1
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Wu F, Zhang W, Bo X, Feng Q, Tan M, Ju S, Song Z, Li J, Huang X. A new sulphur-containing metabolite from a mangrove endophytic fungus Aspergillus sp. GXNU-MA. Nat Prod Res 2023:1-6. [PMID: 38037915 DOI: 10.1080/14786419.2023.2288685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
A new sulphur-containing metabolite, asperiguxidione A (1), was isolated from a mangrove endophytic fungus Aspergillus sp. GXNU-MA, and four known alkaloids 2-5, were isolated together from this strain. Their structures were determined by the com-bination of 1D and 2D NMR spectroscopy, HR-ESI-MS, and ECD analysis. Compounds 1 and 2 exhibited mediate activity against Staphylococcus aureus and Enterobacter aerogenes with equal MIC values of 12.5 μg/mL. Compound 3 reduced NO production in LPS-stimulated cells with an IC50 value of 13.329 ± 0.53 μg/mL in the anti-inflammatory assay.
Collapse
Affiliation(s)
- Furong Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Wenxiu Zhang
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Xianglong Bo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Meijing Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Shichao Ju
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Zishuo Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Xishan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| |
Collapse
|
3
|
Liu L, Liu Y, Liu S, Nikandrova AA, Imamutdinova AN, Lukianov DA, Osterman IA, Sergiev PV, Zhang B, Zhang D, Li F, Sun C. Bioprospecting for the soil-derived actinobacteria and bioactive secondary metabolites on the Western Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1247001. [PMID: 37886074 PMCID: PMC10599150 DOI: 10.3389/fmicb.2023.1247001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction The increase in incidence of multidrug-resistant bacteria and the inadequacy of new antimicrobial drugs have led to a widespread outbreak of bacterial antimicrobial resistance. To discover new antibiotics, biodiversity, and novelty of culturable actinobacteria dwelled in soil of the Western Qinghai-Tibet Plateau were investigated. By integrating antibacterial assay with omics tools, Amycolatopsis sp. A133, a rare actinobacterial strain and its secondary metabolites were further studied. Method Culture-dependent method was used to obtain actinobacterial strains from two soil samples collected from Ali region in Qinghai-Tibet Plateau. The cultural extractions of representative strains were assayed against "ESKAPE" pathogens by paper-disk diffusion method and the double fluorescent protein reporter "pDualrep2" system. An Amycolatopsis strain coded as A133 was prioritized and its secondary metabolites were further analyzed and annotated by omics tools including antiSMASH and GNPS (Global Natural Social Molecular Networking). The predicted rifamycin analogs produced by Amycolatopsis sp. A133 were isolated and identified by chromatographic separation, such as Sephadex LH-20 and HPLC, and spectral analysis, such as NMR and UPLC-HRESI-MS/MS, respectively. Results A total of 406 actinobacteria strains affiliated to 36 genera in 17 families of 9 orders were isolated. Out of 152 representative strains, 63 isolates exhibited antagonistic activity against at least one of the tested pathogens. Among them, 7 positive strains were identified by the "pDualrep2" system as either an inhibitor of protein translation or DNA biosynthesis. The cultural broth of Amycolatopsis sp. A133 exhibited a broader antimicrobial activity and can induce expression of TurboRFP. The secondary metabolites produced by strain A133 was annotated as rifamycins and zampanolides by antiSMASH and GNPS analysis. Five members of rifamycins, including rifamycin W, protorifamycin I, rifamycin W-M1, proansamycin B, and rifamycin S, were purified and identified. Rifamycin W-M1, was found as a new member of the naturally occurring rifamycin group of antibiotics. Discussion Assisted by omics tools, the successful and highly efficient discovery of rifamycins, a group of clinically used antibiotics from actinobacteria in Ali area encouraged us to devote more energy to explore new antibiotics from the soils on the Western Tibetan Plateau.
Collapse
Affiliation(s)
- Lifang Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuyu Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaowei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arina A. Nikandrova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arina N. Imamutdinova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
4
|
Liu W, Li E, Liu L, Tian F, Luo X, Cai Y, Wang J, Jin X. Antifungal activity of compounds from Gordonia sp. WA8-44 isolated from the gut of Periplaneta americana and molecular docking studies. Heliyon 2023; 9:e17777. [PMID: 37539250 PMCID: PMC10395128 DOI: 10.1016/j.heliyon.2023.e17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Invasive fungal infections are on the rise, leading to a continuous demand for antifungal antibiotics. Rare actinomycetes have been shown to contain a variety of interesting compounds worth exploring. In this study, 15 strains of rare actinobacterium Gordonia were isolated from the gut of Periplaneta americana and screened for their anti-fungal activity against four human pathogenic fungi. Strain WA8-44 was found to exhibit significant anti-fungal activity and was selected for bioactive compound production, separation, purification, and characterization. Three anti-fungal compounds, Collismycin A, Actinomycin D, and Actinomycin X2, were isolated from the fermentation broth of Gordonia strain WA8-44. Of these, Collismycin A was isolated and purified from the secondary metabolites of Gordonia for the first time, and its anti-filamentous fungi activity was firstly identified in this study. Molecular docking was carried out to determine their hypothetical binding affinities against nine target proteins of Candida albicans. Chitin Synthase 2 was found to be the most preferred antimicrobial protein target for Collismycin A, while 1,3-Beta-Glucanase was the most preferred anti-fungal protein target for Actinomycin D and Actinomycin X2. ADMET prediction revealed that Collismycin A has favorable oral bioavailability and little toxicity, making it a potential candidate for development as an orally active medication.
Collapse
Affiliation(s)
- Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ertong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lingyan Liu
- School of Pharmacy, Xi'an Medical College, Xi'an 710300, PR China
| | - Fangyuan Tian
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiongming Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yanqu Cai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Pali P, Singh MS. Radical-Cascade Avenue to Access 1,2-Dithioles Employing Dithioesters and Edman's Reagent. Org Lett 2023; 25:2258-2263. [PMID: 36966396 DOI: 10.1021/acs.orglett.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
An operationally simple and efficient domino etiquette has been developed for the facile construction of 1,2-dithioles employing easily accessible dithioesters as a three-atom CCS synthon and aryl isothiocyanates as a two-atom CS unit in the absence of any catalyst and additive at room temperature under open air. The reaction proceeded efficiently affording the desired 1,2-dithioles in good yields having various functional groups of a diverse electronic and steric nature. This approach avoids possible toxicity and tiresome workup conditions and features easy to handle, cheap, and readily accessible reagents, O2 as a green oxidant, and gram-scale ability. Notably, the final S-S bond formation and cascade ring construction follow a radical pathway, which has been recognized via a radical trapping experiment with BHT during the course of the reaction. Notably, the exocyclic C═N bond at position 3 of 1,2-dithiole possesses Z stereochemistry.
Collapse
Affiliation(s)
- Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Kuranaga T. Total syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. J Nat Med 2023; 77:1-11. [PMID: 36348140 PMCID: PMC9810689 DOI: 10.1007/s11418-022-01662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Peptidic natural products have received much attention as potential drug leads, and biosynthetic studies of peptidic natural products have contributed to the field of natural product chemistry over the past several decades. However, the key biosynthetic intermediates are generally not isolated from natural sources, and this can hamper a detailed analysis of biosynthesis. Furthermore, reported unusual structures, which are targets for biosynthetic studies, are sometimes the results of structural misassignments. Chemical synthesis techniques are imperative in solving these problems. This review focuses on the chemical syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. These studies can provide the key biosynthetic intermediates that can reveal the biosynthetic pathways and/or true structures of these natural products.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Liu Z, Li M, Wang S, Huang H, Zhang W. Sulfur-Containing Metabolites from Marine and Terrestrial Fungal Sources: Origin, Structures, and Bioactivities. Mar Drugs 2022; 20:765. [PMID: 36547912 PMCID: PMC9784856 DOI: 10.3390/md20120765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Organosulfur natural products (NPs) refer to the different kinds of small molecular-containing sulfur (S) elements. Sulfur-containing NPs tightly link to the biochemical processes and play an important role in the pharmaceutical industry. The majority of S-containing NPs are generally isolated from Alliaceae plants or bacteria, and those from fungi are still relatively rare. In recent years, an increasing number of S-containing metabolites have been discovered in marine and terrestrial fungi, but there is no comprehensive and targeted review to summarize the studies. In order to make it more straightforward to better grasp the fungal-derived S-containing NPs and understand the particularity of marine S-containing NPs compared to those from terrestrial fungi, we summarized the chemical structures and biological activities of 89 new fungal-derived S-containing metabolites from 1929 when the penicillin was discovered to the present in this current review. The structural and bioactive diversity of these S-containing metabolites were concluded in detail, and the preliminary mechanism for C-S bond formation in fungi was also discussed briefly.
Collapse
Affiliation(s)
| | | | | | | | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China
| |
Collapse
|
8
|
Matsumoto T, Kuranaga T, Taniguchi Y, Wang W, Kakeya H. Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A. Beilstein J Org Chem 2022; 18:1560-1566. [DOI: 10.3762/bjoc.18.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Longicatenamides A–D are cyclic hexapeptides isolated from the combined culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Because these peptides are not detected in the monoculture broth of the actinomycete, they are key tools for understanding chemical communication in the microbial world. Herein, we report the solid-phase total synthesis and structural confirmation of longicatenamide A. First, commercially unavailable building blocks were chemically synthesized with stereocontrol. Second, the peptide chain was elongated via Fmoc-based solid-phase peptide synthesis. Third, the peptide chain was cyclized in the solution phase, followed by simultaneous cleavage of all protecting groups to afford longicatenamide A. Chromatographic analysis corroborated the chemical structure of longicatenamide A. Furthermore, the antimicrobial activity of synthesized longicatenamide A was confirmed. The developed solid-phase synthesis is expected to facilitate the rapid synthesis of diverse synthetic analogues.
Collapse
|
9
|
Li XY, Liu Y, Yu B. Nucleophilic Addition/Electrocyclization Strategy toward Polyheterocyclic-Fused Quinoline-2-thiones in Green Solvent. J Org Chem 2022; 87:13300-13307. [PMID: 36094161 DOI: 10.1021/acs.joc.2c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free and base-free cyclization reaction of ortho-heteroaryl anilines with isothiocyanatobenzene for the synthesis of diverse polyheterocyclic-fused quinoline-2-thiones was developed in PEG-200. This protocol features green solvent, lack of requirement for a metal and base, short reaction time consumption, and facile isolation via simple filtration. Furthermore, this protocol is easy to scale up which demonstrates outstanding synthetic scalability.
Collapse
Affiliation(s)
- Xiao-Yun Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Bing Yu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
10
|
Khan A, Said MS, Borade BR, Gonnade R, Barvkar V, Kontham R, Dastager SG. Enceleamycins A-C, Furo-Naphthoquinones from Amycolatopsis sp. MCC0218: Isolation, Structure Elucidation, and Antimicrobial Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:1267-1273. [PMID: 35486880 DOI: 10.1021/acs.jnatprod.1c01160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three novel furo-naphthoquinones, enceleamycins A-C (1-3), and a new N-hydroxypyrazinone acid (4) were identified from the strain Amycolatopsis sp. MCC 0218, isolated from a soil sample collected from the Western Ghats of India. Their chemical structure and absolute and relative configurations were established by 1D and 2D NMR spectroscopy, single-crystal X-ray crystallography, and high-resolution mass spectrometry. Compounds 1 and 3 were active against methicillin-susceptible and -resistant Staphylococcus aureus with MIC values of 2-16 μg/mL.
Collapse
Affiliation(s)
- Abujunaid Khan
- NCIM-Resource Center, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Madhukar S Said
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Balasaheb R Borade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Gonnade
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University (University of Pune), Pune-411007, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Syed G Dastager
- NCIM-Resource Center, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
11
|
Xiao Y, Jiang Y, Xu C, Nakliang P, Yoon S, Choi S, Guo Y, Ye T. Total synthesis of thioamycolamide A using diastereoselective sulfa-Michael addition as the key step. Org Chem Front 2022. [DOI: 10.1039/d2qo00747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of the antitumor natural product thioamycolamide A has been accomplished in 19.1% overall yield featuring a diastereoselective sulfa-Michael reaction.
Collapse
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Yangyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Chao Xu
- Innovation Center of Marine Biotechnology and Pharmaceuticals, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Pratanphorn Nakliang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sanghee Yoon
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yian Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
- Innovation Center of Marine Biotechnology and Pharmaceuticals, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
12
|
Li M, Li S, Hu J, Gao X, Wang Y, Liu Z, Zhang W. Thioester-Containing Benzoate Derivatives with α-Glucosidase Inhibitory Activity from the Deep-Sea-Derived Fungus Talaromyces indigoticus FS688. Mar Drugs 2021; 20:33. [PMID: 35049889 PMCID: PMC8781869 DOI: 10.3390/md20010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Eurothiocins C-H (1-6), six unusual thioester-containing benzoate derivatives, were isolated from the deep-sea-derived fungus Talaromyces indigoticus FS688 together with a known analogue eurothiocin A (7). Their structures were elucidated through spectroscopic analysis and the absolute configurations were determined by X-ray diffraction and ECD calculations. In addition, compound 1 exhibited significant inhibitory activity against α-glucosidase with an IC50 value of 5.4 μM, while compounds 4 and 5 showed moderate effects with IC50 values of 33.6 and 72.1 μM, respectively. A preliminary structure-activity relationship is discussed and a docking analysis was performed.
Collapse
Affiliation(s)
- Mingqiong Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China; (M.L.); (S.L.); (J.H.)
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China; (M.L.); (S.L.); (J.H.)
| | - Jinhua Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China; (M.L.); (S.L.); (J.H.)
| | - Xiaoxia Gao
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yanlin Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China; (M.L.); (S.L.); (J.H.)
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China; (M.L.); (S.L.); (J.H.)
| |
Collapse
|
13
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2020. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1115-1134. [PMID: 34825847 DOI: 10.1080/10286020.2021.2004131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The new natural products reported in 2020 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2020 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Secondary Metabolites of the Genus Amycolatopsis: Structures, Bioactivities and Biosynthesis. Molecules 2021; 26:molecules26071884. [PMID: 33810439 PMCID: PMC8037709 DOI: 10.3390/molecules26071884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were “Amycolatopsis”, “secondary metabolite”, “new or novel compound”, “bioactivity”, “biosynthetic pathway” and “derivatives”. The objective in this review is to summarize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive compounds and derivatives are included and the prospect of the chemical substances obtained from Amycolatopsis is also discussed to provide ideas for their implementation in the field of therapeutics and drug discovery.
Collapse
|
15
|
Morimoto R, Matsumoto T, Minote M, Yanagisawa M, Yamada R, Kuranaga T, Kakeya H. Highly Sensitive Determination of Amino Acids by LC-MS under Neutral Conditions. Chem Pharm Bull (Tokyo) 2021; 69:265-270. [PMID: 33642474 DOI: 10.1248/cpb.c20-00958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide drug leads possess unusual structural features that allow them to exert their unique biological activities and ideal physicochemical properties. In particular, these peptides often have D-amino acids, and therefore the absolute configurations of the component amino acids have to be elucidated during the structural determination of newly isolated peptide drug leads. Recently, we developed the highly sensitive labeling reagents D/L-FDVDA and D/L-FDLDA for the structural determination of the component amino acids in peptides. In an LC-MS-based structural study of peptides, these reagents enabled us to detect infinitesimal amounts of amino acids derived from mild degradative analysis of the samples. Herein, we firstly report the improved LC-MS protocols for the highly sensitive analyses of amino acids. Second, two new labeling reagents were synthesized and their detection sensitivities evaluated. These studies increase our understanding of the structural basis of these highly sensitive labeling reagents, and should provide opportunities for future on-demand structural modifications of the reagents to enhance their hydrophobicity, stability, and affinity for applications to specialized HPLC columns.
Collapse
Affiliation(s)
- Ryota Morimoto
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takumi Matsumoto
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Mayuri Minote
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masayuki Yanagisawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Ryotaro Yamada
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
16
|
Pan C, Kuranaga T, Cao X, Suzuki T, Dohmae N, Shinzato N, Onaka H, Kakeya H. Amycolapeptins A and B, Cyclic Nonadepsipeptides Produced by Combined-culture of Amycolatopsis sp. and Tsukamurella pulmonis. J Org Chem 2021; 86:1843-1849. [PMID: 33410699 DOI: 10.1021/acs.joc.0c02660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two nonapeptide natural products, amycolapeptins A (1) and B (2) with a 22-membered cyclic depsipeptide skeleton, β-hydroxytyrosine, and a highly modified side chain, which were not produced in a monoculture of the rare actinomycete Amycolatopsis sp. 26-4, were discovered in broth of its combined-culture with Tsukamurella pulmonis TP-B0596. The planar structures were elucidated by spectroscopic analyses (extensive 2D-NMR and MALDI-TOF MS/MS). The absolute configurations of component amino acids were unambiguously determined by the highly sensitive advanced Marfey's method we recently developed. Additionally, the structures of unstable/unusual moieties were corroborated by chemical synthesis and CD analysis.
Collapse
Affiliation(s)
- Chengqian Pan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takefumi Kuranaga
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Xun Cao
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Bioscience Building, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Bioscience Building, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences & Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Pan C, Kuranaga T, Kakeya H. Application of the highly sensitive labeling reagent to the structural confirmation of readily isomerizable peptides. J Nat Med 2021; 75:339-343. [PMID: 33387214 DOI: 10.1007/s11418-020-01472-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Thioamycolamide A (1) is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a D-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus. It has gained attention for its unique structure, and very recently we reported the total synthesis of 1 via a biomimetic route. The NMR spectra of synthetic 1 agreed with those of natural 1. However, structural identity between peptidic natural and synthetic compounds is often difficult to confirm by comparison of NMR spectra because their NMR spectra vary depending on the conditions in the NMR tube, which often result in the structural misassignment of peptidic compounds. Especially, our total synthesis based on the putative biomimetic route potentially gives 1 as a diastereomixture at the final step. The problem is that the diastereomers of peptidic mid-sized molecules often exhibit similar properties (such as NMR spectra and bioactivities), and their separation procedures are often laborious. Herein we report the structural confirmation of synthetic 1 by the LC-MS-based chromatographic comparison with the use of our highly sensitive labeling reagent L-FDVDA; the highly sensitive-advanced Marfey's method (HS-advanced Marfey's method). This work demonstrated the utility of our highly sensitive labeling reagent for the structural determination of not only scarce natural products but also readily isomerizable synthetic compounds.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto, 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto, 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, YoshidaKyoto, 606-8501, Japan.
| |
Collapse
|
18
|
Pan C, Kuranaga T, Kakeya H. Total synthesis of thioamycolamide A via a biomimetic route. Org Biomol Chem 2020; 18:8366-8370. [PMID: 33030495 DOI: 10.1039/d0ob01942a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Thioamycolamide A is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a d-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus. Based on the biosynthetic insights, a concise total synthesis of thioamycolamide A was accomplished.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as sporormielone A from a Sporormiella species.
Collapse
|