1
|
Moazezbarabadi A, Kammer A, Alberico E, Junge H, Beller M. Amino Acid-Based Ionic Liquids-Aided CO 2 Hydrogenation to Methanol. CHEMSUSCHEM 2024:e202401813. [PMID: 39520398 DOI: 10.1002/cssc.202401813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study explored the use of amino acid-based ionic liquids to facilitate the conversion of carbon dioxide (CO2) into methanol through catalytic hydrogenation. Combining tetrabutylammonium L-argininate (TBA⋅Arg) with the ruthenium Ru-MACHO-BH complex allowed achieving significant yields of methanol under optimized conditions, with a turnover number (TON) up to 700. By systematically varying key reaction parameters, we demonstrated that the TBA⋅Arg ionic liquid promotes the efficient hydrogenation pathway leading to methanol formation, thus offering a sustainable approach to CO2 valorization. These findings underscore the potential of amino acid-based ionic liquids in catalyzing the transformation of CO2 into valuable chemicals, contributing to carbon mitigation efforts.
Collapse
Affiliation(s)
- Ayeshe Moazezbarabadi
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Istituto di Chimica Biomolecolare - CNR, tr. La Crucca 3, 07100, Sassari, Italy
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Zhu C, D'Agostino C, de Visser SP. Mechanism of CO 2 Reduction to Methanol with H 2 on an Iron(II)-scorpionate Catalyst. Chemistry 2023; 29:e202302832. [PMID: 37694535 DOI: 10.1002/chem.202302832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non-innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.
Collapse
Affiliation(s)
- Chengxu Zhu
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum, Università di Bologna, Via Terracini, 28, 40131, Bologna, Italy
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Parmar SV, Deshmukh P, Sankpal R, Watharkar S, Avasare V. Machine Learning-Enabled Predictions of Condensed Fukui Functions and Designing of Metal Pincer Complexes for Catalytic Hydrogenation of CO 2. J Phys Chem A 2023; 127:8338-8346. [PMID: 37756223 DOI: 10.1021/acs.jpca.3c04494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
This research showcases the machine learning (ML)-enabled homogeneous catalyst discovery to be employed in carbon dioxide hydrogenation. To achieve the desired turnover frequency (TOF), the electrophilicity of the central metal atom is a crucial factor in transition metal pincer complexes. The condensed Fukui function is a direct measure of the catalytic performance of these pincer complexes. Herein, we demonstrate that machine learning is a convenient and effiecient method to calculate condensed Fukui functions of the central metal atom. The electrophilicity values of 202 pincer complexes were calculated by using density functional theory (DFT) to train the ML model. The test data of the experimentally established pincer complexes show a direct linkage between calculated electrophilicity and experimental TOF. Further, this data was used to develop an ML protocol to screen 2,84,062 catalyst complexes to get the electrophilicity values of the Mn, Fe, Co, and Ni transition metals encompassing various permutation combinations of PNP, PNN, NNN, and PCP pincer ligands. These findings validate the efficacy of machine learning in the rapid screening of metal pincer catalysts based on condensed Fukui functions.
Collapse
Affiliation(s)
- Saurabh V Parmar
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Pratham Deshmukh
- Department of Chemistry, Sir Parashurambhau College, Pune, Maharashtra 411030, India
| | - Rutuja Sankpal
- Department of Chemistry, Sir Parashurambhau College, Pune, Maharashtra 411030, India
| | - Siddhika Watharkar
- Department of Chemistry, Sir Parashurambhau College, Pune, Maharashtra 411030, India
| | - Vidya Avasare
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
- Department of Chemistry, Sir Parashurambhau College, Pune, Maharashtra 411030, India
| |
Collapse
|
4
|
Grover J, Maji S, Teja C, Al Thabaiti SA, Mostafa MM, Lahiri GK, Maiti D. Base Metal Catalyst for Indirect Hydrogenation of CO 2. ACS ORGANIC & INORGANIC AU 2023; 3:299-304. [PMID: 37810409 PMCID: PMC10557122 DOI: 10.1021/acsorginorgau.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 10/10/2023]
Abstract
We herein report a novel Mn-SNS-based catalyst, which is capable of performing indirect hydrogenation of CO2 to methanol via formylation. In this domain of CO2 hydrogenation, pincer ligands have shown a clear predominance. Our catalyst is based on the SNS-type tridentate ligand, which is quite stable and cheap as compared to the pincer type ligands. The catalyst can also be recycled effectively after the formylation reaction without any significant change in efficiency. Various amines including both primary and secondary amines worked well under the protocol to provide the desired formylated product in good yields. The formed formylated amines can also be reduced further at higher pressures of hydrogen. As a whole, we have developed a protocol that involves indirect CO2 hydrogenation to methanol that proceeds via formylation of amines.
Collapse
Affiliation(s)
- Jagrit Grover
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Chitrala Teja
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Shaeel A. Al Thabaiti
- K.
A. CARE Energy Research and Innovation Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia, Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
M. Mostafa
- K.
A. CARE Energy Research and Innovation Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia, Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Goutam K. Lahiri
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Wei D, Shi X, Junge H, Du C, Beller M. Carbon neutral hydrogen storage and release cycles based on dual-functional roles of formamides. Nat Commun 2023; 14:3726. [PMID: 37349304 DOI: 10.1038/s41467-023-39309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The development of alternative clean energy carriers is a key challenge for our society. Carbon-based hydrogen storage materials are well-suited to undergo reversible (de)hydrogenation reactions and the development of catalysts for the individual process steps is crucial. In the current state, noble metal-based catalysts still dominate this field. Here, a system for partially reversible and carbon-neutral hydrogen storage and release is reported. It is based on the dual-functional roles of formamides and uses a small molecule Fe-pincer complex as the catalyst, showing good stability and reusability with high productivity. Starting from formamides, quantitative production of CO-free hydrogen is achieved at high selectivity ( > 99.9%). This system works at modest temperatures of 90 °C, which can be easily supplied by the waste heat from e.g., proton-exchange membrane fuel cells. Employing such system, we achieve >70% H2 evolution efficiency and >99% H2 selectivity in 10 charge-discharge cycles, avoiding undesired carbon emission between cycles.
Collapse
Affiliation(s)
- Duo Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Leibniz-Institut für Katalyse e.V, 18059, Rostock, Germany
| | - Xinzhe Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Leibniz-Institut für Katalyse e.V, 18059, Rostock, Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e.V, 18059, Rostock, Germany.
| | - Chunyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | | |
Collapse
|
6
|
Tamatam R, Kim SH, Shin D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem 2023; 11:1140562. [PMID: 37007059 PMCID: PMC10060649 DOI: 10.3389/fchem.2023.1140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Quinazolines are a class of nitrogen-containing heterocyclic compounds with broad-spectrum of pharmacological activities. Transition-metal-catalyzed reactions have emerged as reliable and indispensable tools for the synthesis of pharmaceuticals. These reactions provide new entries into pharmaceutical ingredients of continuously increasing complexity, and catalysis with these metals has streamlined the synthesis of several marketed drugs. The last few decades have witnessed a tremendous outburst of transition-metal-catalyzed reactions for the construction of quinazoline scaffolds. In this review, the progress achieved in the synthesis of quinazolines under transition metal-catalyzed conditions are summarized and reports from 2010 to date are covered. This is presented along with the mechanistic insights of each representative methodology. The advantages, limitations, and future perspectives of synthesis of quinazolines through such reactions are also discussed.
Collapse
Affiliation(s)
- Rekha Tamatam
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| |
Collapse
|
7
|
Kumar A, Bhardwaj R, Choudhury J. Integrated CO 2 Capture and Conversion to Methanol Leveraged by the Transfer Hydrogenation Approach. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Ritu Bhardwaj
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
8
|
Siegel RE, Pattanayak S, Berben LA. Reactive Capture of CO 2: Opportunities and Challenges. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rachel E. Siegel
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| | - Santanu Pattanayak
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| | - Louise A. Berben
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| |
Collapse
|
9
|
Zhang L, Tu X, Han W, Chen L, Chen Y, Zheng H. The Efficient CO2 Fixation Catalyzed by Fe-Based Catalyst for Synthesizing Benzimidazoles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Onishi N, Himeda Y. Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kuß DA, Hölscher M, Leitner W. Combined Computational and Experimental Investigation on the Mechanism of CO 2 Hydrogenation to Methanol with Mn-PNP-Pincer Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- David A. Kuß
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
12
|
Sen R, Goeppert A, Surya Prakash GK. Homogeneous Hydrogenation of CO 2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022; 61:e202207278. [PMID: 35921247 PMCID: PMC9825957 DOI: 10.1002/anie.202207278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/11/2023]
Abstract
The traditional economy based on carbon-intensive fuels and materials has led to an exponential rise in anthropogenic CO2 emissions. Outpacing the natural carbon cycle, atmospheric CO2 levels increased by 50 % since the pre-industrial age and can be directly linked to global warming. Being at the core of the proposed methanol economy pioneered by the late George A. Olah, the chemical recycling of CO2 to produce methanol, a green fuel and feedstock, is a prime channel to achieve carbon neutrality. In this direction, homogeneous catalytic systems have lately been a major focus for methanol synthesis from CO2 , CO and their derivatives as potential low-temperature alternatives to the commercial processes. This Review provides an account of this rapidly growing field over the past decade, since its resurgence in 2011. Based on the critical assessment of the progress thus far, the present key challenges in this field have been highlighted and potential directions have been suggested for practically viable applications.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| |
Collapse
|
13
|
Ravn AK, Rezayee NM. The Investigation of a Switchable Iridium Catalyst for the Hydrogenation of Amides: A Case Study of C–O Versus C–N Bond Scission. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne K. Ravn
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Nomaan M. Rezayee
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Prakash SG, Sen R, Goeppert A. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Surya G. Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| | - Raktim Sen
- University of Southern California Loker Hydrocarbon Res. Inst., and Department box Chemistry UNITED STATES
| | - Alain Goeppert
- University of Southern California Loker Hydrocarbon Res. Inst., and Department of Chemistry UNITED STATES
| |
Collapse
|
15
|
Singh T, Jalwal S, Chakraborty S. Homogeneous First‐row Transition Metal Catalyzed Carbon dioxide Hydrogenation to Formic acid/Formate, and Methanol. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tushar Singh
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry INDIA
| | - Sachin Jalwal
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry INDIA
| | - Subrata Chakraborty
- Indian Institute of Technology Jodhpur Chemistry Department of ChemistryNH62, Nagaur RoadKarwar 342037 Jodhpur INDIA
| |
Collapse
|
16
|
Das C, Grover J, Tannu, Das A, Maiti D, Dutta A, Lahiri GK. Recent developments in first-row transition metal complex-catalyzed CO 2 hydrogenation. Dalton Trans 2022; 51:8160-8168. [PMID: 35587113 DOI: 10.1039/d2dt00663d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our modern civilization is currently standing at a crossroads due to excessive emission of anthropogenic CO2 leading to adverse climate change effects. Hence, a proper CO2 management strategy, including appropriate CO2 capture, utilization, and storage (CCUS), has become a prime concern globally. On the other hand, C1 chemicals such as methanol (CH3OH) and formic acid (HCOOH) have emerged as leading materials for a wide range of applications in various industries, including chemical, biochemical, pharmaceutical, agrochemical, and even energy sectors. Hence, there is a concerted effort to bridge the gap between CO2 management and methanol/formic acid production by employing CO2 as a C1-synthon. CO2 hydrogenation to methanol and formic acid has emerged as one of the primary routes for directly converting CO2 to a copious amount of methanol and formate, which is typically catalyzed by transition metal complexes. In this frontier article, we have primarily discussed the abundant first-row transition metal-driven hydrogenation reaction that has exhibited a significant surge in activity over the past few years. We have also highlighted the potential future direction of the research while incorporating a comparative analysis for the competitive second and third-row transition metal-based hydrogenation.
Collapse
Affiliation(s)
- Chandan Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jagrit Grover
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Tannu
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Interdisciplinary Programme Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ayon Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Interdisciplinary Programme Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Interdisciplinary Programme Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
17
|
Wei D, Sang R, Moazezbarabadi A, Junge H, Beller M. Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System. JACS AU 2022; 2:1020-1031. [PMID: 35647600 PMCID: PMC9131476 DOI: 10.1021/jacsau.1c00489] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 05/03/2023]
Abstract
Recent developments of CO2 capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO2/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.
Collapse
|
18
|
Ramos VM, de Oliveira-Filho AGS, de Lima Batista AP. Homogeneous Catalytic CO 2 Hydrogenation by [Fe]-Hydrogenase Bioinspired Complexes: A Computational Study. J Phys Chem A 2022; 126:2082-2090. [PMID: 35345882 DOI: 10.1021/acs.jpca.1c09761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computational modeling at the DLPNO-CCSD(T)/CBS//M06-L/def2-TZVP level of theory was used to propose four different iron catalysts whose structures were inspired on the [Fe]-hydrogenase active site: [Fe(MePNNHNP)(acmp)] (C(1), MePNNHNP = 2,6-bis(dimethylphosphine), acmp = acylmethylpyridine), [Fe(CNNHNC)(acmp)] (C(2), CNNHNC = 2,6-bis(methylimidazol-2-ylidene)), [Fe(MePNNNP)(acmp)] (D(1), MePNNNP = 2,6-bis((dimethylphosphine)pyridine)), and [Fe(CNNNC)(acmp)] (D(2), CNNNC = 2,6-bis((methylimidazol-2-ylidene) pyridine)). Through these electronic structure calculations, the catalytic mechanism of the reaction was explored. The intermediates and transition states present along the reaction coordinate were identified and described as to their equilibrium geometries, vibrational frequencies, and energies. Quasi-harmonic corrections were performed considering conditions analogous to those used experimentally. To compare the catalytic activities of the studied catalysts, turnover frequencies (TOFs) were calculated. Based on the explored catalytic cycles and TOF values (D(1) > C(1) > D(2) > C(2)), the most suitable iron catalysts are those with tridentate phosphine pincer-type ligands coordinated to the metal center. These systems are new promising iron catalysts to promote the CO2 hydrogenation to formic acid without any use of bases or additives.
Collapse
Affiliation(s)
- Vania M Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Antonio G S de Oliveira-Filho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula de Lima Batista
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Poormohammadian SJ, Bahadoran F, Vakili-Nezhaad GR. Recent progress in homogeneous hydrogenation of carbon dioxide to methanol. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The requirement of running a new generation of fuel production is inevitable due to the limitation of oil production from reservoirs. On the other hand, enhancing the CO2 concentration in the atmosphere brings global warming phenomenon and leads to catastrophic disasters such as drought and flooding. Conversion of carbon dioxide to methanol can compensate for the liquid fuel requirement and mitigate CO2 emissions to the atmosphere. In this review, we surveyed the recent works on homogeneous hydrogenation of CO2 to CH3OH and investigated the experimental results in detail. We categorized the CO2 hydrogenation works based on the environment of the reaction, including neutral, acidic, and basic conditions, and discussed the effects of solvents’ properties on the experimental results. This review provides a perspective on the previous studies in this field, which can assist the researchers in selecting the proper catalyst and solvent for homogenous hydrogenation of carbon dioxide to methanol.
Collapse
Affiliation(s)
| | - Farzad Bahadoran
- Gas Research Division , Research Institute of Petroleum Industry , West Blvd. of Azadi Sport Complex , 1485733111 , Tehran , Iran
| | - G. Reza Vakili-Nezhaad
- Petroleum and Chemical Engineering Department , College of Engineering, Sultan Qaboos University , 123 Muscat , Oman
| |
Collapse
|
20
|
Hydrogenation of CO2 or CO2 Derivatives to Methanol under Molecular Catalysis: A Review. ENERGIES 2022. [DOI: 10.3390/en15062011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The atmospheric CO2 concentration has been continuously increasing due to fossil fuel combustion. The transformations of CO2 and CO2 derivatives into high value-added chemicals such as alcohols are ideal routes to mitigate greenhouse gas emissions. Among alcohol products, methanol is very promising as it fulfills the carbon neutral cycle and can be used for direct methanol fuel cells. Herein, we summarize the recent progress in the hydrogenation of CO2 or CO2 derivatives to methanol, and focus on those systems with homogeneous catalysts and molecular hydrogen as the reductant. Discussions on the catalytic systems, efficiencies, and future outlooks will be given.
Collapse
|
21
|
Sen R, Goeppert A, Prakash GKS. Integrated Carbon Capture and Utilization to Methanol with Epoxide-functionalized Polyamines under Homogeneous Catalytic Conditions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Curley JB, Townsend TM, Bernskoetter WH, Hazari N, Mercado BQ. Iron, Cobalt, and Nickel Complexes Supported by a iPrPNPhP Pincer Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
23
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
24
|
Curley JB, Hert C, Bernskoetter WH, Hazari N, Mercado BQ. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH 2CH 2P iPr 2) 2 Pincer Ligand in CO 2 Hydrogenation and Formic Acid Dehydrogenation. Inorg Chem 2021; 61:643-656. [PMID: 34955015 DOI: 10.1021/acs.inorgchem.1c03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel pincer ligand, iPrPNPhP [PhN(CH2CH2PiPr2)2], which is an analogue of the versatile MACHO ligand, iPrPNHP [HN(CH2CH2PiPr2)2], was synthesized and characterized. The ligand was coordinated to ruthenium, and a series of hydride-containing complexes were isolated and characterized by NMR and IR spectroscopies, as well as X-ray diffraction. Comparisons to previously published analogues ligated by iPrPNHP and iPrPNMeP [CH3N(CH2CH2PiPr2)2] illustrate that there are large changes in the coordination chemistry that occur when the nitrogen substituent of the pincer ligand is altered. For example, ruthenium hydrides supported by the iPrPNPhP ligand always form the syn isomer (where syn/anti refer to the relative orientation of the group on nitrogen and the hydride ligand on ruthenium), whereas complexes supported by iPrPNHP form the anti isomer and complexes supported by iPrPNMeP form a mixture of syn and anti isomers. We evaluated the impact of the nitrogen substituent of the pincer ligand in catalysis by comparing a series of iPrPNRP (R = H, Me, Ph)-ligated ruthenium hydride complexes as catalysts for formic acid dehydrogenation and carbon dioxide (CO2) hydrogenation to formate. The iPrPNPhP-ligated species is the most active for formic acid dehydrogenation, and mechanistic studies suggest that this is likely because there are kinetic advantages for catalysts that operate via the syn isomer. In CO2 hydrogenation, the iPrPNPhP-ligated species is again the most active under our optimal conditions, and we report some of the highest turnover frequencies for homogeneous catalysts. Experimental and theoretical insights into the turnover-limiting step of catalysis provide a basis for the observed trends in catalytic activity. Additionally, the stability of our complexes enabled us to detect a previously unobserved autocatalytic effect involving the base that is added to drive the reaction. Overall, by modifying the nitrogen substituent on the MACHO ligand, we have developed highly active catalysts for formic acid dehydrogenation and CO2 hydrogenation and also provided a framework for future catalyst development.
Collapse
Affiliation(s)
- Julia B Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Clayton Hert
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
26
|
Bai ST, Zhou C, Wu X, Sun R, Sels B. Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO 2 Capture and Hydrogenation to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, No.1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P.R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Ruiyan Sun
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Bert Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| |
Collapse
|
27
|
Curley JB, Smith NE, Bernskoetter WH, Ertem MZ, Hazari N, Mercado BQ, Townsend TM, Wang X. Understanding the Reactivity and Decomposition of a Highly Active Iron Pincer Catalyst for Hydrogenation and Dehydrogenation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas E. Smith
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
28
|
Belkova NV, Filippov OA, Osipova ES, Safronov SV, Epstein LM, Shubina ES. Influence of phosphine (pincer) ligands on the transition metal hydrides reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Bhardwaj R, Sharma T, Nguyen DD, Cheng CK, Lam SS, Xia C, Nadda AK. Integrated catalytic insights into methanol production: Sustainable framework for CO 2 conversion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112468. [PMID: 33823414 DOI: 10.1016/j.jenvman.2021.112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.
Collapse
Affiliation(s)
- Reva Bhardwaj
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, 16227, South Korea
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| |
Collapse
|
30
|
Fujita H, Takemoto S, Matsuzaka H. Tin–Ruthenium Cooperative Catalyst for Disproportionation of Formic Acid to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hiroaki Fujita
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Shin Takemoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hiroyuki Matsuzaka
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
31
|
Kuß DA, Hölscher M, Leitner W. Hydrogenation of CO
2
to Methanol with Mn‐PNP‐Pincer Complexes in the Presence of Lewis Acids: the Formate Resting State Unleashed. ChemCatChem 2021. [DOI: 10.1002/cctc.202100649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- David A. Kuß
- Max-Planck-Institut für chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Walter Leitner
- Max-Planck-Institut für chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|
32
|
Kanega R, Onishi N, Tanaka S, Kishimoto H, Himeda Y. Catalytic Hydrogenation of CO 2 to Methanol Using Multinuclear Iridium Complexes in a Gas-Solid Phase Reaction. J Am Chem Soc 2021; 143:1570-1576. [PMID: 33439639 DOI: 10.1021/jacs.0c11927] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a novel approach toward the catalytic hydrogenation of CO2 to methanol performed in the gas-solid phase using multinuclear iridium complexes at low temperature (30-80 °C). Although homogeneous CO2 hydrogenation in water catalyzed by amide-based iridium catalysts provided only a negligible amount of methanol, the combination of a multinuclear catalyst and gas-solid phase reaction conditions led to the effective production of methanol from CO2. The catalytic activities of the multinuclear catalyst were dependent on the relative configuration of each active species. Conveniently, methanol obtained from the gas phase could be easily isolated from the catalyst without contamination with CO, CH4, or formic acid (FA). The catalyst can be recycled in a batchwise manner via gas release and filling. A final turnover number of 113 was obtained upon reusing the catalyst at 60 °C and 4 MPa of H2/CO2 (3:1). The high reactivity of this system has been attributed to hydride complex formation upon exposure to H2 gas, suppression of the liberation of FA under gas-solid phase reaction conditions, and intramolecular multiple hydride transfer to CO2 by the multinuclear catalyst.
Collapse
Affiliation(s)
- Ryoichi Kanega
- Research Institute of Energy Conservation, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Onishi
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Haruo Kishimoto
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
33
|
Das A, Mandal SC, Pathak B. Unraveling the catalytically preferential pathway between the direct and indirect hydrogenation of CO2 to CH3OH using N-heterocyclic carbene-based Mn(i) catalysts: a theoretical approach. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02064h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanistic investigation of direct vs. indirect CO2 hydrogenation to methanol using single molecular NHC-based Mn(i) complexes.
Collapse
Affiliation(s)
- Amitabha Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | | | - Biswarup Pathak
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
- Department of Metallurgy Engineering and Materials Science
| |
Collapse
|
34
|
Huang W, Qiu L, Ren F, He L. Advances on Transition-Metal Catalyzed CO 2 Hydrogenation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Maikhuri VK, Prasad AK, Jha A, Srivastava S. Recent advances in the transition metal catalyzed synthesis of quinoxalines: a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj01442k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the recent developments in the synthesis of a variety of substituted quinoxalines using transition metal catalysts.
Collapse
Affiliation(s)
- Vipin K. Maikhuri
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Amitabh Jha
- Department of Chemistry
- Acadia University
- Wolfville
- Canada
| | | |
Collapse
|
36
|
Bai ST, De Smet G, Liao Y, Sun R, Zhou C, Beller M, Maes BUW, Sels BF. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem Soc Rev 2021; 50:4259-4298. [DOI: 10.1039/d0cs01331e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes the concepts, mechanisms, drawbacks and challenges of the state-of-the-art catalysis for CO2 to MeOH under mild conditions. Thoughtful guidelines and principles for future research are presented and discussed.
Collapse
Affiliation(s)
- Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Gilles De Smet
- Division of Organic Synthesis
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Yuhe Liao
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Ruiyan Sun
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | | | - Bert U. W. Maes
- Division of Organic Synthesis
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| |
Collapse
|
37
|
Xie S, Zhang W, Lan X, Lin H. CO 2 Reduction to Methanol in the Liquid Phase: A Review. CHEMSUSCHEM 2020; 13:6141-6159. [PMID: 33137230 DOI: 10.1002/cssc.202002087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Indexed: 05/19/2023]
Abstract
Excessive carbon dioxide (CO2 ) emissions have been subject to extensive attention globally, since an enhanced greenhouse effect (global warming) owing to a high CO2 concentration in the atmosphere could lead to severe climate change. The use of solar energy and other renewable energy to produce low-cost hydrogen, which is used to reduce CO2 to produce bulk chemicals such as methanol, is a sustainable strategy for reducing carbon dioxide emissions and carbon resources. CO2 conversion into methanol is exothermic, so that low temperature and high pressure are favorable for methanol formation. CO2 is usually captured and recovered in the liquid phase. Herein, the emerging technologies for the hydrogenation of CO2 to methanol in the condensed phase are reviewed. The development of homogeneous and heterogeneous catalysts for this important hydrogenation reaction is summarized. Finally, mechanistic insight on CO2 's conversion into methanol over different catalysts is discussed by taking the available reaction pathways into account.
Collapse
Affiliation(s)
- Shaoqu Xie
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Wanli Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xingying Lan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Hongfei Lin
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
38
|
Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat Commun 2020; 11:3893. [PMID: 32753681 PMCID: PMC7403344 DOI: 10.1038/s41467-020-17588-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Catalytic hydrogenation of amides is of great interest for chemists working in organic synthesis, as the resulting amines are widely featured in natural products, drugs, agrochemicals, dyes, etc. Compared to traditional reduction of amides using (over)stoichiometric reductants, the direct hydrogenation of amides using molecular hydrogen represents a greener approach. Furthermore, amide hydrogenation is a highly versatile transformation, since not only higher amines (obtained by C–O cleavage), but also lower amines and alcohols, or amino alcohols (obtained by C–N cleavage) can be selectively accessed by fine tuning of reaction conditions. This review describes the most recent advances in the area of amide hydrogenation using H2 exclusively and molecularly defined homogeneous as well as nano-structured heterogeneous catalysts, with a special focus on catalyst development and synthetic applications. Catalytic hydrogenation of amides is a pivotal chemical transformation for both research labs and chemical production in industry. Here, the authors comprehensively review this topic by including state-of-art homogeneous and heterogeneous catalysts that can hydrogenate amides and related compounds.
Collapse
|
39
|
Mild and Selective Carbon Dioxide Hydroboration to Methoxyboranes Catalyzed by Mn(I) PNP Pincer Complexes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Tshuma P, Makhubela BCE, Bingwa N, Mehlana G. Palladium(II) Immobilized on Metal–Organic Frameworks for Catalytic Conversion of Carbon Dioxide to Formate. Inorg Chem 2020; 59:6717-6728. [DOI: 10.1021/acs.inorgchem.9b03654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Piwai Tshuma
- Faculty of Science and Technology, Department of Chemical Technology, Midlands State University, Private Bag 9055 Senga Road, Gweru, Zimbabwe
- Center for Synthesis and Catalysis Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park 2006, South Africa
| | - Banothile C. E. Makhubela
- Center for Synthesis and Catalysis Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park 2006, South Africa
| | - Ndzondelelo Bingwa
- Center for Synthesis and Catalysis Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park 2006, South Africa
| | - Gift Mehlana
- Faculty of Science and Technology, Department of Chemical Technology, Midlands State University, Private Bag 9055 Senga Road, Gweru, Zimbabwe
| |
Collapse
|
41
|
Modec B, Podjed N, Lah N. Beyond the Simple Copper(II) Coordination Chemistry with Quinaldinate and Secondary Amines. Molecules 2020; 25:molecules25071573. [PMID: 32235452 PMCID: PMC7180772 DOI: 10.3390/molecules25071573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Copper(II) acetate has reacted in methanol with quinaldinic acid (quinoline-2-carboxylic acid) to form [Cu(quin)2(CH3OH)]∙CH3OH (1) (quin− = an anionic form of the acid) with quinaldinates bound in a bidentate chelating manner. In the air, complex 1 gives off methanol and binds water. The conversion was monitored by IR spectroscopy. The aqua complex has shown a facile substitution chemistry with alicyclic secondary amines, pyrrolidine (pyro), and morpholine (morph). trans-[Cu(quin)2(pyro)2] (2) and trans-[Cu(quin)2(morph)2] (4) were obtained in good yields. The morpholine system has produced a by-product, trans-[Cu(en)2(H2O)2](morphCOO)2 (5) (morphCOO− = morphylcarbamate), a result of the copper(II) quinaldinate reaction with ethylenediamine (en), an inherent impurity in morpholine, and the amine reaction with carbon dioxide. (pyroH)[Cu(quin)2Cl] (3) forms on the recrystallization of [Cu(quin)2(pyro)2] from dichloromethane, confirming a reaction between amine and the solvent. Similarly, a homologous amine, piperidine (pipe), and dichloromethane produced (pipeH)[Cu(quin)2Cl] (11). The piperidine system has afforded both mono- and bis-amine complexes, [Cu(quin)2(pipe)] (6) and trans-[Cu(quin)2(pipe)2] (7). The latter also exists in solvated forms, [Cu(quin)2(pipe)2]∙CH3CN (8) and [Cu(quin)2(pipe)2]∙CH3CH2CN (9). Interestingly, only the piperidine system has experienced a reduction of copper(II). The involvement of amine in the reduction was undoubtedly confirmed by identification of a polycyclic piperidine compound 10, 6,13-di(piperidin-1-yl)dodecahydro-2H,6H-7,14-methanodipyrido[1,2-a:1′,2′-e][1,5]diazocine.
Collapse
|
42
|
Bioinspired Design and Computational Prediction of SCS Nickel Pincer Complexes for Hydrogenation of Carbon Dioxide. Catalysts 2020. [DOI: 10.3390/catal10030319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inspired by the structures of the active site of lactate racemase and H2 activation mechanism of mono-iron hydrogenase, we proposed a series of sulphur–carbon–sulphur (SCS) nickel complexes and computationally predicted their potentials for catalytic hydrogenation of CO2. Density functional theory calculations reveal a metal–ligand cooperated mechanism with the participation of a sulfur atom in the SCS pincer ligand as a proton receiver for the heterolytic cleavage of H2. For all newly proposed complexes containing functional groups with different electron-donating and withdrawing abilities in the SCS ligand, the predicted free energy barriers for the hydrogenation of CO2 to formic acid are in a range of 22.2–25.5 kcal/mol in water. Such a small difference in energy barriers indicates limited contributions of those functional groups to the charge density of the metal center. We further explored the catalytic mechanism of the simplest model complex for hydrogenation of formic acid to formaldehyde and obtained a total free energy barrier of 34.6 kcal/mol for the hydrogenation of CO2 to methanol.
Collapse
|
43
|
Shimbayashi T, Fujita KI. Metal-catalyzed hydrogenation and dehydrogenation reactions for efficient hydrogen storage. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Hydrogenation Reactions Catalyzed by PNP-Type Complexes Featuring a HN(CH2CH2PR2)2 Ligand. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|