1
|
Brown AN, Kelleher JN, Brown AM, Saghy P, Bohl JJ, Robinson JR, Huh DN. Synthesis and reduction of [(C 5H 4SiMe 3) 2Ln(μ-OR)] 2 (Ln = La, Ce) complexes: structural effects of bridging alkoxides. Dalton Trans 2024. [PMID: 39188244 DOI: 10.1039/d4dt02137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Alcoholysis of Cp'3Ln (Ln = La, Ce; Cp' = C5H4SiMe3) generate high-yielding (72-97%) bimetallic LnIII complexes of [Cp'2Ln(μ-OR)]2 [R = Et, iPr, or C6H4-4-tBu]. Single-crystal X-ray diffraction of these complexes reveal unexpected decreases in Ln⋯Ln distances, increasing Cpcent-Ln-Cpcent angles, and increasing intermolecular C⋯C contacts with bulkier bridging alkoxides, in line with structural control driven by significant dispersion forces. 1H NMR spectroscopy of [Cp'2Ce(μ-OEt)]2 and [Cp'2Ce(μ-OiPr)]2 revealed significantly upfield resonances assigned as methylene and methine moieties of -43.74 and -70.85 ppm, respectively. 2D 1H DOSY NMR experiments of [Cp'2Ce(μ-OiPr)]2 in C6D6 supported a dimeric structure in solution, including in the presence of a Lewis base (i.e., THF). Reduction of [Cp'2La(μ-OiPr)]2 using KC8 in the presence of 2.2.2-cryptand at -78 °C generated a purple solution and X-band EPR spectroscopy revealed an eight-line hyperfine pattern indicative of a LaII species.
Collapse
Affiliation(s)
- Adrian N Brown
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Jack N Kelleher
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Alexander M Brown
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Peter Saghy
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Joshua J Bohl
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Daniel N Huh
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
2
|
Nodaraki L, Ariciu AM, Huh DN, Liu J, Martins DOTA, Ortu F, Winpenny REP, Chilton NF, McInnes EJL, Mills DP, Evans WJ, Tuna F. Ligand Effects on the Spin Relaxation Dynamics and Coherent Manipulation of Organometallic La(II) Potential Qu dits. J Am Chem Soc 2024; 146:15000-15009. [PMID: 38787801 PMCID: PMC11157535 DOI: 10.1021/jacs.3c12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 μs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.
Collapse
Affiliation(s)
- Lydia
E. Nodaraki
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Ana-Maria Ariciu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel N. Huh
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
- Department
of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
of America
| | - Jingjing Liu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel O. T. A. Martins
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Fabrizio Ortu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | | | - Nicholas F. Chilton
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Research
School of Chemistry, Australian National
University, Canberra 2617, Australia
| | - Eric J. L. McInnes
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - William J. Evans
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Gilbert-Bass K, Stennett CR, Grotjahn R, Ziller JW, Furche F, Evans WJ. Exploring sulfur donor atom coordination chemistry with La(II), Nd(II), and Tm(II) using a terphenylthiolate ligand. Chem Commun (Camb) 2024; 60:4601-4604. [PMID: 38586900 DOI: 10.1039/d4cc01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
To expand the range of donor atoms known to stabilize 4fn5d1 Ln(II) rare-earth metal (Ln) ions beyond the C, N, and O first row main group donor atoms, the Ln(III) sulfur donor terphenylthiolate iodide complexes, LnIII(SAriPr6)2I (AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to form LnII(SAriPr6)2 complexes. These Ln(II) species were structurally characterized, analyzed by density functional theory (DFT) calculations, and compared to Tm(SAriPr6)2, which was synthesized from TmI2(DME)3.
Collapse
Affiliation(s)
- Kito Gilbert-Bass
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Cary R Stennett
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Robin Grotjahn
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
4
|
Delano F, Benner F, Jang S, Demir S. Pyrrolyl-Bridged Metallocene Complexes: From Synthesis, Electronic Structure, to Single-Molecule Magnetism. Inorg Chem 2023; 62:14604-14614. [PMID: 37638984 DOI: 10.1021/acs.inorgchem.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The π- and σ-basicity of the pyrrolyl ligand affords several coordination modes. A sterically encumbering coordination sphere around metal centers may foster new coordination modes for the pyrrolyl ligand. Here, we present three dinuclear rare earth complexes [Cp*2RE(μ-pyr)]2, [RE = Y (1), La (2), Dy (3); Cp* = pentamethylcyclopentadienyl, pyr = pyrrolyl], which were synthesized through a protonolysis reaction between allyl complexes and H-pyrrole. Each metal is ligated by two Cp* ligands and the N atom of the pyrrolyl ring while interacting with the π-system of the other pyrrolyl ligand, yielding an unprecedented coordination mode for pyrrolyl best described as [((η5-Cp*)2RE)2(μ-1η2-pyr-2κN)(μ-2η2-pyr-1κN)]. The steric congestion implemented by the Cp* ligands forces this asymmetric coordination of the pyrrolyl ligand. 1-3 were characterized by crystallography, electrochemistry, and spectroscopy. Density functional theory calculations on 1 uncovered the bonding situation between the pyrrolyl ligand and the yttrium(III) ion. Excitingly, 3 displays slow magnetic relaxation under zero dc field with Ueff = 98.9(7) cm-1 and τo = 6.7(1) × 10-8 s, placing it among coveted dinuclear metallocene single-molecule magnets. CASSCF calculations provided the energy of the crystal field states of DyIII and confirmed the barrier height.
Collapse
Affiliation(s)
- Francis Delano
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Seoyun Jang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Gransbury GK, Réant BLL, Wooles AJ, Emerson-King J, Chilton NF, Liddle ST, Mills DP. Electronic structure comparisons of isostructural early d- and f-block metal(iii) bis(cyclopentadienyl) silanide complexes. Chem Sci 2023; 14:621-634. [PMID: 36741509 PMCID: PMC9847655 DOI: 10.1039/d2sc04526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of the U(iii) bis(cyclopentadienyl) hypersilanide complex [U(Cp'')2{Si(SiMe3)3}] (Cp'' = {C5H3(SiMe3)2-1,3}), together with isostructural lanthanide and group 4 M(iii) homologues, in order to meaningfully compare metal-silicon bonding between early d- and f-block metals. All complexes were characterised by a combination of NMR, EPR, UV-vis-NIR and ATR-IR spectroscopies, single crystal X-ray diffraction, SQUID magnetometry, elemental analysis and ab initio calculations. We find that for the [M(Cp'')2{Si(SiMe3)3}] (M = Ti, Zr, La, Ce, Nd, U) series the unique anisotropy axis is conserved tangential to ; this is governed by the hypersilanide ligand for the d-block complexes to give easy plane anisotropy, whereas the easy axis is fixed by the two Cp'' ligands in f-block congeners. This divergence is attributed to hypersilanide acting as a strong σ-donor and weak π-acceptor with the d-block metals, whilst f-block metals show predominantly electrostatic bonding with weaker π-components. We make qualitative comparisons on the strength of covalency to derive the ordering Zr > Ti ≫ U > Nd ≈ Ce ≈ La in these complexes, using a combination of analytical techniques. The greater covalency of 5f3 U(iii) vs. 4f3 Nd(iii) is found by comparison of their EPR and electronic absorption spectra and magnetic measurements, with calculations indicating that uranium 5f orbitals have weak π-bonding interactions with both the silanide and Cp'' ligands, in addition to weak δ-antibonding with Cp''.
Collapse
Affiliation(s)
- Gemma K Gransbury
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Benjamin L L Réant
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Jack Emerson-King
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
6
|
Réant BL, Wooles AJ, Liddle ST, Mills DP. Synthesis and Characterization of Yttrium Methanediide Silanide Complexes. Inorg Chem 2023; 62:137-146. [PMID: 36537859 PMCID: PMC9832533 DOI: 10.1021/acs.inorgchem.2c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The salt metathesis reactions of the yttrium methanediide iodide complex [Y(BIPM)(I)(THF)2] (BIPM = {C(PPh2NSiMe3)2}) with the group 1 silanide ligand-transfer reagents MSiR3 (M = Na, R3 = tBu2Me or tBu3; M = K, R3 = (SiMe3)3) gave the yttrium methanediide silanide complexes [Y(BIPM)(SitBu2Me)(THF)] (1), [Y(BIPM)(SitBu3)(THF)] (2), and [Y(BIPM){Si(SiMe3)3}(THF)] (3). Complexes 1-3 provide rare examples of structurally authenticated rare earth metal-silicon bonds and were characterized by single-crystal X-ray diffraction, multinuclear NMR and ATR-IR spectroscopies, and elemental analysis. Density functional theory calculations were performed on 1-3 to probe their electronic structures further, revealing predominantly ionic Y-Si bonding. The computed Y-Si bonds show lower covalency than Y═C bonds, which are in turn best represented by Y+-C- dipolar forms due to the strong σ-donor properties of the silanide ligands investigated; these observations are in accord with experimentally obtained 13C{1H} and 29Si{1H} NMR data for 1-3 and related Y(III) BIPM alkyl complexes in the literature. Preliminary reactivity studies were performed, with complex 1 treated separately with benzophenone, azobenzene, and N,N'-dicyclohexyl-carbodiimide. 29Si{1H} and 31P{1H} NMR spectra of these reaction mixtures indicated that 1,2-migratory insertion of the unsaturated substrate into the Y-Si bond is favored, while for the latter substrate, a [2 + 2]-cycloaddition reaction also occurs at the Y═C bond to afford [Y{C(PPh2NSiMe3)2[C(NCy)2]-κ4C,N,N',N'}{C(NCy)2(SitBu2Me)-κ2N,N'}] (4); these reactivity profiles complement and contrast with those of Y(III) BIPM alkyl complexes.
Collapse
|
7
|
Pöcheim A, Zitz R, Hönigsberger J, Marschner C, Baumgartner J. Metallacyclosilanes of Calcium, Yttrium, and Iron. Inorg Chem 2022; 61:17527-17536. [PMID: 36281990 PMCID: PMC9644368 DOI: 10.1021/acs.inorgchem.2c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Utilizing a choice
of α,ω-oligosilanylene diides, it
is possible to synthesize a number of heterocyclosilanes with heteroelements
of calcium, yttrium, and iron by metathesis reactions with respective
metal halides CaI2, YCl3, and FeBr2. 29Si NMR spectroscopic analysis of the calcacyclosilanes
suggests that these compounds retain a strong oligosilanylene dianion
character, which is more pronounced than in the analogous magnesacyclosilanes.
As the electronegativity of calcium lies between potassium and magnesium,
silyl calcium reagents should be considered as building blocks with
an attractive reactivity profile. Reaction of a 1,4-oligosilanylene
diide with YCl3 gave the five-membered yttracyclosilane
as an ate-complex with two chlorides still attached to the yttrium
atom. Reaction of the obtained compound with two equivalents of NaCp
led to another five-membered yttracyclosilane ate-complex with an
yttracene fragment. When using a dianionic oligosilanylene ligand
containing a siloxane unit, the siloxane oxygen acted as an additional
coordination site for Ca and Y. When the same ligand was used to prepare
a cyclic 1-ferra-4-oxatetrasilacyclohexane, an analogous transannular
interaction between the iron and oxygen atoms is missing. Reactions of some α,ω-oligosilanylene
diides
with CaI2, YCl3, and FeBr2 allow
convenient access to metallocyclosilanes with Ca, Y, and Fe as heteroatoms.
The calcium and yttrium compounds resemble previously prepared magnesacyclosilanes,
retaining a strong silanide character. The only related compounds
to the described ferracyclosilanes are acyclic examples.
Collapse
Affiliation(s)
- Alexander Pöcheim
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Rainer Zitz
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Julia Hönigsberger
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Baumgartner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
8
|
Pan X, Wu C, Fang H, Yan C. Early Lanthanide(III) Ate Complexes Featuring Ln-Si Bonds (Ln = La, Ce): Synthesis, Structural Characterization, and Bonding Analysis. Inorg Chem 2022; 61:14288-14296. [PMID: 36040364 DOI: 10.1021/acs.inorgchem.2c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While research on lanthanide (Ln) complexes with silyl ligands is receiving growing attention, significantly unbalanced efforts have been devoted to different Ln elements. In comparison with the intense investigations on Ln elements such as Sm and Yb, the chemistry of silyl lanthanum and cerium complexes is much slower to develop, and no solid-state structure of a silyl lanthanum complex has been reported so far. In this research, four types of ate complexes, including [(DME)3Li][Cp3LnSi(H)Mes2], [(18-crown-6)K][Cp3LnSi(CH3)Ph2], [(DME)3Li][Cp3LnSiPh3], and [(12-crown-4)2Na] [Cp3LnSi(Ph)2Si(H)Ph2] (Ln = La, Ce), were synthesized by reacting [(DME)3Na][Cp3La(μ-Cl)LaCp3] or Cp3Ce(THF) with alkali metal silanides. All of the synthesized silyl Ln ate complexes were structurally characterized. La-Si bond lengths are in a range of 3.1733(4)-3.1897(10) Å, and the calculated formal shortness ratios of the La-Si bonds (1.071.08) are comparable to those in the reported silyl complexes having other Ln metal centers. The Ce-Si bond lengths (3.1415(6)-3.1705(9) Å) are within the typical range of reported silyl cerium ate complexes. 29Si solid-state NMR measurements on the diamagnetic silyl lanthanum complexes were conducted, and large one-bond hyperfine splitting constants arising from = 7/2) were resolved. Computational studies on these silyl lanthanum and cerium complexes suggested the polarized covalent feature of the Ln-Si bonds, which is in line with the measured large 1J139La-Si splitting constants.
Collapse
Affiliation(s)
- Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Changjiang Wu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Chunhua Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Lassalle S, Petit J, Falconer RL, Hérault V, Jeanneau E, Thieuleux C, Camp C. Reactivity of Tantalum/Iridium and Hafnium/Iridium Alkyl Hydrides with Alkyl Lithium Reagents: Nucleophilic Addition, Alpha-H Abstraction, or Hydride Deprotonation? Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sébastien Lassalle
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Julien Petit
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Rosalyn L. Falconer
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Valentin Hérault
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
10
|
Jenkins TF, Bekoe S, Ziller JW, Furche F, Evans WJ. Synthesis of a Heteroleptic Pentamethylcyclopentadienyl Yttrium(II) Complex, [K(2.2.2-Cryptand)]{(C5Me5)2YII[N(SiMe3)2]}, and Its C–H Bond Activated Y(III) Derivative. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tener F. Jenkins
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Samuel Bekoe
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
11
|
Trinh MT, Wedal JC, Evans WJ. Evaluating electrochemical accessibility of 4f n5d 1 and 4f n+1 Ln(II) ions in (C 5H 4SiMe 3) 3Ln and (C 5Me 4H) 3Ln complexes. Dalton Trans 2021; 50:14384-14389. [PMID: 34569559 DOI: 10.1039/d1dt02427b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction potentials (reported vs. Fc+/Fc) for a series of Cp'3Ln complexes (Cp' = C5H4SiMe3, Ln = lanthanide) were determined via electrochemistry in THF with [nBu4N][BPh4] as the supporting electrolyte. The Ln(III)/Ln(II) reduction potentials for Ln = Eu, Yb, Sm, and Tm (-1.07 to -2.83 V) follow the expected trend for stability of 4f7, 4f14, 4f6, and 4f13 Ln(II) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4fn5d1 Ln(II) ions (n = 2-14), fall in a narrow range of -2.95 V to -3.14 V. Only cathodic events were observed for La and Ce at -3.36 V and -3.43 V, respectively. The reduction potentials of the Ln(II) compounds [K(2.2.2-cryptand)][Cp'3Ln] (Ln = Pr, Sm, Eu) match those of the Cp'3Ln complexes. The reduction potentials of nine (C5Me4H)3Ln complexes were also studied and found to be 0.05-0.24 V more negative than those of the Cp'3Ln compounds.
Collapse
Affiliation(s)
- Michael T Trinh
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| |
Collapse
|
12
|
Bonath M, Birkelbach VM, Stuhl C, Maichle-Mössmer C, Anwander R. Rare-earth-metallocene alkylaluminates trigger distinct tetrahydrofuran activation. Chem Commun (Camb) 2021; 57:7918-7921. [PMID: 34286733 DOI: 10.1039/d1cc03024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal treatment of Cp*2YMe(thf) (Cp* = C5Me5), obtained from Cp*2Y(AlMe4) via donor-induced AlMe3 cleavage, in THF resulted in the concomitant formation of vinyl oxide Cp*2Y(OC2H3)(thf) and 2-ethylene-tetrahydrofuranyl complex Cp*2Y(2-C2H4-OC4H7) via the release of methane. In stark contrast, dissolving Cp*2La(AlMe4) in THF/n-hexane led to the quantitative formation of AlMe3-stabilized 2-tetrahydrofuranyl complex Cp*2La(2-AlMe3-OC4H7), with methane elimination.
Collapse
Affiliation(s)
- Martin Bonath
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Verena M Birkelbach
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Christoph Stuhl
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| |
Collapse
|
13
|
Celis-Barros C, Albrecht-Schönzart T, Windorff CJ. Computational Investigation of the Bonding in [(η 5–Cp′) 3(η 1–Cp′)M] 1– (M = Pu, U, Ce). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Thomas Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Cory J. Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO Box 3001, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
14
|
Pöcheim A, Marschner C, Baumgartner J. Rare-Earth-Silyl ate-Complexes Opening a Door to Selective Manipulations. Inorg Chem 2021; 60:8218-8226. [PMID: 34033463 PMCID: PMC8188526 DOI: 10.1021/acs.inorgchem.1c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/30/2022]
Abstract
The reactions of a number of rare-earth (RE) trichlorides and an oligosilanylene diide containing a siloxane unit in the backbone in DME are described. The formed products of the type [(DME)4·K][(DME)·RE(Cl)2{Si(SiMe3)2SiMe2}2O] (RE = Y, La, Ce, Pr, Sm, Tb, Dy, and Er) are disilylated dichloro metalate complexes and include the first examples of Si-La and Si-Pr compounds as well as the first structurally characterized example of a Si-Dy complex. A most intriguing aspect of the synthesis of these complexes is that they offer entry into a systematic study of the still largely unexplored field of silyl RE complexes by the possibility of ligand exchange reactions under preservation of the Si-RE interaction. This was demonstrated by the conversion of [(DME)4·K][(DME)·RE(Cl)2{Si(SiMe3)2SiMe2}2O] to [(DME)4·K][Cp2Y{Si(SiMe3)2SiMe2}2O].
Collapse
Affiliation(s)
- Alexander Pöcheim
- Institut für Anorganische
Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Christoph Marschner
- Institut für Anorganische
Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Baumgartner
- Institut für Anorganische
Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
15
|
Réant BLL, Liddle ST, Mills DP. f-Element silicon and heavy tetrel chemistry. Chem Sci 2020; 11:10871-10886. [PMID: 34123189 PMCID: PMC8162282 DOI: 10.1039/d0sc04655h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
The last three decades have seen a significant increase in the number of reports of f-element carbon chemistry, whilst the f-element chemistry of silicon, germanium, tin, and lead remain underdeveloped in comparison. Here, in this perspective we review complexes that contain chemical bonds between f-elements and silicon or the heavier tetrels since the birth of this field in 1985 to present day, with the intention of inspiring researchers to contribute to its development and explore the opportunities that it presents. For the purposes of this perspective, f-elements include lanthanides, actinides and group 3 metals. We focus on complexes that have been structurally authenticated by single-crystal X-ray diffraction, and horizon-scan for future opportunities and targets in the area.
Collapse
Affiliation(s)
- Benjamin L L Réant
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
16
|
Boronski JT, Doyle LR, Wooles AJ, Seed JA, Liddle ST. Synthesis and Characterization of an Oxo-Centered Homotrimetallic Uranium(IV)–Cyclobutadienyl Dianion Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Josef T. Boronski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Laurence R. Doyle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ashley J. Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - John A. Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen T. Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
17
|
Moehring SA, Evans WJ. Evaluating Electron Transfer Reactivity of Rare-Earth Metal(II) Complexes Using EPR Spectroscopy. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samuel A. Moehring
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Moehring SA, Evans WJ. Evaluating Electron‐Transfer Reactivity of Complexes of Actinides in +2 and +3 Oxidation States by using EPR Spectroscopy. Chemistry 2020; 26:1530-1534. [DOI: 10.1002/chem.201905581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Samuel A. Moehring
- Department of Chemistry University of California, Irvine 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - William J. Evans
- Department of Chemistry University of California, Irvine 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|
19
|
Liu X, Xiang L, Wang C, Wang B, Leng X, Chen Y. Divalent Ytterbium Iodide Supported by β‐Diketiminato Based Tridentate Ligand: Synthesis, Structure and Small Molecule Activation
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chen Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
20
|
Gompa TP, Ramanathan A, Rice NT, La Pierre HS. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans 2020; 49:15945-15987. [DOI: 10.1039/d0dt01400a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thermochemistry, descriptive chemistry, spectroscopy, and physical properties of the tetravalent lanthanides (Pr, Nd, Tb and Dy) in extended phases, gas phase, solution, and as isolable molecular complexes are presented.
Collapse
Affiliation(s)
- Thaige P. Gompa
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Arun Ramanathan
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Natalie T. Rice
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Henry S. La Pierre
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Nuclear and Radiological Engineering Program
| |
Collapse
|
21
|
Edelmann FT, Farnaby JH, Jaroschik F, Wilson B. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Turner ZR. Bismuth Pyridine Dipyrrolide Complexes: a Transient Bi(II) Species Which Ring Opens Cyclic Ethers. Inorg Chem 2019; 58:14212-14227. [DOI: 10.1021/acs.inorgchem.9b02314] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zoë R. Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
23
|
Angadol MA, Woen DH, Windorff CJ, Ziller JW, Evans WJ. tert-Butyl(cyclopentadienyl) Ligands Will Stabilize Nontraditional +2 Rare-Earth Metal Ions. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mary A. Angadol
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - David H. Woen
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Cory J. Windorff
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
24
|
Jenkins TF, Woen DH, Mohanam LN, Ziller JW, Furche F, Evans WJ. Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-cryptand)][(C5Me4H)3Ln] Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tener F. Jenkins
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - David H. Woen
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Luke N. Mohanam
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
25
|
Huh DN, Ziller JW, Evans WJ. Isolation of reactive Ln(ii) complexes with C5H4Me ligands (CpMe) using inverse sandwich countercations: synthesis and structure of [(18-crown-6)K(μ-CpMe)K(18-crown-6)][CpMe3LnII] (Ln = Tb, Ho). Dalton Trans 2018; 47:17285-17290. [DOI: 10.1039/c8dt03890b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that crystallographically-characterizable Ln(ii) complexes of Tb and Ho can be isolated by reducing CpMe3Ln(THF) with KC8 in THF in the presence of 18-crown-6 (18-c-6).
Collapse
Affiliation(s)
- Daniel N. Huh
- Department of Chemistry
- University of California
- Irvine
- USA
| | | | | |
Collapse
|