1
|
Ozaki T. Structural diversification of fungal natural products by oxidative enzymes. Biosci Biotechnol Biochem 2023; 87:809-818. [PMID: 37197900 DOI: 10.1093/bbb/zbad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Ascomycota and basidiomycota fungi are prolific producers of biologically active natural products. Fungal natural products exhibit remarkable structural diversity and complexity, which are generated by the enzymes involved in their biosynthesis. After the formation of core skeletons, oxidative enzymes play a critical role in converting them into mature natural products. Besides simple oxidations, more complex transformations, such as multiple oxidations by single enzymes, oxidative cyclization, and skeletal rearrangement, are often observed. Those oxidative enzymes are of significant interest for the identification of new enzyme chemistry and have the potential to be biocatalysts for the synthesis of complex molecules. This review presents selected examples of unique oxidative transformations that have been found in the biosynthesis of fungal natural products. The development of strategies for refactoring the fungal biosynthetic pathways with an efficient genome-editing method is also introduced.
Collapse
Affiliation(s)
- Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
2
|
Williams K, Szwalbe AJ, de Mattos-Shipley KMJ, Bailey AM, Cox RJ, Willis CL. Maleidride biosynthesis - construction of dimeric anhydrides - more than just heads or tails. Nat Prod Rep 2023; 40:128-157. [PMID: 36129067 PMCID: PMC9890510 DOI: 10.1039/d2np00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: up to early 2022Maleidrides are a family of polyketide-based dimeric natural products isolated from fungi. Many maleidrides possess significant bioactivities, making them attractive pharmaceutical or agrochemical lead compounds. Their unusual biosynthetic pathways have fascinated scientists for decades, with recent advances in our bioinformatic and enzymatic understanding providing further insights into their construction. However, many intriguing questions remain, including exactly how the enzymatic dimerisation, which creates the diverse core structure of the maleidrides, is controlled. This review will explore the literature from the initial isolation of maleidride compounds in the 1930s, through the first full structural elucidation in the 1960s, to the most recent in vivo, in vitro, and in silico analyses.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, UK.
| | | | | | - Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol24 Tyndall AveBristol BS8 1TQUK
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | | |
Collapse
|
3
|
Yamamoto S, Matsuyama T, Ozaki T, Takino J, Sato H, Uchiyama M, Minami A, Oikawa H. Elucidation of Late-Stage Biosynthesis of Phomoidride: Proposal of Cyclization Mechanism Affording Characteristic Nine-Membered Ring of Fungal Dimeric Anhydride. J Am Chem Soc 2022; 144:20998-21004. [DOI: 10.1021/jacs.2c09308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shintaro Yamamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Junya Takino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hajime Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| |
Collapse
|
4
|
Yuan B, Keller NP, Oakley BR, Stajich JE, Wang CCC. Manipulation of the Global Regulator mcrA Upregulates Secondary Metabolite Production in Aspergillus wentii Using CRISPR-Cas9 with In Vitro Assembled Ribonucleoproteins. ACS Chem Biol 2022; 17:2828-2835. [PMID: 36197945 PMCID: PMC9624091 DOI: 10.1021/acschembio.2c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genome sequencing of filamentous fungi has demonstrated that most secondary metabolite biosynthetic gene clusters (BGCs) are silent under standard laboratory conditions. In this work, we have established an in vitro CRISPR-Cas9 system in Aspergillus wentii. To activate otherwise silent BGCs, we deleted the negative transcriptional regulator mcrA. Deletion of mcrA (mcrAΔ) resulted in differential production of 17 SMs in total when the strain was cultivated on potato dextrose media (PDA). Nine out of fifteen of these SMs were fully characterized, including emodin (1), physcion (2), sulochrin (3), physcion bianthrone (4), 14-O-demethylsulochrin (5), (trans/cis)-emodin bianthrone (6 and 7), and (trans/cis)-emodin physcion bianthrone (8 and 9). These compounds were all found to be produced by the same polyketide synthase (PKS) BGC. We then performed a secondary knockout targeting this PKS cluster in the mcrAΔ background. The metabolite profile of the dual-knockout strain revealed new metabolites that were not previously detected in the mcrAΔ parent strain. Two additional SMs were purified from the dual-knockout strain and were characterized as aspergillus acid B (16) and a structurally related but previously unidentified compound (17). For the first time, this work presents a facile genetic system capable of targeted gene editing in A. wentii. This work also illustrates the utility of performing a dual knockout to eliminate major metabolic products, enabling additional SM discovery.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California 92521, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Williams K, de Mattos-Shipley KMJ, Willis CL, Bailey AM. In silico analyses of maleidride biosynthetic gene clusters. Fungal Biol Biotechnol 2022; 9:2. [PMID: 35177129 PMCID: PMC8851701 DOI: 10.1186/s40694-022-00132-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Kate M J de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andrew M Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
6
|
Zhao Y, Sun C, Huang L, Zhang X, Zhang G, Che Q, Li D, Zhu T. Talarodrides A-F, Nonadrides from the Antarctic Sponge-Derived Fungus Talaromyces sp. HDN1820200. JOURNAL OF NATURAL PRODUCTS 2021; 84:3011-3019. [PMID: 34842422 DOI: 10.1021/acs.jnatprod.1c00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six new nonadride derivatives, named talarodrides A-F (1-6), were isolated from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200. All structures including the absolute configurations were deduced by extensive spectroscopic analysis and computational ECD calculations. Compounds 1-4 share a rare caged bicyclo[4.3.1]-deca-1,6-diene with a bridgehead olefin and maleic anhydride core skeleton, while compounds 5 and 6 possess the first case of a naturally occurring 5/7/6 methanocyclonona[c]furan skeleton. Talarodride A (1) and talarodride B (2) showed selective inhibitory effects against Proteus mirabilis and Vibrio parahemolyticus with MICs of 3.13-12.5 μM.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Luyao Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
7
|
Yin S, Friedrich S, Hrupins V, Cox RJ. In vitro studies of maleidride-forming enzymes. RSC Adv 2021; 11:14922-14931. [PMID: 35424071 PMCID: PMC8697804 DOI: 10.1039/d1ra02118d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
In vitro assays of enzymes involved in the biosynthesis of maleidrides from polyketides in fungi were performed. The results show that the enzymes are closely related to primary metabolism enzymes of the citric acid cycle in terms of stereochemical preferences, but with an expanded substrate selectivity. A key citrate synthase can react both saturated and unsaturated acyl CoA substrates to give solely anti substituted citrates. This undergoes anti-dehydration to afford an unsaturated precursor which is cyclised in vitro by ketosteroid-isomerase-like enzymes to give byssochlamic acid.
Collapse
Affiliation(s)
- Sen Yin
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Steffen Friedrich
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Vjaceslavs Hrupins
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Russell J Cox
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
8
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
9
|
de Mattos-Shipley KMJ, Spencer CE, Greco C, Heard DM, O'Flynn DE, Dao TT, Song Z, Mulholland NP, Vincent JL, Simpson TJ, Cox RJ, Bailey AM, Willis CL. Uncovering biosynthetic relationships between antifungal nonadrides and octadrides. Chem Sci 2020; 11:11570-11578. [PMID: 34094403 PMCID: PMC8162798 DOI: 10.1039/d0sc04309e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation - confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 - converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides.
Collapse
Affiliation(s)
- Kate M J de Mattos-Shipley
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biological Sciences, University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Catherine E Spencer
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Claudio Greco
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - David M Heard
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Daniel E O'Flynn
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Trong T Dao
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Jason L Vincent
- Syngenta, Jealott's Hill International Research Centre Bracknell RG42 6EY UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Andrew M Bailey
- School of Biological Sciences, University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Christine L Willis
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
10
|
OIKAWA H. Heterologous production of fungal natural products: Reconstitution of biosynthetic gene clusters in model host Aspergillus oryzae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:420-430. [PMID: 33177296 PMCID: PMC7725655 DOI: 10.2183/pjab.96.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While exploring phytotoxic metabolites from phytopathogenic fungi in the 1970s, we became interested in biosynthetic enzymes that catalyze Diels-Alder reactions involving biosynthesis of several phytotoxins that we isolated. Target enzymes were successfully characterized, and this triggered the identification of various Diels-Alderases in a recent decade. Through our Diels-Alderase project in 1990s, we recognized a highly efficient expression system of various biosynthetic genes with Aspergillus oryzae as a host. With the development of tools such as genomic data and bioinformatics analysis to identify biosynthetic gene clusters for natural products, we developed a highly reliable methodology such as hot spot knock-in to elucidate the biosynthetic pathways of representative fungal metabolites including phytotoxic substances. This methodology allows total biosynthesis of natural products and genome mining using silent biosynthetic gene clusters to obtain novel bioactive metabolites. Further applications of this technology are discussed.
Collapse
Affiliation(s)
- Hideaki OIKAWA
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Correspondence should be addressed: H. Oikawa, Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Jo Nishi 8-Chome, Kita-ku, Sapporo 060-0810, Japan (e-mail: )
| |
Collapse
|