1
|
Jin YH, Lee J, Kim J, Sohn JH. Palladium-Catalyzed/Copper-Mediated Decarbonylative Cross-Coupling of S-Pyrimidyl Thioesters for Biaryl Synthesis. J Org Chem 2024; 89:9800-9809. [PMID: 38940361 DOI: 10.1021/acs.joc.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A palladium-catalyzed/copper-mediated cross-coupling of S-pyrimidinyl thioesters with arylboronic acids to yield biaryls is described. The reaction is likely to proceed via cleavage of the S-C(O) bond and subsequent release of CO, rather than via cleavage of the S-C(pyrimidine) bond and release of SCO, as supported by the results of both experimental and computational studies. The investigation of the reaction scope with various S-pyrimidinyl thioesters and arylboronic acids showed that the reaction is significantly affected by the substituent of the thioester and the presence of a chelatable ortho substituent was found to increase reaction efficiency.
Collapse
Affiliation(s)
- Young-Hwa Jin
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihong Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Ju G, Huang Z, Zhao Y. Trialkoxysilane-Induced Iridium-Catalyzed para-Selective C-H Bond Borylation of Arenes. Nat Commun 2024; 15:2847. [PMID: 38565860 PMCID: PMC10987550 DOI: 10.1038/s41467-024-47205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
An ideal approach for the construction of aryl boron compounds is to selectively replace a C-H bond in arenes with a C-B bond, and controlling regioselectivity is one of the most challenging aspects of these transformations. Herein, we report an iridium-catalyzed trialkoxysilane protecting group-assisted regioselective C-H borylation of arenes, including derivatives of benzaldehydes, acetophenones, benzoic acids, benzyl alcohols, phenols, aryl silanes, benzyl silanes, and multi-functionalized aromatic rings are all well tolerated and gave the para -selective C-H borylation products in a short time without the requirement of inert gases atmosphere. The site-selective C-H borylation can be adjustable by installing the developed trialkoxysilane protecting group on different functional groups on one aromatic ring. Importantly, the preparation process of the trialkoxychlorosilane is efficient and scalable. Mechanistic and computational studies reveal that the steric hindrance of the trialkoxysilane protecting group plays a key role in dictating the para-selectivity.
Collapse
Affiliation(s)
- Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, China.
| |
Collapse
|
3
|
Rajamanickam KR, Lee S. Ring Opening of N-Acyl Lactams Using Nickel-Catalyzed Transamidation. J Org Chem 2024. [PMID: 38173413 DOI: 10.1021/acs.joc.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We successfully developed a nickel-catalyzed transamidation method for the ring opening of N-acyl lactams. The method involves a reaction between N-benzoylpyrrolidin-2-one derivatives and aniline derivatives, with Ni(PPh3)2Cl2 serving as the catalyst, 2,2'-bipyridine as the ligand, and manganese as the reducing agent. This reaction led to the formation of ring-opening-amidated products in good yields. Notably, the method exhibited excellent efficiency for producing the corresponding ring-opening transamidation products for various ring sizes, including four-, five-, six-, seven-, and eight-membered ring lactams.
Collapse
Affiliation(s)
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Moon H, Lee S. Reductive cross-coupling of N-acyl pyrazole and nitroarene using tetrahydroxydiboron: synthesis of secondary amides. Org Biomol Chem 2023; 21:8329-8334. [PMID: 37795749 DOI: 10.1039/d3ob01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We report on a new method for the synthesis of amides using acyl pyrazoles and nitroarenes under reducing conditions. It was found that acyl pyrazoles react with organo-nitro compounds in the presence of B2(OH)4, giving the corresponding amides in good yields. We demonstrated that benzoyl pyrazoles having various substituents and nitroarenes with different substituents can be used to produce a range of N-substituted benzamides. The method shows good functional group tolerance and has potential application in the synthesis of a variety of organic molecules.
Collapse
Affiliation(s)
- Hayeon Moon
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Lv X, Liu S, Guo Y, Gao L, Zhao L, Zhang J, Rong L. Meerwein Arylation of Aryl(alkyl)idenemalononitriles and Diazonium Salts for the Synthesis of 2-(Aryl(alkyl)/arylmethylene)malononitrile Derivatives. J Org Chem 2023; 88:12421-12431. [PMID: 37563911 DOI: 10.1021/acs.joc.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A metal-free Meerwein arylation reaction from aryl(alkyl)idenemalononitriles and diazonium salts for the synthesis of 2-(aryl(alkyl)/arylmethylene)malononitrile derivatives under mild conditions was well developed. Different from the general addition reactions between alkenes and diazonium salts, this study performed the traditional coupling reaction for the formation of C(sp2)-C(sp2) bond arylation products. The radical reaction mechanism was well verified in the control experiments. The other advantages of the approach are broad-scope substrates and good group tolerance. Moreover, the obtained products can be readily converted into high-value asymmetric ketones and hydrogenation reactions.
Collapse
Affiliation(s)
- Xiaoqing Lv
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| | - Shengjun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| | - Yu Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| | - Lijiu Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| | - Liming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, P. R. China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| |
Collapse
|
7
|
Sivaramakrishna A, Pete S, Mandar Mhaskar C, Ramann H, Venkata Ramanaiah D, Arbaaz M, Niyaz M, Janardan S, Suman P. Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Karakaya I, Rizwan K, Munir S. Transition‐Metal Catalyzed Coupling Reactions for the Synthesis of (Het)aryl Ketones: An Approach from their Synthesis to Biological Perspectives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
11
|
Flow reaction system for the synthesis of benzoylacetonitrile via the reaction of amides and acetonitrile. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175654. [PMID: 36080422 PMCID: PMC9458230 DOI: 10.3390/molecules27175654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the construction of carbon-carbon bonds. It involves the coupling of organosilicons with organic halides using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic progress has been made by researchers toward the synthesis of diversified natural products and pharmaceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic developments and applications of Hiyama cross-coupling.
Collapse
|
13
|
Joseph D, Lee S. Reaction of Amide and Sodium Azide for the Synthesis of Acyl Azide, Urea, and Iminophosphorane. Org Lett 2022; 24:6186-6191. [PMID: 35959978 DOI: 10.1021/acs.orglett.2c02429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amides reacted with NaN3 to give the acyl azides in DMF at 25 °C and produce the symmetrical ureas in THF/H2O at 80 °C via the sequential reaction of acyl substitution and Curtius rearrangement. All acyl azides were also obtained from the secondary amides via sequential reaction of p-toluenesulfonyl chloride and NaN3. In addition, keto-stabilized iminophosphoranes were prepared from a one-pot reaction of amides, NaN3, and phosphines.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
14
|
He X, Hu S, Xiao Y, Yu L, Duan W. Access to Ketones through Palladium‐Catalyzed Cross‐Coupling of Phenol Derivatives with Nitroalkanes Followed by Nef Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyu He
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| | - Sengui Hu
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| | - Yuxuan Xiao
- Guangxi University College of Chemistry and Chemical Engineering Nanning CHINA
| | - Lin Yu
- Guangxi University Chemistry No. 100, East Daxue Road 530004 Nanning CHINA
| | - Wengui Duan
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| |
Collapse
|
15
|
Nickel Supported MCM-Functionalized 1,2,3-Triazol-4-ylmethanamine: An Efficient Nano-particle-Heterogeneous Catalyst Activate for Suzuki Reaction. Catal Letters 2022. [DOI: 10.1007/s10562-021-03802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Aliyu Idris M, Song KH, Lee S. Synthesis of (Hetero)Aroyl Fluorides via a Mild Amides C−N Bond Cleavage. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Kwang Ho Song
- Department of Chemical & Biological Engineering Korea University Seoul 02841 Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
17
|
Wu FW, Mao YJ, Pu J, Li HL, Ye P, Xu ZY, Lou SJ, Xu DQ. Ni-catalysed deamidative fluorination of amides with electrophilic fluorinating reagents. Org Biomol Chem 2022; 20:4091-4095. [PMID: 35522070 DOI: 10.1039/d2ob00519k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
18
|
Wang Y, Shen H, Qiu J, Chen M, Song W, Zhao M, Wang L, Bai F, Wang H, Wu Z. Copper-Promoted Hiyama Cross-Coupling of Arylsilanes With Thiuram Reagents: A Facile Synthesis of Aryl Dithiocarbamates. Front Chem 2022; 10:867806. [PMID: 35559223 PMCID: PMC9087285 DOI: 10.3389/fchem.2022.867806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
We report herein a facile Hiyama cross-coupling reaction of arylsilanes with thiuram reagents (tetraalkylthiuram disulfides or tetraalkylthiuram monosulfide) enabled by copper fluoride. Compared to our previous work, this protocol is an alternative protocol for the generation of S-aryl dithiocarbamates. It features low toxic and readily available substrates, cost-effective promoter, easy performance, and provides good yields.
Collapse
Affiliation(s)
- Yiying Wang
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Hongtao Shen
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Jianhua Qiu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Mengqi Chen
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
- *Correspondence: Mengqi Chen, ; Weimin Song, ; Zhiyong Wu,
| | - Weimin Song
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
- *Correspondence: Mengqi Chen, ; Weimin Song, ; Zhiyong Wu,
| | - Mingqin Zhao
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Longfei Wang
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Feng Bai
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Hongxia Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Mengqi Chen, ; Weimin Song, ; Zhiyong Wu,
| |
Collapse
|
19
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Kandasamy J, Azeez S, Shahul Hameed S, Popuri S. Controlled Reduction of Activated Primary and Secondary Amides into Aldehydes with Diisobutylaluminum Hydride. Org Biomol Chem 2022; 20:2048-2053. [DOI: 10.1039/d1ob02414k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical method is disclosed for the reduction of activated primary and secondary amides into aldehydes using diisobutylaluminum hydride (DIBAL-H) in toluene. A wide range of aryl and alkyl N-Boc,...
Collapse
|
21
|
Park MS, Lee S. Transition-metal-catalyst-free reaction of amides and acetonitriles: synthesis of β-ketonitriles. Org Chem Front 2022. [DOI: 10.1039/d2qo00884j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first example of the coupling reaction between amide and acetonitrile for the synthesis of β-ketonitriles was developed. Various amides provide the corresponding β-ketonitriles in good yields.
Collapse
Affiliation(s)
- Myeong Seong Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
22
|
Gnyawali K, Kirinde Arachchige PT, Yi CS. Synthesis of Flavanone and Quinazolinone Derivatives from the Ruthenium-Catalyzed Deaminative Coupling Reaction of 2'-Hydroxyaryl Ketones and 2-Aminobenzamides with Simple Amines. Org Lett 2021; 24:218-222. [PMID: 34958227 DOI: 10.1021/acs.orglett.1c03870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) with 3,4,5,6-tetrachloro-1,2-benzoquinone (L1) was found to be a highly effective catalyst for the deaminative coupling reaction of 2'-hydroxyaryl ketones with simple amines to form 3-substituted flavanone products. The analogous deaminative coupling reaction of 2-aminobenzamides with branched amines directly formed 3,3-disubstituted quinazolinone products. The catalytic method efficiently installs synthetically useful flavanone and quinazolinone core structures without employing any reactive reagents.
Collapse
Affiliation(s)
- Krishna Gnyawali
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | | | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
23
|
Liu Y, Scattolin T, Gobbo A, Beliš M, Van Hecke K, Nolan SP, Cazin CSJ. A Simple Synthetic Route to Well‐Defined [Pd(NHC)Cl(1‐
t
Bu‐indenyl)] Pre‐catalysts for Cross‐Coupling Reactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yaxu Liu
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Alberto Gobbo
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
24
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
25
|
Rahman MM, Pyle DJ, Bisz E, Dziuk B, Ejsmont K, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. J Org Chem 2021; 86:10455-10466. [PMID: 34275281 DOI: 10.1021/acs.joc.1c01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-coupling under the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. The X-ray structure of the model N-acyl-δ-valerolactam is characterized by an additive Winkler-Dunitz distortion parameter Σ(τ+χN) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational studies provide insight into the structural and energetic parameters of the amide bond, including amidic resonance, N/O-protonation aptitude, and the rotational barrier around the N-C(O) axis. This class of N-acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-coupling reactions by acyl-metal intermediates.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Daniel J Pyle
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.,Department of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6 14, Wroclaw 50-373, Poland
| | - Krzysztof Ejsmont
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
26
|
Joseph D, Oh MS, Jayaraman A, Lee S. Amides Activation: Transition Metal‐Free Coupling Between
CN
Activated Amides and Enolizable Amides. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Min Seok Oh
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Aravindan Jayaraman
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
27
|
Xie. P, Qin Z, Zhang S, Hong X. Understanding the Structure‐Activity Relationship of Ni‐Catalyzed Amide C−N Bond Activation using Distortion/Interaction Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pei‐Pei Xie.
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Zhi‐Xin Qin
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Shuo‐Qing Zhang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
28
|
Lin T, Qian P, Wang YE, Ou M, Jiang L, Zhu C, Xu Y, Xiong D, Mao J. Palladium-Catalyzed Direct Arylation of 2-Pyridylmethyl Silanes with Aryl Bromides. Org Lett 2021; 23:3000-3003. [PMID: 33779175 DOI: 10.1021/acs.orglett.1c00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first palladium-catalyzed direct arylation of 2-pyridylmethyl silanes with aryl bromides to generate a diverse array of aryl(2-pyridyl)-methyl silane derivatives has been developed. This protocol facilitates access to various kinds of heterocycle-containing silanes in good to excellent yields (40 examples, 66-97% yield) with good functional group tolerance. The scalability of this transformation is demonstrated.
Collapse
Affiliation(s)
- Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Pengcheng Qian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Mingjie Ou
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Long Jiang
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, P. R. China
| | - Chen Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Yuchuan Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| |
Collapse
|
29
|
Li J, Yao J, Chen L, Zou D, Walsh PJ, Liang G. Chemoselective acylation of N-acylglutarimides with N-acylpyrroles and aryl esters under transition-metal-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00992c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The imide moiety is a well-known structural motif in bioactive compounds and a useful building block in a variety of processes.
Collapse
Affiliation(s)
- Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Jiaqi Yao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Dong Zou
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
30
|
Joseph D, Park MS, Lee S. Metal-free transamidation of benzoylpyrrolidin-2-one and amines under aqueous conditions. Org Biomol Chem 2021; 19:6227-6232. [PMID: 34225358 DOI: 10.1039/d1ob00967b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-Acyl lactam amides, such as benzoylpyrrolidin-2-one, benzoylpiperidin-2-one, and benzoylazepan-2-one reacted with amines in the presence of DTBP and TBAI to afford the transamidated products in good yields. The reactions were conducted under aqueous conditions and good functional group tolerance was achieved. Both aliphatic and aromatic primary amines displayed good activity under metal-free conditions. A radical reaction pathway is proposed.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Myeong Seong Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|