1
|
Wang D, Heng Y, Li T, Ding W, Hou G, Zi G, Walter MD. Influence of 1,2,4-Tri- tert-butylcyclopentadienyl Ligand on the Reactivity of the Thorium Bipyridyl Metallocene [η 5-1,2,4-(Me 3C) 3C 5H 2] 2Th(bipy)]. Inorg Chem 2024; 63:19188-19212. [PMID: 39361540 PMCID: PMC11483809 DOI: 10.1021/acs.inorgchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
The thorium bipyridyl metallocene (Cp3tBu)2Th(bipy) (1; Cp3tBu = η5-1,2,4-(Me3C)3C5H2) shows a rich reactivity toward a series of small molecules. For example, complex 1 may act as a synthon for the (Cp3tBu)2Th(II) fragment as illustrated by its reactivity toward to CuI, hydrazine derivative (PhNH)2, Ph2E2 (E = S, Se), elemental sulfur (S8) and selenium (Se), organic azides, CS2, and isothiocyanates. Moreover, in the presence of polar multiple bonds, such as those in ketones Ph2CO and (CH2)5CO, aldehydes p-MePhCHO and p-ClPhCHO, seleno-ketone (p-MeOPh)2CSe, nitriles PhCN, Ph2CHCN, C6H11CN, and p-(NC)2Ph, and benzoyl cyanide PhCOCN, C-C coupling occurs to furnish (Cp3tBu)2Th[(bipy)(Ph2CO)] (10), (Cp3tBu)2Th[(bipy)((CH2)5CO)] (11), (Cp3tBu)2Th[(bipy)(p-MePhCHO)] (12), (Cp3tBu)2Th[(bipy)(p-ClPhCHO)] (13), (Cp3tBu)2Th[(bipy){(p-MeOPh)2CSe}] (14), (Cp3tBu)2Th[(bipy)(PhCN)] (16), (Cp3tBu)2Th[(bipy)(Ph2CHCN)] (17), (Cp3tBu)2Th[(bipy)(C6H11CN)] (18), [(Cp3tBu)2Th]2{μ-(bipy)[p-Ph(CN)2](bipy)} (20), and (Cp3tBu)2Th{(bipy)[PhC(CN)O]} (21), respectively. Nevertheless, ketazine (PhCH═N)2 or benzyl nitrile PhCH2CN forms the dimeric complexes [(Cp3tBu)Th]2[μ-NC(Ph)(bipy)]2 (15) and (Cp3tBu)2Th[(bipy){C(═CHPh)NH}] (19), respectively. In contrast, C-N bond cleavage and C-C coupling processes occur upon addition of isonitriles Me3CNC and C6H11NC to 1 to yield the thorium isocyanido amido complexes (Cp3tBu)2Th[4-(Me3C)bipy](NC) (22) and (Cp3tBu)2Th[4-(C6H11)bipy](NC) (23), respectively. Furthermore, a single-electron transfer (SET) process ensues when 1 equiv of CuI is added to 1 to yield the Th(VI) bipyridyl iodide complex (Cp3tBu)2Th(I)(bipy) (3).
Collapse
Affiliation(s)
- Dongwei Wang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Technische
Universität Braunschweig, Institut
für Anorganische und Analytische Chemie, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
2
|
Modder DK, Scopelliti R, Mazzanti M. Accessing a Highly Reducing Uranium(III) Complex through Cyclometalation. Inorg Chem 2024; 63:9527-9538. [PMID: 38217471 DOI: 10.1021/acs.inorgchem.3c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
U(IV) cyclometalated complexes have shown rich reactivity, but their low oxidation state analogues still remain rare. Herein, we report the isolation of [K(2.2.2-cryptand)][UIII{N(SiMe3)2}2(κ2-C,N-CH2SiMe2NSiMe3)], 1, from the reduction of [UIII{N(SiMe)2}3] with KC8 and 2.2.2-cryptand at room temperature. Cyclic voltammetry studies demonstrate that 1 has a reduction potential similar to that of the previously reported [K(2.2.2-cryptand)][UII{N(SiMe)2}3] (Epc = -2.6 V versus Fc+/0 and Epc = -2.8 V versus Fc+/0, respectively). Complex 1, indeed, shows similar reducing abilities upon reactions with 4,4'-bipyridine, 2,2'-bipyridine, and 1-azidoadamantane. Interestingly, 1 was also found to be the first example of a mononuclear U(III) complex that is capable of reducing pyridine. In addition, it is shown that a wide variety of substrates can be inserted into the U-C bond, forming new U(III) metallacycles. These results highlight that cyclometalated U(III) complexes can serve as versatile precursors for a broad range of reactivity and for assembling a variety of novel chemical architectures.
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Li T, Heng Y, Wang D, Hou G, Zi G, Ding W, Walter MD. Uranium versus Thorium: A Case Study on a Base-Free Terminal Uranium Imido Metallocene. Inorg Chem 2024; 63:9487-9510. [PMID: 38048266 DOI: 10.1021/acs.inorgchem.3c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The structure of and bonding in two base-free terminal actinide imido metallocenes, [η5-1,2,4-(Me3C)3C5H2]2An═N(p-tolyl) (An = U (1), Th (1')) are compared and connected to their individual reactivity. While structurally rather similar, the U(IV) derivative 1 is slightly more sterically crowded. Furthermore, density functional theory (DFT) studies imply that the 5f orbital contribution to the bonding within the individual actinide imido An═N(p-tolyl) moieties is significantly larger for 1 than for 1', which makes the bonds between the [η5-1,2,4-(Me3C)3C5H2]2U2+ and [(p-tolyl)N]2- fragments more covalent. Therefore, steric and electronic factors impact the reactivity of these imido complexes. For example, complex 1 is inert toward internal alkynes, but it readily forms Lewis base adducts [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(L) (L = OPMe3 (6), dmap (9), PhCN (14), and 2,6-Me2PhNC (17)) with Me3PO, 4-dimethylaminopyridine (dmap), nitrile, PhCN, or isonitrile 2,6-Me2PhNC. It may also react as a nucleophile or undergo a [2 + 2] cycloaddition with CS2, isothiocyanates, thio-ketones, ketones, lactides, and acyl nitriles, forming the four- or five-membered metallaheteroacycles, terminal sulfido, or oxido complexes, and cyanide amidate complexes, respectively. In contrast, after the addition of aldehyde p-tolylCHO, the tetranuclear complex [η5-1,2,4-(Me3C)3C5H2]4[OCH(p-tolyl)CH(p-tolyl)O]2U4O4 (10) is isolated. However, while 1 is unreactive toward dicyclohexylcarbodiimide (DCC), an equilibrium exists in benzene solution between N,N'-diisopropylcarbodiimide (DIC), 1, and the four-membered metallaheterocycle [η5-1,2,4-(Me3C)3C5H2]2U[N(p-tolyl)C(═NiPr)N(iPr)] (12). Furthermore, 1 may also engage in single- and two-electron transfer processes. It is singly oxidized by Ph3CN3, CuI, Ph2S2, and Ph2Se2, yielding the uranium(V) imido complexes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(X) (X = N3 (20), I (22), PhS (23), and PhSe (24)), or is doubly oxidized by organic azides (RN3) and 9-diazofluorene, forming the uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(=NR) (R = p-tolyl (18), mesityl (19)) and [η5-1,2,4-(Me3C)3C5H2]2U=N(p-tolyl)[=NN=(9-C13H8)] (21), respectively.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Wang S, Wang D, Heng Y, Li T, Ding W, Zi G, Walter MD. Synthesis and Structure of [η 5-1,2,4-(Me 3Si) 3C 5H 2] 2Th(bipy) and Its Reactivity toward Small Molecules. Inorg Chem 2024; 63:7473-7492. [PMID: 38591749 DOI: 10.1021/acs.inorgchem.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Halide exchange of (Cp3tms)2ThCl2 (1; Cp3tms = η5-1,2,4-(Me3Si)3C5H2) with Me3SiI furnishes (Cp3tms)2ThI2 (2), which is then reduced with potassium graphite (KC8) in the presence of 2,2'-bipyridine to give the thorium bipyridyl metallocene (Cp3tms)2Th(bipy) (3) in good yield. Complex 3 was fully characterized and readily reacted with various small molecules. For example, 3 may serve as a synthetic equivalent for the (Cp3tms)2Th(II) fragment when exposed to CuI, Ph2S2, organic azides, and CS2. Moreover, upon the addition of thiobenzophenone Ph2CS, p-methylbenzaldehyde (p-MeC6H4)CHO, benzophenone Ph2CO, amidate PhCONH(p-tolyl), seleno-ketone (p,p'-dimethoxy), selenobenzophenone (p-MeOPh)2CSe, di(p-tolyl)methanimine (p-tolyl)2C═NH, 1,2-di(benzylidene)hydrazine (PhCH═N)2, and nitriles PhCN, PhCH2CN, and Ph2CHCN C-C coupling results to give (Cp3tms)2Th[(bipy)(Ph2CS)] (8), (Cp3tms)2Th[(bipy)(p-MePhCHO)] (9), (Cp3tms)2Th[(bipy)(Ph2CO)] (10), (Cp3tms)2Th[(bipy){(p-tolylNH)(Ph)CO}] (11), (Cp3tms)2Th[(bipy){(p-MeOPh)2CSe}] (12), (Cp3tms)2Th[(bipy){(p-tolyl)2CNH}] (13), (Cp3tms)2Th[(bipy)(PhCHNN═CHPh)] (14), (Cp3tms)2Th[(bipy)(PhCN)] (16), (Cp3tms)2Th[(bipy)(PhCH2CN)] (17), and (Cp3tms)2Th[(bipy)(Ph2CHCN)] (18), respectively. However, when thiazole is added to 3, the dimeric sulfido complex [(Cp3tms)2Th]2[μ-(bipy)CH2NCHCHS]2 (15) can be isolated. Moreover, the addition of isonitriles such as Me3CNC and PhCH2NC to 3 results in C-N bond cleavage and C-C coupling processes to form the thorium isocyanido amido complexes (Cp3tms)2Th[4-(Me3C)bipy](NC) (19) and (Cp3tms)2Th[4-(PhCH2)bipy](NC) (20), respectively. Nevertheless, upon exposure of 3 to (trimethylsilyl)diazomethane Me3SiCHN2, the bis-amido complex (Cp3tms)2Th[5,6-(Me3SiCH)bipy] (21), concomitant with N2 release, is isolated.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
5
|
Li T, Wang D, Heng Y, Hou G, Zi G, Walter MD. Reactivity of a Lewis base-supported uranium terminal imido metallocene towards small molecules. Dalton Trans 2023; 52:13618-13630. [PMID: 37698550 DOI: 10.1039/d3dt02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The Lewis base-supported uranium terminal imido metallocene [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(dmap) (1) readily reacts with various small molecules such as internal alkynes, isothiocyanates, thioketones, amidates, organic nitriles and imines, chlorosilanes, copper iodide, diphenyl disulfide, organic azides and diazoalkane derivatives. For example, treatment of 1 with PhCCCCPh and PhNCS forms metallaheterocycles originating from a [2 + 2] cycloaddition to yield [η5-1-(p-tolyl)NC(Ph)CHCC(Ph)CH2Si(Me)2-2,4-(Me3Si)2C5H2][η5-1,2,4-(Me3Si)3C5H2]U (2) and [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(NPh)S](dmap) (3), respectively. The reaction of 1 with the thioketone Ph2CS forms the known uranium sulfido complex [η5-1,2,4-(Me3Si)3C5H2]2US(dmap) (4), which reacts with a second molecule of Ph2CS to give the disulfido compound [η5-1,2,4-(Me3Si)3C5H2]2U(S2CPh2) (5). The imido moiety also promotes deprotonation reactions as illustrated in the reactions with the amide PhCONH(p-tolyl), the nitrile PhCH2CN and the imine (p-tolyl)2CNH to form the bis-amidate [η5-1,2,4-(Me3Si)3C5H2]2U[OC(Ph)N(p-tolyl)]2 (7), and the iminato complexes [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(CH2Ph)NH](NCCHPh) (8) and [η5-1,2,4-(Me3Si)3C5H2]2U[NH(p-tolyl)][NC(p-tolyl)2] (9), respectively. Addition of PhSiH2Cl to 1 yields [η5-1,2,4-(Me3Si)3C5H2]2U(Cl)[N(p-tolyl)SiH2Ph] (10). In contrast, the uranium(V) imido complexes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(I) (11) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(SPh) (12), may be isolated upon addition of CuI or Ph2S2 to 1, respectively. Uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(NR) (R = p-tolyl (13), mesityl (14)) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)[NN(9-C13H8)] (15) are accessible from 1 on exposure to RN3 (R = p-tolyl, mesityl) and 9-diazofluorene, respectively. Complexes 2, 3, 5, and 7-15 were characterized by various spectroscopic techniques and, in addition, compounds 2, 3, 5, and 7-13 were structurally authenticated by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Wu L, Wang Z, Liu Y, Chen L, Ren W. A 2,2'-bipyridyl calcium complex: synthesis, structure and reactivity studies. Dalton Trans 2023; 52:7175-7181. [PMID: 37162257 DOI: 10.1039/d3dt00301a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A 2,2'-bipyridyl calcium complex based on a tridentate ligand [CH3C(N-2,6-iPr2C6H3)CHC(CH3)NCH2CH2N(CH3)2]Ca(bipy)(THF) (1) was prepared by the reduction of {[CH3C(N-2,6-iPr2C6H3)CHC(CH3)NCH2CH2N(CH3)2]CaI(THF)}2 with potassium graphite in the presence of 2,2'-bipyridine (bipy). Complex 1 is a good Ca(I)synthon, as shown by its reactivity with I2, PhCH2SSCH2Ph, PhCH2SeSeCH2Ph and 9-fluorenone, yielding the calcium iodide complex [CH3C(N-2,6-iPr2C6H3)CHC(CH3)NCH2CH2N(CH3)2]CaI(bipy) (2), calcium thiolate [CH3C(N-2,6-iPr2C6H3)CHC(CH3)NCH2CH2N(CH3)2]Ca(SCH2Ph)(bipy) (3), calcium selenolate [CH3C(N-2,6-iPr2C6H3)CHC(CH3)NCH2CH2N(CH3)2]Ca(SeCH2Ph)(bipy) (4), and calcium ketyl complex [CH3C(N-2,6-iPr2C6H3)CHC(CH3)NCH2CH2N(CH3)2]Ca[O-(9-C13H8˙)](bipy)·2THF (5·2THF), respectively. In addition, reactions of complex 5 with CS2, CH2CHCH2Br and PhCH2Br give the corresponding dimeric bis(thiolate) complex {[S2CC(CMe(NAr))C(Me)NCH2CH2NMe2]Ca(DME)}2 (6), dimeric calcium bromide complex {[(9-CH2CHCH2-C13H8-9)-O]CaBr(THF)(bipy)}2 (7) and {[(9-C6H5CH2-C13H8-9)-O]CaBr[O-(9-C13H8)](bipy)}2 (8). These results demonstrated that the calcium ketyl complex 5 can also be employed as a single-electron transfer reagent. All the new compounds were characterized by various spectroscopic methods, and their solid-state structures were further confirmed by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Lingfeng Wu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhenghui Wang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yumiao Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Li T, Wang D, Heng Y, Hou G, Zi G, Walter MD. Influence of the 1,2,4-Tri- tert-butylcyclopentadienyl Ligand on the Reactivity of the Uranium Bipyridyl Metallocene [η 5-1,2,4-(Me 3C) 3C 5H 2] 2U(bipy). Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Heng Y, Li T, Wang D, Hou G, Zi G, Walter MD. Synthesis and Reactivity of the Uranium Bipyridyl Metallocene [η 5-1,3-(Me 3C) 2C 5H 3] 2U(bipy). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
9
|
Tsoureas N, Rajeshkumar T, Townrow OPE, Maron L, Layfield RA. Thorium- and Uranium-Mediated C-H Activation of a Silyl-Substituted Cyclobutadienyl Ligand. Inorg Chem 2022; 61:20629-20635. [PMID: 36484644 PMCID: PMC9768750 DOI: 10.1021/acs.inorgchem.2c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclobutadienyl complexes of the f-elements are a relatively new yet poorly understood class of sandwich and half-sandwich organometallic compounds. We now describe cyclobutadienyl transfer reactions of the magnesium reagent [(η4-Cb'''')Mg(THF)3] (1), where Cb'''' is tetrakis(trimethylsilyl)cyclobutadienyl, toward thorium(IV) and uranium(IV) tetrachlorides. The 1:1 stoichiometric reactions between 1 and AnCl4 proceed with intact transfer of Cb'''' to give the half-sandwich complexes [(η4-Cb'''')AnCl(μ-Cl)3Mg(THF)3] (An = Th, 2; An = U, 3). Using a 2:1 reaction stoichiometry produces [Mg2Cl3(THF)6][(η4-Cb'''')An(η3-C4H(SiMe3)3-κ-(CH2SiMe2)(Cl)] (An = Th, [Mg2Cl3(THF)6][4]; An = U [Mg2Cl3(THF)6][5]), in which one Cb'''' ligand has undergone cyclometalation of a trimethylsilyl group, resulting in the formation of an An-C σ-bond, protonation of the four-membered ring, and an η3-allylic interaction with the actinide. Complex solution-phase dynamics are observed with multinuclear nuclear magnetic resonance spectroscopy for both sandwich complexes. A computational analysis of the reaction mechanism leading to the formation of 4 and 5 indicates that the cyclobutadienyl ligands undergo C-H activation across the actinide center.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Thayalan Rajeshkumar
- Laboratoire
de Physique et Chimie des Nano-Objets, Institut
National des Sciences Appliquées, Toulouse Cedex 4 31077, France
| | - Oliver P. E. Townrow
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Laurent Maron
- Laboratoire
de Physique et Chimie des Nano-Objets, Institut
National des Sciences Appliquées, Toulouse Cedex 4 31077, France,
| | - Richard A. Layfield
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.,
| |
Collapse
|
10
|
Liu Y, Zhu K, Chen L, Liu S, Ren W. Azobenzenyl Calcium Complex: Synthesis and Reactivity Studies of a Ca(I) Synthon. Inorg Chem 2022; 61:20373-20384. [DOI: 10.1021/acs.inorgchem.2c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yumiao Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kang Zhu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
12
|
Wang S, Heng Y, Li T, Wang D, Hou G, Zi G, Walter MD. Intrinsic reactivity of [η 5-1,3-(Me 3Si) 2C 5H 3] 2U(η 4-C 4Ph 2) in small molecule activation. Dalton Trans 2022; 51:11072-11085. [PMID: 35796202 DOI: 10.1039/d2dt01730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The uranium metallacyclocumulene, [η5-1,3-(Me3Si)2C5H3]2U(η4-C4Ph2) (3) was isolated from the reaction mixture containing [η5-1,3-(Me3Si)2C5H3]2UCl2 (1), potassium graphite (KC8) and 1,4-diphenylbutadiyne (PhCC-CCPh) in good yield. The reactivity of 3 towards various small organic molecules was evaluated. For example, while complex 3 shows no reactivity towards alkynes and 2,2'-bipyridine, it may deliver the [η5-1,3-(Me3Si)2C5H3]2U(II) fragment in the presence of Ph2E2 (E = S, Se) and Ph3CN3, or react as a nucleophile in the presence of carbodiimides, isothiocyanates, aldehydes, ketones, and pyridine derivatives, forming five-, seven- or nine-membered heterometallacycles. On the contrary, addition of Ph2CS to 3 induces CS bond cleavage yielding the dithiolate complex [η5-1,3-(Me3Si)2C5H3]2U[S2(C12H5Ph5)] (14). In contrast, the closely related, but sterically more encumbered uranium metallacyclocumulene [η5-1,2,4-(Me3Si)3C5H2]2U(η4-C4Ph2) (4) features a more limited reactivity which is restricted to mono- and double insertions with small unsaturated organic molecules such as isothiocyanates, ketones and nitriles.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
13
|
Löffler ST, Heinemann FW, Carpentier A, Maron L, Meyer K. Molecular and Electronic Structure of Linear Uranium Metallocenes Stabilized by Pentabenzyl-Cyclopentadienyl Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sascha T. Löffler
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Ambre Carpentier
- CNRS, & INSA, LPCNO, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- CNRS, & INSA, LPCNO, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Keener M, Fadaei-Tirani F, Scopelliti R, Zivkovic I, Mazzanti M. Nitrogen activation and cleavage by a multimetallic uranium complex. Chem Sci 2022; 13:8025-8035. [PMID: 35919442 PMCID: PMC9278153 DOI: 10.1039/d2sc02997a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Multimetallic-multielectron cooperativity plays a key role in the metal-mediated cleavage of N2 to nitrides (N3-). In particular, low-valent uranium complexes coupled with strong alkali metal reducing agents can lead to N2 cleavage, but often, it is ambiguous how many electrons are transferred from the uranium centers to cleave N2. Herein, we designed new dinuclear uranium nitride complexes presenting a combination of electronically diverse ancillary ligands to promote the multielectron transformation of N2. Two heteroleptic diuranium nitride complexes, [K{UIV(OSi(O t Bu)3)(N(SiMe3)2)2}2(μ-N)] (1) and [Cs{UIV(OSi(O t Bu)3)2(N(SiMe3)2)}2(μ-N)] (3-Cs), containing different combinations of OSi(O t Bu)3 and N(SiMe3)2 ancillary ligands, were synthesized. We found that both complexes could be reduced to their U(iii)/U(iv) analogues, and the complex, [K2{UIV/III(OSi(O t Bu)3)2(N(SiMe3)2)}2(μ-N)] (6-K), could be further reduced to a putative U(iii)/U(iii) species that is capable of promoting the 4e- reduction of N2, yielding the N2 4-complex [K3{UV(OSi(O t Bu)3)2(N(SiMe3)2)}2(μ-N)(μ-η2:η2-N2)], 7. Parallel N2 reduction pathways were also identified, leading to the isolation of N2 cleavage products, [K3{UVI(OSi(O t Bu)3)2(N(SiMe3)2)([triple bond, length as m-dash]N)}(μ-N)2{UV(OSi(O t Bu)3)2(N(SiMe3)2)}]2, 8, and [K4{(OSi(O t Bu)3)2UV)([triple bond, length as m-dash]N)}(μ-NH)(μ-κ2:C,N-CH2SiMe2NSiMe3)-{UV(OSi(O t Bu)3)2][K(N(SiMe3)2]2, 9. These complexes provide the first example of N2 cleavage to nitride by a uranium complex in the absence of reducing alkali metals.
Collapse
Affiliation(s)
- Megan Keener
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Wang S, Wang D, Li T, Heng Y, Hou G, Zi G, Walter MD. Synthesis, Structure, and Reactivity of the Uranium Bipyridyl Complex [{η 5-1,2,4-(Me 3Si) 3C 5H 2} 2U(bipy)]. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| |
Collapse
|
16
|
Wang S, Li T, Heng Y, Wang D, Hou G, Zi G, Walter MD. Small-Molecule Activation Mediated by [η 5-1,3-(Me 3Si) 2C 5H 3] 2U(bipy). Inorg Chem 2022; 61:6234-6251. [PMID: 35413191 DOI: 10.1021/acs.inorgchem.2c00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The uranium bipyridyl metallocene, [η5-1,3-(Me3Si)2C5H3]2U(bipy) (2), is readily accessible in good yield by adding potassium graphite (KC8) to a mixture of [η5-1,3-(Me3Si)2C5H3]2UCl2 (1) and 2,2'-bipyridine. Compound 2 was fully characterized and employed for small-molecule activation. It has been demonstrated that 2 may serve as a synthon for [η5-1,3-(Me3Si)2C5H3]2U(II) fragment in the presence of Ph2E2 (E = S, Se), alkynes, and a variety of hetero-unsaturated molecules such as diazabutadienes, azine (Ph2C═N)2, o-benzoquinone, pyridine N-oxide, CS2, isothiocyanates, and organic azides. However, upon exposure of 2 to thio-ketone Ph2CS, aldehyde p-MePhCHO, ketone Ph2CO, imine PhCH═NPh, azine (PhCH═N)2, and nitrile PhCN, it may also promote C-C coupling reactions forming [η5-1,3-(Me3Si)2C5H3]2U[(bipy)(Ph2CS)] (16), [η5-1,3-(Me3Si)2C5H3]2U[(bipy)(p-MePhCHO)] (17), [η5-1,3-(Me3Si)2C5H3]2U[(bipy)(Ph2CO)] (18), [η5-1,3-(Me3Si)2C5H3]2U[(bipy)(PhCHNPh)] (19), [η5-1,3-(Me3Si)2C5H3]2U[(bipy)(PhCHNN═CHPh)] (20), and [η5-1,3-(Me3Si)2C5H3]2U[(N2C10H7C(Ph)NH)] (22), respectively, in quantitative conversion. Furthermore, in the presence of CuI, a single-electron transfer (SET) process is observed to yield the uranium(III) iodide complex [η5-1,3-(Me3Si)2C5H3]2U(I)(bipy) (15).
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
17
|
Modder DK, Batov MS, Rajeshkumar T, Sienkiewicz A, Zivkovic I, Scopelliti R, Maron L, Mazzanti M. Assembling Diuranium Complexes in Different States of Charge with a Bridging Redox-Active Ligand. Chem Sci 2022; 13:11294-11303. [PMID: 36320571 PMCID: PMC9533398 DOI: 10.1039/d2sc03592h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Radical-bridged diuranium complexes are desirable for their potential high exchange coupling and single molecule magnet (SMM) behavior, but remain rare. Here we report for the first time radical-bridged diuranium(iv) and diuranium(iii) complexes. Reaction of [U{N(SiMe3)2}3] with 2,2′-bipyrimidine (bpym) resulted in the formation of the bpym-bridged diuranium(iv) complex [{((Me3Si)2N)3UIV}2(μ-bpym2−)], 1. Reduction with 1 equiv. KC8 reduces the complex, affording [K(2.2.2-cryptand)][{((Me3Si)2N)3U}2(μ-bpym)], 2, which is best described as a radical-bridged UIII–bpym˙−–UIII complex. Further reduction of 1 with 2 equiv. KC8, affords [K(2.2.2-cryptand)]2[{((Me3Si)2N)3UIII}2(μ-bpym2−)], 3. Addition of AgBPh4 to complex 1 resulted in the oxidation of the ligand, yielding the radical-bridged complex [{((Me3Si)2N)3UIV}2(μ-bpym˙−)][BPh4], 4. X-ray crystallography, electrochemistry, susceptibility data, EPR and DFT/CASSCF calculations are in line with their assignments. In complexes 2 and 4 the presence of the radical-bridge leads to slow magnetic relaxation. Convenient routes to dinuclear complexes of uranium where two uranium centers are bridged by the redox-active ligand bpym were identified resulting in unique and stable radical-bridged dimetallic complexes of U(iii) and U(iv) showing SMM behaviour.![]()
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mikhail S Batov
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- ADSresonances Sàrl Route de Genève 60B 1028 Préverenges Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
18
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Uranium versus Thorium: Synthesis and Reactivity of [η 5 -1,2,4-(Me 3 C) 3 C 5 H 2 ] 2 U[η 2 -C 2 Ph 2 ]. Chemistry 2021; 27:6767-6782. [PMID: 33559922 PMCID: PMC8251885 DOI: 10.1002/chem.202100089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 01/09/2023]
Abstract
The synthesis, electronic structure, and reactivity of a uranium metallacyclopropene were comprehensively studied. Addition of diphenylacetylene (PhC≡CPh) to the uranium phosphinidene metallocene [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U=P-2,4,6-tBu3 C6 H2 (1) yields the stable uranium metallacyclopropene, [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U[η2 -C2 Ph2 ] (2). Based on density functional theory (DFT) results the 5f orbital contributions to the bonding within the metallacyclopropene U-(η2 -C=C) moiety increases significantly compared to the related ThIV compound [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 Th[η2 -C2 Ph2 ], which also results in more covalent bonds between the [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U2+ and [η2 -C2 Ph2 ]2- fragments. Although the thorium and uranium complexes are structurally closely related, different reaction patterns are therefore observed. For example, 2 reacts as a masked synthon for the low-valent uranium(II) metallocene [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 UII when reacted with Ph2 E2 (E=S, Se), alkynes and a variety of hetero-unsaturated molecules such as imines, ketazine, bipy, nitriles, organic azides, and azo derivatives. In contrast, five-membered metallaheterocycles are accessible when 2 is treated with isothiocyanate, aldehydes, and ketones.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Wanjian Ding
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guohua Hou
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guofu Zi
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Marc D. Walter
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
20
|
Modder DK, Palumbo CT, Douair I, Scopelliti R, Maron L, Mazzanti M. Single metal four-electron reduction by U(ii) and masked "U(ii)" compounds. Chem Sci 2021; 12:6153-6158. [PMID: 33996013 PMCID: PMC8098655 DOI: 10.1039/d1sc00668a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[{((Me3Si)2N)3U}2(μ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η 2-C2Ph2){N(SiMe3)2}3], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][U{N(SiMe3)2}3], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a "clear-cut" single metal four-electron transfer in f-element chemistry.
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Chad T Palumbo
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse Toulouse 31077 France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse Toulouse 31077 France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
21
|
Modder DK, Palumbo CT, Douair I, Fadaei-Tirani F, Maron L, Mazzanti M. Delivery of a Masked Uranium(II) by an Oxide-Bridged Diuranium(III) Complex. Angew Chem Int Ed Engl 2021; 60:3737-3744. [PMID: 33085160 DOI: 10.1002/anie.202013473] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 11/08/2022]
Abstract
Oxide is an attractive linker for building polymetallic complexes that provide molecular models for metal oxide activity, but studies of these systems are limited to metals in high oxidation states. Herein, we synthesized and characterized the molecular and electronic structure of diuranium bridged UIII /UIV and UIII /UIII complexes. Reactivity studies of these complexes revealed that the U-O bond is easily broken upon addition of N-heterocycles resulting in the delivery of a formal equivalent of UIII and UII , respectively, along with the uranium(IV) terminal-oxo coproduct. In particular, the UIII /UIII oxide complex effects the reductive coupling of pyridine and two-electron reduction of 4,4'-bipyridine affording unique examples of diuranium(III) complexes bridged by N-heterocyclic redox-active ligands. These results provide insight into the chemistry of low oxidation state metal oxides and demonstrate the use of oxo-bridged UIII /UIII complexes as a strategy to explore UII reactivity.
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Chad T Palumbo
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iskander Douair
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
22
|
Modder DK, Palumbo CT, Douair I, Fadaei‐Tirani F, Maron L, Mazzanti M. Delivery of a Masked Uranium(II) by an Oxide‐Bridged Diuranium(III) Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dieuwertje K. Modder
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Chad T. Palumbo
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Iskander Douair
- Laboratoire de Physique et Chimie des Nano-objets Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
23
|
Wang D, Hou G, Zi G, Walter MD. Influence of the Lewis Base Ph3PO on the Reactivity of the Uranium Phosphinidene (η5-C5Me5)2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Wang D, Hou G, Zi G, Walter MD. (η5-C5Me5)2U(=P-2,4,6-tBu3C6H2)(OPMe3) Revisited—Its Intrinsic Reactivity toward Small Organic Molecules. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Dodonov VA, Xiao L, Kushnerova OA, Baranov EV, Zhao Y, Yang XJ, Fedushkin IL. Transformation of carbodiimides to guanidine derivatives facilitated by gallylenes. Chem Commun (Camb) 2020; 56:7475-7478. [PMID: 32496503 DOI: 10.1039/d0cc03270k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reductive coupling of carbodiimides RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = 2,6-iPr2C6H3, Cy, iPr) by using [(dpp-bian)GaNa(dme)2] (1); [(dpp-dad)GaNa(thf)3] (2a) and [(dpp-dad)GaK(thf)4Ga(dpp-dad)][K(thf)6] (2b) led to the guanidinate derivatives [(dpp-bian)Ga(NCy)2C[double bond, length as m-dash]NCy][Na(thf)2] (3); [LGaN(R)C(RN)N(R)C(RN)][M] L = dpp-bian, M = Na(dme)2, R = iPr, (4a); L = dpp-dad, M = Na(thf)3, R = iPr, (4b); R = Cy, (4c); M = K(thf)4, (4d); L = dpp-bian, M = Na(dme)2, R = Cy, (4e) and [(dpp-dad)Ga(2,6-iPr2C6H3N)2C][Na(thf)2] (5).
Collapse
Affiliation(s)
- Vladimir A Dodonov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Lin Xiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Olga A Kushnerova
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Evgeny V Baranov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Igor L Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia. and Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
26
|
Adeyiga O, Panthi D, Suleiman O, Stetler D, Long RW, Odoh SO. Activating Water and Hydrogen by Ligand-Modified Uranium and Neptunium Complexes: A Density Functional Theory Study. Inorg Chem 2020; 59:3102-3109. [PMID: 32049500 DOI: 10.1021/acs.inorgchem.9b03433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organometallic uranium complexes that can activate small molecules are well-known. In contrast, there are no known organometallic trans-uranium species capable of small-molecule transformations. Using density functional theory, we previously showed that changing actinide-ligand bonds from U-O groups to Np-N- (amide/imido) bonds makes redox small-molecule activation more energetically favorable for Np species. Here, we determine how general this ligand-modulation strategy is for affecting small-molecule activation in Np species. We focus on two reactions, one involving redox transformation of the actinide(s) and the other involving no change in the oxidation state of the actinide(s). Specifically, we considered the hydrogen evolution reaction (HER) from H2O by actinide tris-aryloxide species. We also considered H2 capture and hydride transfer by actinide siloxide and silylamide complexes. For the HER, the barriers for Np(III) systems are much higher than those of U(III). The overall reaction energies are also much worse. An-O → An-N substitutions marginally improve the barriers by 1-4 kcal/mol and more substantially improve the reaction energies by 9-15 kcal/mol. For H2 capture and hydride transfer, the reaction energies for the U and Np species are similar. For both actinides, like-for-like An-O → An-N substitutions lead to improved reaction energies. Interestingly, in a recent report, it seemingly appears that U-O (siloxide) → U-N (silylamide) leads to complete shutdown of reactivity for H2 capture and hydride transfer. This observation is reproduced and explained with calculations. The ligand environments of the siloxide and silylamide that were compared are vastly different. The steric environment of the siloxide is conducive for reactivity while the particular silylamide is not. We conclude that small-molecule activation with organometallic neptunium species is achievable with a guided choice of ligands. Additional emphasis should be placed on ligands that can allow for improved transition state barriers.
Collapse
Affiliation(s)
- Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Olabisi Suleiman
- Department of Chemistry, University of Nevada Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dillon Stetler
- Department of Chemistry, University of Nevada Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Ryan W Long
- Department of Chemistry, University of Nevada Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
27
|
Ganguly G, Sergentu D, Autschbach J. Ab Initio Analysis of Metal–Ligand Bonding in An(COT)
2
with An=Th, U in Their Ground‐ and Core‐Excited States. Chemistry 2020; 26:1776-1788. [DOI: 10.1002/chem.201904166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Gaurab Ganguly
- Department of Chemistry University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| | - Dumitru‐Claudiu Sergentu
- Department of Chemistry University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| | - Jochen Autschbach
- Department of Chemistry University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| |
Collapse
|
28
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
29
|
Panthi D, Adeyiga O, Dandu NK, Odoh SO. Nitrogen Reduction by Multimetallic trans-Uranium Actinide Complexes: A Theoretical Comparison of Np and Pu to U. Inorg Chem 2019; 58:6731-6741. [PMID: 31050297 DOI: 10.1021/acs.inorgchem.9b00129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is recent interest in organometallic complexes of the trans-uranium elements. However, preparation and characterization of such complexes are hampered by radioactivity and chemotoxicity issues as well as the air-sensitive and poorly understood behavior of existing compounds. As such, there are no examples of small-molecule activation via redox reactivity of organometallic trans-uranium complexes. This contrasts with the situation for uranium. Indeed, a multimetallic uranium(III) nitride complex was recently synthesized, characterized, and shown to be able to capture and functionalize molecular nitrogen (N2) through a four-electron reduction process, N2 → N24-. The bis-uranium nitride, U-N-U core of this complex is held in a potassium siloxide framework. Importantly, the N24- product could be further functionalized to yield ammonia (NH3) and other desirable species. Using the U-N-U potassium siloxide complex, K3U-N-U, and its cesium analogue, Cs3U-N-U, as starting points, we use scalar-relativistic and spin-orbit coupled density functional theory calculations to shed light on the energetics and mechanism for N2 capture and functionalization. The N2 → N24- reactivity depends on the redox potentials of the U(III) centers and crucially on the stability of the starting complex with respect to decomposition into the mixed oxidation U(IV)/U(III) K2U-N-U or Cs2U-N-U species. For the trans-uranium, Np and Pu analogues of K3U-N-U, the N2 → N24- process is endoergic and would not occur. Interestingly, modification of the Np-O and Pu-O bonds between the actinide cores and the coordinated siloxide framework to Np-NH, Pu-NH, Np-CH2, and Pu-CH2 bonds drastically improves the reaction free energies. The Np-NH species are stable and can reductively capture and reduce N2 to N24-. This is supported by analysis of the spin densities, molecular structure, long-range dispersion effects, as well as spin-orbit coupling effects. These findings chart a path for achieving small-molecule activation with organometallic neptunium analogues of existing uranium complexes.
Collapse
Affiliation(s)
- Dipak Panthi
- Department of Chemistry , University of Nevada Reno , 1664 North Virginia Street , Reno , Nevada 89557-0216 , United States
| | - Olajumoke Adeyiga
- Department of Chemistry , University of Nevada Reno , 1664 North Virginia Street , Reno , Nevada 89557-0216 , United States
| | - Naveen K Dandu
- Department of Chemistry , University of Nevada Reno , 1664 North Virginia Street , Reno , Nevada 89557-0216 , United States
| | - Samuel O Odoh
- Department of Chemistry , University of Nevada Reno , 1664 North Virginia Street , Reno , Nevada 89557-0216 , United States
| |
Collapse
|
30
|
Arnold PL, Puig-Urrea L, Wells JAL, Yuan D, Cruickshank FL, Young RD. Applications of boroxide ligands in supporting small molecule activation by U(iii) and U(iv) complexes. Dalton Trans 2019; 48:4894-4905. [PMID: 30924481 DOI: 10.1039/c8dt05051a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The boroxide ligand [OBAr2]- (Ar = Mes, Trip) is shown to be able to support both UIII and UIV centres for the first time. The synthesis and structures of homoleptic and heteroleptic UIII and UIV complexes are reported. The UX3 complex with larger substituents, [U(OBTrip2)3]2, exhibits greater thermal stability compared to less encumbered [U(OBMes2)3]2 but reacts with a smaller range of the small molecules tested to date. Initial studies on their capacity to participate in small molecule chemistry show that dark purple [U(OBMes2)3]2 binds and/or reductively activates a variety of small molecules such as pyridine-oxide, triphenylphosphineoxide, sulfur, and dicyclohexylcarbodiimide. While [U(OBMes2)3]2 shows no reaction with CO or CO2, [U(OBTrip2)3]2 is oxidised by both, in the former case forming [U(OBTrip2)4], and in the latter case forming a small quantity of the structurally characterised μ-carbonate product [(μ-CO3){U(OBTrip2)3}2].
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nat Chem 2019; 11:248-253. [DOI: 10.1038/s41557-018-0195-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/22/2018] [Indexed: 11/08/2022]
|
33
|
Abstract
Elaborate synthesis schemes pave the way to f-element and group 3 complexes with multiply bonded imido ligands displaying intriguing reactivity.
Collapse
Affiliation(s)
- Dorothea Schädle
- Department of Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| | - Reiner Anwander
- Department of Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
34
|
Ringgold M, Wu W, Stuber M, Kornienko AY, Emge TJ, Brennan JG. Monomeric thorium chalcogenolates with bipyridine and terpyridine ligands. Dalton Trans 2018; 47:14652-14661. [PMID: 30277236 DOI: 10.1039/c8dt02543f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thorium chalcogenolates Th(ER)4 react with 2,2'-bipyridine (bipy) to form complexes with the stoichiometry (bipy)2Th(ER)4 (E = S, Se; R = Ph, C6F5). All four compounds have been isolated and characterized by spectroscopic methods and low-temperature single crystal X-ray diffraction. Two of the products, (bipy)2Th(SC6F5)4 and (bipy)2Th(SeC6F5)4, crystallize with lattice solvent, (bipy)2Th(SPh)4 crystallizes with no lattice solvent, and the selenolate (bipy)2Th(SePh)4 crystallizes in two phases, with and without lattice solvent. In all four compounds the available volume for coordination bounded by the two bipy ligands is large enough to allow significant conformational flexibility of thiolate or selenolate ligands. 77Se NMR confirms that the structures of the selenolate products are the same in pyridine solution and in the solid state. Attempts to prepare analogous derivatives with 2,2',6',2''-terpyridine (terpy) were successful only in the isolation of (terpy)(py)Th(SPh)4, the first terpy compound of thorium. These materials are thermochromic, with color attributed to ligand-to-ligand charge transfer excitations.
Collapse
Affiliation(s)
- Marissa Ringgold
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway NJ 08854-8087, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Abstract
All-carbon metallacycles of the d-transition metals have received widespread attention over the past three decades because of their exceptional intrinsic reactivity. However, in recent years, significant progress has also been made in the synthesis and characterization of actinide metallacyclopropenes, metallacyclopentadienes, and metallacyclocumulenes (metallacyclopentatrienes). Such actinide metallacycles are of interest because of their unique structural properties, their potential application in novel group transfer reactions and catalysis, as well as their ability to engage the 5f orbitals in metal-ligand bonding. This short review summarizes the latest developments in this area focusing on all-carbon actinide metallacycles, i.e., metallacyclopropenes, metallacyclopentadienes, and metallacyclocumulenes (metallacyclopentatrienes).
Collapse
Affiliation(s)
- Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
37
|
Ringgold M, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorg Chem 2018; 57:7129-7141. [DOI: 10.1021/acs.inorgchem.8b00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marissa Ringgold
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
38
|
Garner ME, Arnold J. Reductive Elimination of Diphosphine from a Thorium–NHC–Bis(phosphido) Complex. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mary E. Garner
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Zhang C, Yang P, Zhou E, Deng X, Zi G, Walter MD. Reactivity of a Lewis Base Supported Thorium Terminal Imido Metallocene toward Small Organic Molecules. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Congcong Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pikun Yang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Enwei Zhou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebin Deng
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|