in order to investigate their adsorption onto and their desorption from highly ordered pyrolytic graphite (HOPG). The adsorption saturation for 1 (6.22 pmol/cm2), 2 (2.83 pmol/cm2), and 3 (3.53 pmol/cm2) on HOPG was obtained from Langmuir isotherms. The desorption rate from HOPG electrodes decreased in the order 3 (2.4 × 10-5 s-1) > 2 (1.4 × 10-5 s-1) ≫ 1 (1.8 × 10-6 s-1). These results indicate that the number of pyrene anchors and their position of substitution in such complexes strongly affect the desorption behavior. However, neither the free energy of adsorption (ΔGads) nor the heterogeneous electron-transfer rate (kET) showed any significant differences among 1-3, albeit that the surface morphologies of the modified HOPG substrates showed domain structures that were characteristic for each Ru complex. In the case of 3, the average height changed from ∼2 to ∼4 nm upon increasing the concentration of the solution of 3 that was used for the surface modification. In contrast, the height for 1 and 2 remained constant (1.5-2 nm) upon increasing the concentration of the complexes in the corresponding solutions. While the molecular orientation of the Ru-Ru axis of 3 relative to the HOPG surface normal changed from parallel to perpendicular, the Ru-Ru axis in 1 and 2 remained parallel, which leads to an increased stability of 1 and 2.
Collapse
Affiliation(s)
- Hiroaki Ozawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | | | - Tomomi Kita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shota Oka
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masa-Aki Haga
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
15
|
Reuillard B, Ly KH, Rosser TE, Kuehnel MF, Zebger I, Reisner E. Tuning Product Selectivity for Aqueous CO 2 Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. J Am Chem Soc 2017; 139:14425-14435. [PMID: 28885841 PMCID: PMC5649446 DOI: 10.1021/jacs.7b06269] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The
development of high-performance electrocatalytic systems for the controlled
reduction of CO2 to value-added chemicals is a key goal
in emerging renewable energy technologies. The lack of selective and
scalable catalysts in aqueous solution currently hampers the implementation
of such a process. Here, the assembly of a [MnBr(2,2′-bipyridine)(CO)3] complex anchored to a carbon nanotube electrode via a pyrene
unit is reported. Immobilization of the molecular catalyst allows
electrocatalytic reduction of CO2 under fully aqueous conditions
with a catalytic onset overpotential of η = 360 mV, and controlled
potential electrolysis generated more than 1000 turnovers at η
= 550 mV. The product selectivity can be tuned by alteration of the
catalyst loading on the nanotube surface. CO was observed as the main
product at high catalyst loadings, whereas formate was the dominant
CO2 reduction product at low catalyst loadings. Using UV–vis
and surface-sensitive IR spectroelectrochemical techniques, two different
intermediates were identified as responsible for the change in selectivity
of the heterogenized Mn catalyst. The formation of a dimeric Mn0 species at higher surface loading was shown to preferentially
lead to CO formation, whereas at lower surface loading the electrochemical
generation of a monomeric Mn-hydride is suggested to greatly enhance
the production of formate. These results emphasize the advantages
of integrating molecular catalysts onto electrode surfaces for enhancing
catalytic activity while allowing excellent control and a deeper understanding
of the catalytic mechanisms.
Collapse
Affiliation(s)
- Bertrand Reuillard
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Khoa H Ly
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Timothy E Rosser
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Moritz F Kuehnel
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ingo Zebger
- Max Volmer Laboratorium für Biophysikalische Chemie, Sekretariat PC14, Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Sun W, Sun S, Jiang N, Gao L, Zheng G. Study of highly efficient heterodinuclear Ir-Os ECL complexes. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
18
|
Das A, Stahl SS. Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO Conjugate. Angew Chem Int Ed Engl 2017; 56:8892-8897. [PMID: 28586133 PMCID: PMC5831151 DOI: 10.1002/anie.201704921] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/08/2022]
Abstract
Electrocatalytic methods for organic synthesis could offer sustainable alternatives to traditional redox reactions, but strategies are needed to enhance the performance of molecular catalysts designed for this purpose. The synthesis of a pyrene-tethered TEMPO derivative (TEMPO=2,2,6,6-tetramethylpiperidinyl-N-oxyl) is described, which undergoes facile in situ noncovalent immobilization onto a carbon cloth electrode. Cyclic voltammetry and controlled potential electrolysis studies demonstrate that the immobilized catalyst exhibits much higher activity relative to 4-acetamido-TEMPO, an electronically similar homogeneous catalyst. In preparative electrolysis experiments with a series of alcohol substrates and the immobilized catalyst, turnover numbers and frequencies approach 2 000 and 4 000 h-1 , respectively. The synthetic utility of the method is further demonstrated in the oxidation of a sterically hindered hydroxymethylpyrimidine precursor to the blockbuster drug, rosuvastatin.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
19
|
Das A, Stahl SS. Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene–TEMPO Conjugate. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704921] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Das
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Shannon S. Stahl
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|