1
|
Li Z, Li S, Qian G, Ke Z, Chen Z. Copper-Catalyzed Synthesis of Difluoromethylated/C-4- and C-5-Functionalized Polycyclic Coumarin Derivatives. J Org Chem 2024; 89:8084-8098. [PMID: 38810000 DOI: 10.1021/acs.joc.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A facile and novel synthetic method for the synthesis of functionalized polycyclic coumarins at the C-4 and C-5 positions is proposed for the first time, which employs copper-catalyzed addition reactions of undiscovered alkenes with difluoromethyl radicals to construct polycyclic coumarins. This strategy is characterized by high regioselectivity, easy availability of raw materials, and simple operation. Additionally, such undiscovered coumarin alkenes can be reacted with a variety of difluoromethyl precursors to obtain a wide range of valuable C-4 and C-5 position functionalized/difluoromethylated polycyclic coumarins. More importantly, some of the products showed significant inhibition of proliferation in vitro against melanoma B16-F10 and lung cancer A549 cell lines with optimal IC50 values of 8.57 and 16.04 μM, respectively.
Collapse
Affiliation(s)
- Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuo Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guosong Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
Sun Y, Zhang SP, Yang WC. Divergent Construction of Thiochromanes and N-Arylbutanamides via Arylthiodifluoromethyl Radical-Triggered Cascade of Alkenes. J Org Chem 2023; 88:13279-13290. [PMID: 37650696 DOI: 10.1021/acs.joc.3c01576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A strategy utilizing silver-catalyzed oxidative decarboxylation radical cascade cyclization of arylthiodifluoroacetic acids with alkenes for the simple and efficient preparation of difluoromethylated thiochromanes and 2,2-disubstituted-N-arylbutanamides derivatives has been developed. This approach includes good functional group tolerance, easily accessible starting materials, and operational simplicity.
Collapse
Affiliation(s)
- Yu Sun
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Shu-Peng Zhang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
3
|
Friedrich M, Manolikakes G. Base‐mediated C4‐selective C‐H‐sulfonylation of pyridine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Friedrich
- University of Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Georg Manolikakes
- TU Kaiserslautern fachbereich Chemie Erwin-schrödinger-Str. Geb 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
4
|
Lu H, Xiao RX, Shi CY, Song ZL, Lin HW, Zhang A. Synthesis of aryldifluoromethyl aryl ethers via nickel-catalyzed suzuki cross-coupling between aryloxydifluoromethyl bromides and boronic acids. Commun Chem 2022; 5:78. [PMID: 36697792 PMCID: PMC9814959 DOI: 10.1038/s42004-022-00694-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023] Open
Abstract
As a unique organofluorine fragment, gem-difluoromethylated motifs have received widespread attention. Here, a convenient and efficient synthesis of aryldifluoromethyl aryl ethers (ArCF2OAr') was established via Nickel-catalyzed aryloxydifluoromethylation with arylboronic acids. This approach features easily accessible starting materials, good tolerance of functionalities, and mild reaction conditions. Diverse late-stage difluoromethylation of many pharmaceuticals and natural products were readily realized. Notably, a new difluoromethylated PD-1/PD-L1 immune checkpoint inhibitor was conveniently synthesized and showed both improved metabolic stability and enhanced antitumor efficacy. Preliminary mechanistic studies suggested the involvement of a Ni(I/III) catalytic cycle.
Collapse
Affiliation(s)
- Heng Lu
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ruo-Xuan Xiao
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Chang-Yun Shi
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Zi-Lan Song
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hou-Wen Lin
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ao Zhang
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
5
|
Chen Z, Huang X, Sun J, Liu Y, Li Z. Metal‐free Cascade Radical Cyclization of
N
‐Methylacrylyl‐2‐phenylbenzimidazole: Construction of Aryldifluoromethylated Benzimidazole[2,1‐
a
]
iso
‐Quinoline‐6(5
H
)‐ketone. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Yanmin Liu
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| |
Collapse
|
6
|
Jakubczyk M, Mkrtchyan S, Shkoor M, Lanka S, Budzák Š, Iliaš M, Skoršepa M, Iaroshenko VO. Mechanochemical Conversion of Aromatic Amines to Aryl Trifluoromethyl Ethers. J Am Chem Soc 2022; 144:10438-10445. [PMID: 35652785 PMCID: PMC9204773 DOI: 10.1021/jacs.2c02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Increased interest
in the trifluoromethoxy group in organic synthesis
and medicinal chemistry has induced a demand for new, selective, general,
and faster methods applicable to natural products and highly functionalized
compounds at a later stage of hit-to-lead campaigns. Applying pyrylium
tetrafluoroborate, we have developed a mechanochemical protocol to
selectively substitute the aromatic amino group with the OCF3 functionality. The scope of our method includes 31 examples of ring-substituted
anilines, including amides and sulfonamides. Expected SNAr products were obtained in excellent yields. The presented concise
method opens a pathway to new chemical spaces for the pharmaceutical
industry.
Collapse
Affiliation(s)
- Michał Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łodź PL-90-363, Poland
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Suneel Lanka
- Lodz University of Technology, Stefana Żeromskiego 116, Lodz 90-924, Poland
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Marek Skoršepa
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 00014, Finland
| |
Collapse
|
7
|
Sun J, Li Z, Huang X, Ke Z, Chen Z. Silver-catalyzed C-3 arylthiodifluoromethylation and aryloxydifluoromethylation of coumarins. Org Biomol Chem 2022; 20:4421-4426. [PMID: 35583266 DOI: 10.1039/d2ob00568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed oxidative decarboxylation of arylthiodifluoroacetic acids or aryloxydifluoroacetic acids with coumarins/quinoxalin-2(1H)-ones was developed. This transformation provided a series of C-3 aryloxydifluoromethylated or arylthiodifluoromethylated coumarins/quinoxalin-2(1H)-ones containing various functional groups in moderate to good yields, featuring good functional group tolerance, easily accessible starting materials and operational simplicity.
Collapse
Affiliation(s)
- Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Li J, Li YA, Wu G, Zhang X. Metal-Free Aminohalogenation of Quinones With Alkylamines and NXS at Room Temperature. Front Chem 2022; 10:917371. [PMID: 35707457 PMCID: PMC9189915 DOI: 10.3389/fchem.2022.917371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
A simple and practical strategy for intermolecular aminohalogenation of quinone with alkyl amines and NXS was developed, in which haloamines generated in situ were employed as bifunctional reagents. The reaction system is reliable, efficient and wide in substrate range, which is suitable for the two-fold aminochlorination of 1, 4-benzoquinones, large-scale reaction and late-stage modification of pharmaceuticals.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-An Li
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yu-An Li, ; Ge Wu,
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yu-An Li, ; Ge Wu,
| | - Xu Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Du P, Sun Q, Li H, Zhang J, Deng H, Jiang H. Silver-catalyzed Radical Cascade Arylthiodifluoromethylation/ Cyclization of Isonitriles for the Synthesis of 6-Phenanthridinyldifluoromethyl Aryl Thioethers. Chem Asian J 2022; 17:e202200088. [PMID: 35319154 DOI: 10.1002/asia.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
An efficient method for silver-catalyzed radical cascade arylthiodifluoromethylation/cyclization of isonitriles is disclosed. The transformation comprised addition of an arylthiodifluoromethyl radical generated in situ by the oxidative decarboxylation of arylthiodifluoroacetic salts to the isonitrile functionality to construct an ArSCF2 -C bond, followed by intramolecular cyclization to eventually afford 6-phenanthridinyldifluoromethyl aryl thioethers. The protocol provided a variety of 6-phenanthridinyldifluoromethyl aryl thioethers in medium to excellent yields with a good functional group tolerance under mild reaction conditions.
Collapse
Affiliation(s)
- Pengcheng Du
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianqian Sun
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University, Shanghai, 200444, P. R. China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
10
|
Zhu YY, Liu S, Huang Y, Qing FL, Xu XH. Photoredox catalyzed difluoro(phenylthio)methylation of 2,3-allenoic acids with {difluoro(phenylthio)methyl}triphenylphosphonium triflate. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wang J, Liu S, Huang Y, Xu XH, Qing FL. Photoredox catalyzed C-H trifluoroethylamination of heteroarenes. Chem Commun (Camb) 2022; 58:1346-1349. [PMID: 34986214 DOI: 10.1039/d1cc06688a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first C-H trifluoroethylamination of heteroarenes with previously unknown N-trifluoroethyl hydroxylamine reagents was achieved under photoredox catalyzed conditions. In the presence of an iridium(III) photoredox catalyst, a variety of heteroarenes, such as indoles, benzofurans, and benzothiophenes, were smoothly converted to the trifluoroethylaminated products in moderate to high yields and with excellent regioselectivity.
Collapse
Affiliation(s)
- Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Shuai Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Xiu-Hua Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Feng-Ling Qing
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Guo C, Liu Z, Li X, Han X, Li Y, Liu H, Zhang L, Li X, Dong Y. Silver-catalyzed monofluoroalkylation of heteroarenes with α-fluorocarboxylic acids: an insight into the solvent effect. Chem Commun (Camb) 2022; 58:1147-1150. [PMID: 34981099 DOI: 10.1039/d1cc06466e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient method for direct C-H monofluoroalkylation of heteroarenes with easily accessible and inexpensive α-fluorocarboxylic acids has been developed. This silver-catalyzed reaction affords mono- and bis-monofluoroalkylated heteroarenes in good yields under mild conditions, and the solvent effect on the monofluoroalkylation reaction is discussed in detail.
Collapse
Affiliation(s)
- Chunfang Guo
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China. .,Shandong Vocational College of Light Industry, Zhoucun Mishan Road, Zibo, 255300, China
| | - Zhaolong Liu
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xiangye Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xuliang Han
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Yueyun Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Lizhi Zhang
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xinjin Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunhui Dong
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of difluoroalkylated protoilludanes obtained by a practical radical cascade difluoroalkylation-cyclization reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wade Wolfe MM, Guo S, Yu LS, Vogel TR, Tucker JW, Szymczak NK. Nucleophilic strategies to construct –CF 2– linkages using borazine-CF 2Ar reagents. Chem Commun (Camb) 2022; 58:11705-11708. [DOI: 10.1039/d2cc01938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using nucleophilic, boron-based –CF2Ar reagents, we demonstrate three methods to form C–CF bonds: (1) nucleophilic aromatic substitution, (2) palladium catalyzed cross-coupling, and (3) nucleophilic substitution.
Collapse
Affiliation(s)
| | - Shuo Guo
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Lucy S. Yu
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Trenton R. Vogel
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Joseph W. Tucker
- Medicine Design, Pfizer Inc., Eastern Point Rd., Groton, CT, 06340, USA
| | | |
Collapse
|
15
|
Chen Z, Sun J, Ke Z, Huang X, Li Z. Silver-catalyzed stereoselective C-4 arylthiodifluoromethylation of coumarin-3-carboxylic acids via a double decarboxylative strategy. Org Chem Front 2022. [DOI: 10.1039/d1qo01609a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed dual decarboxylation of arylthio-difluoroacetic acid with coumarin-3-carboxylic acids/chromone-3-carboxylic acids was developed.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
16
|
Sun Y, Li X, Yuan J, Yu J, Liu S. CuI-Catalyzed Regioselective Synthesis of 3-Arylcoumarins with Arylamines under Mild Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhang Y, Lai GW, Nie LJ, He Q, Lin MJ, Chi R, Lu DL, Fan X. Organocatalytic difluorobenzylation of 1,2-diketones via mild cleavage of carbon–carbon bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01645h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Difluoroacetophenones (DFAPs) are developed as a class of novel and practical reagents for organocatalytic difluorobenzylation reactions.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guo-Wei Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Long-Jun Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Mei-Juan Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Rong Chi
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Dong-Liang Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
18
|
Fang Z, Xie L, Wang L, Zhang Q, Li D. Silver-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides: an efficient route to γ-lactam-substituted quinone derivatives. RSC Adv 2022; 12:26776-26780. [PMID: 36320855 PMCID: PMC9490777 DOI: 10.1039/d2ra05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of γ-lactam-substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides has been developed. Related 2-oxazolidinone substituted quinone products can be also obtained with N-aryl allyl carbamates. The reactions proceed through an amidyl radical-initiated 5-exo-trig cyclization and followed radical addition to quinones. They provide an efficient route to various γ-lactam-substituted quinone derivatives with a wide range of substrate scope. The synthesis of γ-lactam and related 2-oxazolidinone substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-ary-4-pentenamides and N-aryl allyl carbamates has been developed.![]()
Collapse
Affiliation(s)
- Zeguo Fang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Lin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Liang Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
19
|
Guo C, Han X, Li X, Diao Z, Li X, Dong Y. Direct C−H Difluoroalkylation of Heteroarenes with Difluoroalkyl Carboxylic Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chunfang Guo
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
- Shandong Vocational College of Light Industry Zhoucun Mishan Road Zibo 255300 P. R. China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| | - Xiangye Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| | - Zhengzhen Diao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| |
Collapse
|
20
|
Song Z, Liu B, Peng X, Gu W, Sun Y, Xing L, Xu Y, Geng M, Ai J, Zhang A. Design, Synthesis, and Pharmacological Evaluation of Biaryl-Containing PD-1/PD-L1 Interaction Inhibitors Bearing a Unique Difluoromethyleneoxy Linkage. J Med Chem 2021; 64:16687-16702. [PMID: 34761679 DOI: 10.1021/acs.jmedchem.1c01422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blockade of immune checkpoint PD-1/PD-L1 has been a promising anticancer strategy; however, clinically available PD-1/PD-L1 small-molecule inhibitors are lacking. In view of the high potency of compound 2 (BMS-1002), structural fine tuning of the methoxy linkage together with diverse modification in the solvent interaction region was conducted. A series of novel derivatives featuring a difluoromethyleneoxy linkage were designed. Compound 43 was identified as the most promising PD-1/PD-L1 inhibitor with an IC50 value of 10.2 nM in the HTRF assay. This compound is capable of promoting CD8+ T cell activation through inhibiting PD-1/PD-L1 cellular signaling. Moreover, in the Hepa1-6 syngeneic mouse model, administration of compound 43 at 1 mg/kg dosage promoted CD8+ T cell activation and delayed the tumor growth with good tolerance. Notably, the tumor in one mouse of the compound 43-treated group was completely regressed. These results indicate that compound 43 is a promising candidate worthy of further investigation.
Collapse
Affiliation(s)
- Zilan Song
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wangting Gu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiming Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Xing
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xu
- Shanghai Pinghe School, 261 Huangyang Road, Shanghai 201206, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
21
|
Alfonzo E, Hande SM. α-Heteroarylation of Thioethers via Photoredox and Weak Brønsted Base Catalysis. Org Lett 2021; 23:6115-6120. [PMID: 34297584 DOI: 10.1021/acs.orglett.1c02151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the C-H activation of thioethers to α-thio alkyl radicals and their addition to N-methoxyheteroarenium salts for the redox-neutral synthesis of α-heteroaromatic thioethers. Studies are consistent with a two-step activation mechanism, where oxidation of thioethers to sulfide radical cations by a photoredox catalyst is followed by α-C-H deprotonation by a weak Brønsted base catalyst to afford α-thio alkyl radicals. Further, N-methoxyheteroarenium salts play additional roles as a source of methoxyl radical that contributes to α-thio alkyl radical generation and a sacrificial oxidant that regenerates the photoredox catalytic cycle.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Sudhir M Hande
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
22
|
Donzel M, Karabiyikli D, Cotos L, Elhabiri M, Davioud‐Charvet E. Direct C−H Radical Alkylation of 1,4‐Quinones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maxime Donzel
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Deniz Karabiyikli
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Leandro Cotos
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Elisabeth Davioud‐Charvet
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| |
Collapse
|
23
|
Huang CM, Li J, Wang SL, Ai JJ, Liu XY, Rao WD, Wang SY. Transition-Metal-Free Decarboxylative Cyclization of N-Arylacrylamides with 2,2-Difluoro-2-(phenylthio)acetic Acid: Synthesis of Thiodifluorooxindole Derivatives. J Org Chem 2021; 86:8437-8447. [PMID: 34042441 DOI: 10.1021/acs.joc.1c00965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient transition-metal-free decarboxylative cyclization of N-arylacrylamides with 2,2-difluoro-2-(phenylthio)acetic acid for the construction of thiodifluoroindoleone derivatives is described. This strategy features stable and readily available substrates, mild reaction conditions, and transition-metal-free catalysts. Notably, this protocol has successfully applied to synthesis of gem-difluoroalkenes, which exist in numerous biologically active compounds.
Collapse
Affiliation(s)
- Cheng-Mi Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shan-Le Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jing-Jing Ai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Wei-Dong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College and Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
24
|
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
- Department of Chemistry Fudan University 2005 Songhu Rd. Shanghai 200438 P. R. China
| | - Zhen Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
| | - Hai‐yan Diao
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
| | - Zhang‐jie Shi
- Department of Chemistry Fudan University 2005 Songhu Rd. Shanghai 200438 P. R. China
| |
Collapse
|
25
|
Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Rhodium(I)‐Catalyzed C2‐Selective Decarbonylative C−H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyang Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zexin Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lingchao Li
- Jiangsu Zenji Pharmaceuticals Ltd. Huaian 223100 P. R. China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| |
Collapse
|
26
|
Radical coupling of arylthiodifluoroacetic acids and ethynylbenziodoxolone (EBX) reagents to access arylthiodifluoromethylated alkynes. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Hu CC, Hu WQ, Xu XH, Qing FL. 2-Position-selective C H fluoromethylation of six-membered heteroaryl N-oxides with (fluoromethyl)triphenylphosphonium iodide. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Zhao F, Guo S, Zhang Y, Sun T, Yang B, Ye Y, Sun K. Silver-catalyzed decarboxylative radical relay difluoroalkylation–carbocyclization: convenient access to CF 2-containing quinolinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01425k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical Ag-catalyzed formal decarboxylation and radical difluoroalkylation–carbocyclization–hydrolysis route is established to construct a series of structurally diverse CF2-containing N-heterocycles.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Sa Guo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Ting Sun
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Bing Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| |
Collapse
|
29
|
Xu X, Tao N, Fan WT, Tu G, Geng J, Zhang J, Zhao Y. Ruthenium-Catalyzed Meta-Selective C-H Difluoromethylation of Phenol Derivatives. J Org Chem 2020; 85:13868-13876. [PMID: 33113330 DOI: 10.1021/acs.joc.0c01909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With pyrimidine as the directing group, we achieved the meta-selective difluoromethylation of phenol derivatives using ruthenium as a catalyst. This synthetic scheme provided an efficient method for the syntheses of fluorine-containing phenol derivatives. A wide variety of phenol derivatives were well-suited, affording the corresponding products in moderate-to-good yields.
Collapse
Affiliation(s)
- Xu Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Na Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei-Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guangliang Tu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyao Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
30
|
Zhang Y, Ge J, Luo L, Yan SQ, Lai GW, Mei ZQ, Luo HQ, Fan XL. Difluoroisoxazolacetophenone: A Difluoroalkylation Reagent for Organocatalytic Vinylogous Nitroaldol Reactions of 1,2-Diketones. Org Lett 2020; 22:7952-7957. [PMID: 32991188 DOI: 10.1021/acs.orglett.0c02873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Difluoroisoxazolacetophenone (DFIO) is developed as a new difluoroalkylation reagent that can be easily prepared from inexpensive starting materials. In situ remote C-C bond cleavage of DFIO affords γ,γ-difluoroisoxazole nitronate that undergoes base-catalyzed vinylogous nitroaldol additions to isatins, benzothiophene-2,3-dione, unsaturated-α-ketoesters, and cyclic 1,2-diketones. This organocatalytic debenzoate vinylogous nitroaldol reaction provides a new and mild approach for the preparation of various difluoroisoxazole-substituted 3-hydroxy-2-oxindoles.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Jin Ge
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Liang Luo
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Su-Qiong Yan
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Guo-Wei Lai
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Zu-Qin Mei
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Hai-Qing Luo
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Xiao-Lin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| |
Collapse
|
31
|
Jiang Q, Liang Y, Zhang Y, Zhao X. Chalcogenide-Catalyzed Intermolecular Electrophilic Thio- and Halofunctionalization of gem-Difluoroalkenes: Construction of Diverse Difluoroalkyl Sulfides and Halides. Org Lett 2020; 22:7581-7587. [PMID: 32966094 DOI: 10.1021/acs.orglett.0c02784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thio- and halodifluoromethylated compounds are an important class of compounds in medicinal chemistry and organic synthesis. Herein, we report a facile method for the construction of these compounds via chalcogenide-catalyzed intermolecular electrophilic thio- and halofunctionalization of gem-difluoroalkenes. Simple treatment of gem-difluoroalkenes with electrophilic sulfur/halogen reagents and various O- or N-nucleophiles affords diverse multifunctionalized thio- and halodifluoromethylated compounds. This reaction features a relatively broad substrate scope, good functional group tolerance, and mild reaction conditions.
Collapse
Affiliation(s)
- Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|