1
|
Yu CH, Au-Yeung KC, Liu R, Lee CH, Jiang D, Semagne Aweke B, Wu CH, Wang YJ, Wang TH, Voon Kong K, Yap GPA, Chen WC, Frenking G, Zhao L, Ong TG. Diversification of the Carbodicarbene Class by Embedding an Anionic Component in its Scaffold. Chemistry 2023; 29:e202302886. [PMID: 37730960 DOI: 10.1002/chem.202302886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/22/2023]
Abstract
Carbodicarbene (CDC) has become an emerging ligand in many fields due to its strong σ-donating ability.
Collapse
Affiliation(s)
- Cheng-Han Yu
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
| | - Ka-Chun Au-Yeung
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
- Corporate R&D Center, LCY Chemical Corporation, Kaohsiung, Taiwan (R.O.C
| | - Ruiqin Liu
- School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Chao-Hsien Lee
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
| | - Dandan Jiang
- School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Bamlaku Semagne Aweke
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (R.O.C
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan (R.O.C
| | - Chia-Hung Wu
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (R.O.C
| | - Yu-Jou Wang
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (R.O.C
| | - Ting-Hsuan Wang
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (R.O.C
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States
| | - Wen-Ching Chen
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
| | - Gernot Frenking
- School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043, Marburg, Germany
| | - Lili Zhao
- School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Tiow-Gan Ong
- Institute of chemistry, Academia Sinica, Taipei, Taiwan (R.O.C., 115201
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (R.O.C
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C
| |
Collapse
|
2
|
Taakili R, Barthes C, Lepetit C, Duhayon C, Valyaev DA, Canac Y. Direct Access to Palladium(II) Complexes Based on Anionic C, C, C-Phosphonium Ylide Core Pincer Ligand. Inorg Chem 2021; 60:12116-12128. [PMID: 34333976 DOI: 10.1021/acs.inorgchem.1c01316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of readily available imidazolium-phosphonium salt [MesIm(CH2)3PPh3](OTf)2 with PdCl2 in the presence of an excess of Cs2CO3 afforded selectively in one step the cationic Pd(II) complex [(C,C,C)Pd(NCMe)](OTf) exhibiting an LX2-type NHC-ylide-aryl C,C,C-pincer ligand via formal triple C-H bond activation. The replacement of labile MeCN in the latter by CNtBu and CO fragments allowed to estimate the overall electronic properties of this phosphonium ylide core pincer scaffold incorporating three different carbon-based donor ends by IR spectroscopy, cyclic voltammetry, and molecular orbital analysis, revealing its significantly higher electron-rich character compared to the structurally close NHC core pincer system with two phosphonium ylide extremities. The pincer complex [(C,C,C)Pd(CO)](OTf) represents a rare example of Pd(II) carbonyl species stable at room temperature and characterized by X-ray diffraction analysis. The treatment of isostructural cationic complexes [(C,C,C)Pd(NCMe)](OTf) and [(C,C,C)Pd(CO)](OTf) with (allyl)MgBr and nBuLi led to the formation of zwitterionic phosphonium organopalladates [(C,C,C)PdBr] and [(C,C,C)Pd(COnBu)], respectively.
Collapse
Affiliation(s)
- Rachid Taakili
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Christine Lepetit
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| |
Collapse
|
3
|
Klein M, Sundermeyer J. Modular Design Strategy toward Second-Generation Tridentate Carbodiphosphorane N,C,N Ligands with a Central Four-Electron Carbon Donor Motif and Their Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marius Klein
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
4
|
Münzer JE, Sieg GH, Vehlies R, Fuzon PA, Xie X, Neumüller B, Kuzu I. Cationic group 1 carbodiphosphorane complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Au-Yeung KC, Xiao D, Shih WC, Yang HW, Wen YS, Yap GPA, Chen WC, Zhao L, Ong TG. Carbodicarbene: geminal-Bimetallic Coordination in Selective Manner. Chemistry 2020; 26:17350-17355. [PMID: 32537790 DOI: 10.1002/chem.202002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The reaction of Pd(OAc)2 with free carbodicarbene (CDC) generates a Pd acetate trinuclear complex 1 via intramolecular C(sp3 )-H bond activation at one of the CDC methyl side arms. The solid structure of 1 reveals the capability of CDC to facilitate a double dative bond with two palladium centers in geminal fashion. This is attributed to the chelating mode of CDC, which can frustrate π-conjugation within the CDC framework. Such effect maybe also amplified by ligand-ligand interaction. The formation of other gem-bimetallic Pd-Pd, Pd-Au, and Ni-Au provides further structural evidence for this proof-of-concept in selective installation. Structural analysis is supported by computational calculations based on state-of-the-art energy decomposition analysis (EDA) in conjunction with natural orbitals for chemical valence (NOCV) method.
Collapse
Affiliation(s)
| | - Dengmengfei Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wei-Chih Shih
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Wen Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yuh-Sheng Wen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, USA
| | | | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Taipei, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Böttger SC, Poggel C, Sundermeyer J. ortho-Directed Dilithiation of Hexaphenyl-carbodiphosphorane. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silas C. Böttger
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Christina Poggel
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
7
|
Zhao L, Chai C, Petz W, Frenking G. Carbones and Carbon Atom as Ligands in Transition Metal Complexes. Molecules 2020; 25:molecules25214943. [PMID: 33114580 PMCID: PMC7663554 DOI: 10.3390/molecules25214943] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
This review summarizes experimental and theoretical studies of transition metal complexes with two types of novel metal-carbon bonds. One type features complexes with carbones CL2 as ligands, where the carbon(0) atom has two electron lone pairs which engage in double (σ and π) donation to the metal atom [M]⇇CL2. The second part of this review reports complexes which have a neutral carbon atom C as ligand. Carbido complexes with naked carbon atoms may be considered as endpoint of the series [M]-CR3 → [M]-CR2 → [M]-CR → [M]-C. This review includes some work on uranium and cerium complexes, but it does not present a complete coverage of actinide and lanthanide complexes with carbone or carbide ligands.
Collapse
Affiliation(s)
- Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
| | - Chaoqun Chai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
| | - Wolfgang Petz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
- Correspondence: (W.P.); (G.F.)
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
- Correspondence: (W.P.); (G.F.)
| |
Collapse
|
8
|
Klein M, Demirel N, Schinabeck A, Yersin H, Sundermeyer J. Cu(I) Complexes of Multidentate N,C,N- and P,C,P-Carbodiphosphorane Ligands and Their Photoluminescence. Molecules 2020; 25:E3990. [PMID: 32883039 PMCID: PMC7504792 DOI: 10.3390/molecules25173990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
A series of dinuclear copper(I) N,C,N- and P,C,P-carbodiphosphorane (CDP) complexes using multidentate ligands CDP(Py)2 (1) and (CDP(CH2PPh2)2 (13) have been isolated and characterized. Detailed structural information was gained by single-crystal XRD analyses of nine representative examples. The common structural motive is the central double ylidic carbon atom with its characteristic two lone pairs involved in the binding of two geminal L-Cu(I) fragments at Cu-Cu distances in the range 2.55-2.67 Å. In order to enhance conformational rigidity within the characteristic Cu-C-Cu triangle, two types of chelating side arms were symmetrically attached to each phosphorus atom: two 2-pyridyl functions in ligand CDP(Py)2 (1) and its dinuclear copper complexes 2-9 and 11, as well as two diphenylphosphinomethylene functions in ligand CDP(CH2PPh2)2 (13) and its di- and mononuclear complexes 14-18. Neutral complexes were typically obtained via the reaction of 1 with Cu(I) species CuCl, CuI, and CuSPh or via the salt elimination reaction of [(CuCl)2(CDP(Py)2] (2) with sodium carbazolate. Cationic Cu(I) complexes were prepared upon treating 1 with two equivalents of [Cu(NCMe)4]PF6, followed by the addition of either two equivalents of an aryl phosphine (PPh3, P(C6H4OMe)3) or one equivalent of bisphosphine ligands bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (XantPhos), or 1,1'-bis(diphenyl-phosphino) ferrocene (dppf). For the first time, carbodiphosphorane CDP(CH2PPh2)2 (13) could be isolated upon treating its precursor [CH(dppm)2]Cl (12) with NaNH2 in liquid NH3. A protonated and a deprotonated derivative of ligand 13 were prepared, and their coordination was compared to neutral CDP ligand 13. NMR analysis and DFT calculations reveal that the most stable tautomer of 13 does not show a CDP (or carbone) structure in its uncoordinated base form. For most of the prepared complexes, photoluminescence upon irradiation with UV light at room temperature was observed. Quantum yields (ΦPL) were determined to be 36% for dicationic [(CuPPh3)2(CDP(Py)2)](PF6)2 (4) and 60% for neutral [(CuSPh)2(CDP(CH2PPh2)2] (16).
Collapse
Affiliation(s)
- Marius Klein
- Department of Chemistry and Science, Materials Sciences Center, Philipps University of Marburg, 35043 Marburg, Germany; (M.K.); (N.D.)
| | - Nemrud Demirel
- Department of Chemistry and Science, Materials Sciences Center, Philipps University of Marburg, 35043 Marburg, Germany; (M.K.); (N.D.)
| | - Alexander Schinabeck
- Institute for Physical Chemistry, University of Regensburg, 93040 Regensburg, Germany; (A.S.); (H.Y.)
| | - Hartmut Yersin
- Institute for Physical Chemistry, University of Regensburg, 93040 Regensburg, Germany; (A.S.); (H.Y.)
| | - Jörg Sundermeyer
- Department of Chemistry and Science, Materials Sciences Center, Philipps University of Marburg, 35043 Marburg, Germany; (M.K.); (N.D.)
| |
Collapse
|
9
|
Böttger S, Gruber M, Münzer JE, Bernard GM, Kneusels NJH, Poggel C, Klein M, Hampel F, Neumüller B, Sundermeyer J, Michaelis VK, Tonner R, Tykwinski RR, Kuzu I. Solvent-Induced Bond-Bending Isomerism in Hexaphenyl Carbodiphosphorane: Decisive Dispersion Interactions in the Solid State. Inorg Chem 2020; 59:12054-12064. [DOI: 10.1021/acs.inorgchem.0c00994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Silas Böttger
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Marco Gruber
- Interdisciplinary Center of Molecular Materials (ICMM), Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Jörn Eike Münzer
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Guy M. Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Nis-Julian H. Kneusels
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christina Poggel
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Marius Klein
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Frank Hampel
- Interdisciplinary Center of Molecular Materials (ICMM), Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Bernhard Neumüller
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Jörg Sundermeyer
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | | | - Ralf Tonner
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Rik R. Tykwinski
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Istemi Kuzu
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
10
|
Taakili R, Canac Y. NHC Core Pincer Ligands Exhibiting Two Anionic Coordinating Extremities. Molecules 2020; 25:molecules25092231. [PMID: 32397416 PMCID: PMC7248942 DOI: 10.3390/molecules25092231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The chemistry of NHCcore pincer ligands of LX2 type bearing two pending arms, identical or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide (R3P+-CR2-) or by a heteroatom through amide (R2N-), oxide (RO-), or thio(seleno)oxide (RS-, RSe-) donor functionalities. Through selected examples, the synthetic methods, coordination properties, and applications of such tridentate systems are described. Particular emphasis is placed on the role of the donor ends in the chemical behavior of these species.
Collapse
|
11
|
Juvenal F, Fortin D, Harvey PD. A Platinum(II) Organometallic Building Block for the Design of Emissive Copper(I) and Silver(I) Coordination Polymers. Inorg Chem 2020; 59:7117-7134. [DOI: 10.1021/acs.inorgchem.0c00584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frank Juvenal
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Daniel Fortin
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D. Harvey
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
12
|
Kneusels NJH, Münzer JE, Flosdorf K, Jiang D, Neumüller B, Zhao L, Eichhöfer A, Frenking G, Kuzu I. Double donation in trigonal planar iron-carbodiphosphorane complexes - a concise study on their spectroscopic and electronic properties. Dalton Trans 2020; 49:2537-2546. [PMID: 32022052 DOI: 10.1039/c9dt04725e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the syntheses of trigonal planar coordinated Fe(ii) carbodiphosphorane (CDPR) complexes, starting from iron(ii)-bis(trimethylsilylamide) [Fe{N(SiMe3)2}2] and hexaphenyl-(CDPPh) and sym-dimethyltetraphenyl-carbodiphosphoranes (CDPMe), respectively. Both complexes [CDPPh-Fe{N(SiMe3)2}2] (1) and [CDPMe-Fe{N(SiMe3)2}2] (2) were examined in solution and in the solid state. 1 shows a dissociation equilibrium in solution which we monitored by variable temperature 1H-NMR spectroscopy. Magnetic measurements of 1 and 2 yielded a high spin configuration (S = 2) for both complexes. Quantum chemical calculations were performed to analyze the bonding situation in compound 1.
Collapse
Affiliation(s)
- Nis-Julian H Kneusels
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Jörn E Münzer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Kimon Flosdorf
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Dandan Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Andreas Eichhöfer
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany. and Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Istemi Kuzu
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| |
Collapse
|
13
|
Flosdorf K, Jiang D, Zhao L, Neumüller B, Frenking G, Kuzu I. An Experimental and Theoretical Study of the Structures and Properties of [CDP
Me
‐Ni(CO)
3
] and [Ni
2
(CO)
4
(µ
2
‐CO)(µ
2
‐CDP
Me
)]. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kimon Flosdorf
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 4, D ‐35032 Marburg Germany
| | - Dandan Jiang
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 211816 Nanjing China
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 211816 Nanjing China
| | - Bernhard Neumüller
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 4, D ‐35032 Marburg Germany
| | - Gernot Frenking
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 211816 Nanjing China
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 4, D ‐35032 Marburg Germany
| | - Istemi Kuzu
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 4, D ‐35032 Marburg Germany
| |
Collapse
|
14
|
Klein M, Xie X, Burghaus O, Sundermeyer J. Synthesis and Characterization of a N,C,N-Carbodiphosphorane Pincer Ligand and Its Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marius Klein
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Olaf Burghaus
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
15
|
Münzer JE, Kneusels NJH, Weinert B, Neumüller B, Kuzu I. Hexaphenyl carbodiphosphorane adducts of heavier group 15 element trichlorides: syntheses, properties and reactivities. Dalton Trans 2019; 48:11076-11085. [PMID: 31257392 DOI: 10.1039/c9dt01784d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein, we present a series of hexaphenyl carbodiphosphorane (CDPPh) adducts of heavier group 15 trichlorides ECl3 (E = P-Bi). The reaction with PCl3 yields the known salt [CDPPh-PCl2][Cl] ([1][Cl]), the heavier element trichlorides ECl3 (E = Sb (4), Bi (5)) give the neutral adducts CDPPh-ECl3 which were characterised crystallographically and spectroscopically. The reaction of CDPPh with AsCl3 does not yield CDPPh-AsCl3 (2), but in the presence of GaCl3 the corresponding salt [CDPPh-AsCl2][GaCl4] ([3][GaCl4]) is formed. DFT (density functional theory) calculations were carried out to examine the molecular frontier orbitals in 1+-5. Additional reactivity studies revealed an intramolecular electrophilic aromatic substitution (SEAr) in 1+, which represents an excellent starting point for further selective C-P bond formation reactions.
Collapse
Affiliation(s)
- Jörn E Münzer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.
| | - Nis-Julian H Kneusels
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.
| | - Bastian Weinert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.
| | - Istemi Kuzu
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.
| |
Collapse
|
16
|
Quinlivan PJ, Shlian DG, Amemiya E, Parkin G. Reactivity of the carbodiphosphorane, (Ph 3P) 2C, towards main group metal alkyl compounds: coordination and cyclometalation. Dalton Trans 2019; 48:9139-9151. [PMID: 31145405 DOI: 10.1039/c9dt00678h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The carbodiphosphorane, (Ph3P)2C, reacts with Me3Al and Me3Ga to afford the adducts, [(Ph3P)2C]AlMe3 and [(Ph3P)2C]GaMe3, which have been structurally characterized by X-ray diffraction. (Ph3P)2C also reacts with Me2Zn and Me2Cd to generate an adduct but the formation is reversible on the NMR time scale. At elevated temperatures, however, elimination of methane and cyclometalation occurs to afford [κ2-Ph3PC{PPh2(C6H4)}]ZnMe and [κ2-Ph3PC{PPh2(C6H4)}]CdMe. Analogous cyclometalated products, [κ2-Ph3P{CPPh2(C6H4)}]ZnN(SiMe3)2 and [κ2-Ph3P{CPPh2(C6H4)}]CdN(SiMe3)2, are also obtained upon reaction of (Ph3P)2C with Zn[N(SiMe3)2]2 and Cd[N(SiMe3)2]2. The magnesium compounds, Me2Mg and {Mg[N(SiMe3)2]2}2, likewise react with (Ph3P)2C to afford cyclometalated derivatives, namely [κ2-Ph3PC{PPh2(C6H4)}]MgN(SiMe3)2 and {[κ2-Ph3PC{PPh2(C6H4)}]MgMe}2. While this reactivity is similar to the zinc system, the magnesium methyl complex is a dimer with bridging methyl groups, whereas the zinc complex is a monomer. The greater tendency of the methyl groups to bridge magnesium centers rather than zinc centers is supported by density functional theory calculations.
Collapse
Affiliation(s)
- Patrick J Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
17
|
Fustier-Boutignon M, Nebra N, Mézailles N. Geminal Dianions Stabilized by Main Group Elements. Chem Rev 2019; 119:8555-8700. [PMID: 31194516 DOI: 10.1021/acs.chemrev.8b00802] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is dedicated to the chemistry of stable and isolable species that bear two lone pairs at the same C center, i.e., geminal dianions, stabilized by main group elements. Three cases can thus be considered: the geminal-dilithio derivative, for which the two substituents at C are neutral, the yldiide derivatives, for which one substituent is neutral while the other is charged, and finally the geminal bisylides, for which the two substituents are positively charged. In this review, the syntheses and electronic structures of the geminal dianions are presented, followed by the studies dedicated to their reactivity toward organic substrates and finally to their coordination chemistry and applications.
Collapse
Affiliation(s)
- Marie Fustier-Boutignon
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Noel Nebra
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Nicolas Mézailles
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| |
Collapse
|
18
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
19
|
Vondung L, Jerabek P, Langer R. Ligands Based on Phosphine-Stabilized Aluminum(I), Boron(I), and Carbon(0). Chemistry 2019; 25:3068-3076. [PMID: 30565756 DOI: 10.1002/chem.201805123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Indexed: 11/05/2022]
Abstract
A systematic quantum chemical study of the bonding in d6 -transition-metal complexes, containing phosphine-stabilized, main-group-element fragments, (R3 P)2 E, as ligands (E=AlH, BH, CH+ , C), is reported. By using energy decomposition analysis, it is demonstrated that a strong M-E bond is accompanied by weak P-E bonds, and vice versa. Although the Al-M bond is, for example, found to be very strong, the weak Al-P bond suggests that the corresponding metal complexes will not be stable towards phosphine dissociation. The interaction energies for the boron(I)-based ligand are lower, but still higher than those for two-carbon-based ligands. For neutral ligands, electrostatic interactions are the dominating contributions to metal-ligand bonding, whereas for the cationic ligand a significant destabilization, with weak orbital and even weaker electrostatic metal-ligand interactions, is observed. Finally, for iron(II) complexes, it is demonstrated that different reactivity patterns are expected for the four donor groups: the experimentally observed reversible E-H reductive elimination of the borylene-based ligand (E=BH) exhibits significantly higher barriers for the protonated carbodiphosphorane (CDP) ligand (E=CH) and would proceed through different intermediates and transition states. For aluminum, such reaction pathways are not feasible (E=AlH). Moreover, it is demonstrated that the metal hydrido complexes with CDP ligands might not be stable towards reduction and isomerization to a protonated CDP ligand and a reduced metal center.
Collapse
Affiliation(s)
- Lisa Vondung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.,Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Sciences, Massey University, Albany, New Zealand
| | - Paul Jerabek
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Sciences, Massey University, Albany, New Zealand.,Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| |
Collapse
|
20
|
Taakili R, Lepetit C, Duhayon C, Valyaev DA, Lugan N, Canac Y. Palladium(ii) pincer complexes of a C,C,C-NHC, diphosphonium bis(ylide) ligand. Dalton Trans 2019; 48:1709-1721. [DOI: 10.1039/c8dt04316g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The preparation, characterization, and reactivity of Pd(ii) complexes of the C,C,C-NHC, diphosphonium bis(ylide) pincer ligand of LX2-type are here described.
Collapse
Affiliation(s)
| | | | | | | | - Noël Lugan
- LCC-CNRS
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Yves Canac
- LCC-CNRS
- Université de Toulouse
- CNRS
- Toulouse
- France
| |
Collapse
|
21
|
Berenguer JR, Lalinde E, Moreno MT. Luminescent cyclometalated-pentafluorophenyl Pt II , Pt IV and heteropolynuclear complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
|
23
|
Horiuchi S, Moon S, Sakuda E, Ito A, Arikawa Y, Umakoshi K. U- to Z-shape isomerization in a Pt2Ag2 framework containing pyridyl-NHC ligands. Dalton Trans 2018; 47:7113-7117. [DOI: 10.1039/c8dt01047a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A highly twisted U-shaped Pt2Ag2 complex bearing pyridyl–NHC ligands showed isomerization to Z-shaped conformations via an intermolecular process. 1H NMR experiments revealed that the isomerization reached U : Z = 2 : 1 ratio in a thermodynamic equilibrium state.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Sangjoon Moon
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Eri Sakuda
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Akitaka Ito
- Graduate School of Engineering/School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| |
Collapse
|
24
|
Synthesis, Structure, and Reactivity of Carbodiphosphoranes, Carbodicarbenes, and Related Species. STRUCTURE AND BONDING 2017. [DOI: 10.1007/430_2017_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
25
|
Morosaki T, Fujii T. Recent Advances in Heteroatom-Stabilized Carbones and Their Metal Complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2017. [DOI: 10.1016/bs.adomc.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|