1
|
Tanbouza N, Caron L, Biniaz M, Marcoux A, Ollevier T. Metal-Free Oxidation of Acceptor-Donor Acylhydrazones into Diazo Compounds Using Phenyl Iododiacetate. J Org Chem 2024; 89:16600-16612. [PMID: 39472445 DOI: 10.1021/acs.joc.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aryl-ester acylhydrazones readily react with phenyl iododiacetate (PIDA) in methanol to produce the corresponding α-diazoesters with good to excellent yields (30 examples). The conditions have also been proven to be efficient in the synthesis of triazolopyridines. The crude mixture containing the diazo compound and acetic acid was also irradiated with low-energy blue LED light for a subsequent one-pot insertion of the in situ-generated carbene with AcOH to afford the respective acetates in high yields.
Collapse
Affiliation(s)
- Nour Tanbouza
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Laurent Caron
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Mojtaba Biniaz
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Antony Marcoux
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Thierry Ollevier
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| |
Collapse
|
2
|
Gao Q, Kong W, Chen C, Shi J, Yao X, Tang X. Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Sulfoxonium Ylides for the Synthesis of α-Acetoxyl Ketones. Org Lett 2024; 26:5940-5945. [PMID: 38989672 DOI: 10.1021/acs.orglett.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The most convenient and direct method of synthesizing an α-acyloxy ketone is the reaction of a diazo compound with a carboxylic acid via O-H insertion. However, due to the limitations in preparing and storing diazo compounds, the application of this method is restricted. In this study, Cu(OAc)2-mediated (OAc = acetate) decarboxylative coupling reactions of 3-indoleacetic acids with sulfoxonium ylides were developed for use in rapidly synthesizing α-acetoxyl ketones. In this reaction, Cu(OAc)2 was not only used as an oxidant, but also as acetate ion source. Notably, when 5-methoxy-2-methyl-3-indoleacetic acid reacted with different sulfoxonium ylides, the corresponding products exhibited fluorescence, and furthermore, several products displayed antiproliferative activities against various human cancer cell lines.
Collapse
Affiliation(s)
- Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Weiya Kong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
3
|
Newar UD, Boruah DJ, Bhuyan A, Nayak A, Maurya RA. Visible-light-induced copper-catalyzed oxidative esterification of α-azidoketones with diazoacetates: access to α-acyloxyacetates. Org Biomol Chem 2024; 22:5414-5418. [PMID: 38881326 DOI: 10.1039/d4ob00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A copper(II)-catalyzed 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-mediated synthesis of α-acyloxyacetates from α-azidoketones and diazoacetates under visible light at room temperature is described. This reaction involves an oxidative esterification process, leading to the formation of two new C-O bonds with the elimination of dinitrogen molecules in the overall process. 20 examples of α-acyloxyacetates were synthesized in high yields (70-86%) by coupling various α-azidoketones with diazoacetates. α-Azidoketones containing electron-donating groups (Me, MeO), electron-withdrawing groups (CN, NO2), halogen atoms (Cl, Br), and other aryl groups are compatible with various substituted diazoacetates (ethyl, tertiary butyl, benzyl), resulting in the formation of α-acyloxyacetates.
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dhruba Jyoti Boruah
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arnav Bhuyan
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
| | - Abhimanyu Nayak
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Kumar N, Gola AK, Pandey SK. Straightforward access to α-carbonyloxy esters and β-keto thioethers from aryldiazoacetates. Org Biomol Chem 2024; 22:1624-1628. [PMID: 38318863 DOI: 10.1039/d3ob02104a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal- and additive-free approach has been described for synthesizing α-carbonyloxy esters and β-keto thioethers from readily available aryldiazoacetates with carboxylic acids and thiol derivatives, respectively. α-Carbonyloxy esters and β-keto thioether derivatives were synthesized in good to high yields from aryldiazoacetates, carboxylic acids, and thiol derivatives decorated with various functional groups. Finally, the potential of the new approach is demonstrated through its application in gram-scale reactions and the synthesis of a few bioactive molecules.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
5
|
Tan F, Wang W, Huang X, Zhong Y, Song T, Wang J, Mei L. O-H Insertion of Hydrogenphosphate Derivatives and α-Diazo Compounds. J Org Chem 2024; 89:2588-2598. [PMID: 38270667 DOI: 10.1021/acs.joc.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
An efficient O-H insertion of hydrogenphosphate derivatives and α-diazo compounds has been developed to construct α-phosphoryloxy scaffolds. Diverse α-phosphoryloxy skeletons could be obtained under mild and catalyst-free conditions in good yields. The control experiments suggest a protonation and nucleophilic addition process of α-diazo compounds via a diazonium ion pair for this transformation.
Collapse
Affiliation(s)
- Fei Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi Zhong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ling Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Farshadfar K, Hashemi A, Khakpour R, Laasonen K. Kinetics of N 2 Release from Diazo Compounds: A Combined Machine Learning-Density Functional Theory Study. ACS OMEGA 2024; 9:1106-1112. [PMID: 38222626 PMCID: PMC10785077 DOI: 10.1021/acsomega.3c07367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Diazo compounds are commonly employed as carbene precursors in carbene transfer reactions during a variety of functionalization procedures. Release of N2 gas from diazo compounds may lead to carbene formation, and the ease of this process is highly dependent on the characteristics of the substituents located in the vicinity of the diazo moiety. A quantum mechanical density functional theory assisted by machine learning was used to investigate the relationship between the chemical features of diazo compounds and the activation energy required for N2 elimination. Our results suggest that diazo molecules, possessing a higher positive partial charge on the carbene carbon and more negative charge on the terminal nitrogen, encounter a lower energy barrier. A more positive C charge decreases the π-donor ability of the carbene lone pair to the π* orbital of N2, while the more negative N charge is a result of a weak interaction between N2 lone pair and vacant p orbital of the carbene. The findings of this study can pave the way for molecular engineering for the purpose of carbene generation, which serves as a crucial intermediate for many chemical transformations in synthetic chemistry.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry and Material
Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Arsalan Hashemi
- Department of Chemistry and Material
Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Reza Khakpour
- Department of Chemistry and Material
Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and Material
Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
7
|
Xu S, Zhang Q, Li Y, Luo C, Lai R, Guo L, Hai L, Lv G, Wu Y. Pathway to Construct α-Acyloxy Esters by B(C 6F 5) 3-Catalyzed O-H Insertion of Carboxylic Acids with Sulfoxonium Ylides. J Org Chem 2023; 88:15335-15349. [PMID: 37875403 DOI: 10.1021/acs.joc.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the first example of B(C6F5)3-catalyzed O-H insertion reaction of sulfoxonium ylides and carboxylic acids, achieving efficient construction of diester moieties under metal-free condition. This protocol is characterized by broad substrate tolerance, particularly for various phenylacetic acids, and good compatibility with water/air condition, which is superior to most other methods.
Collapse
Affiliation(s)
- Shuran Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Qingyao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Cankun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
8
|
Sun Q, Peng Y, Wang Y, Bao X. Construction of α-Acyloxy Ketones via Photoredox-Catalyzed O-H Insertion of Sulfoxonium Ylides with Carboxylic Acids. Org Lett 2023; 25:6613-6617. [PMID: 37672752 DOI: 10.1021/acs.orglett.3c02221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, a photoredox-catalyzed insertion of sulfoxonium ylides with carboxylic acids was advanced under mild and simple conditions, offering a practical approach for preparing α-acyloxy ketones with a broad scope of carboxylic acids. A combined experimental and computational study suggests that this reaction proceeds via a stepwise proton-assisted electron transfer mechanism.
Collapse
Affiliation(s)
- Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujing Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
9
|
Zahra FT, Saeed A, Mumtaz K, Albericio F. Tropylium Ion, an Intriguing Moiety in Organic Chemistry. Molecules 2023; 28:4095. [PMID: 37241836 PMCID: PMC10224505 DOI: 10.3390/molecules28104095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The tropylium ion is a non-benzenoid aromatic species that works as a catalyst. This chemical entity brings about a large number of organic transformations, such as hydroboration reactions, ring contraction, the trapping of enolates, oxidative functionalization, metathesis, insertion, acetalization, and trans-acetalization reactions. The tropylium ion also functions as a coupling reagent in synthetic reactions. This cation's versatility can be seen in its role in the synthesis of macrocyclic compounds and cage structures. Bearing a charge, the tropylium ion is more prone to nucleophilic/electrophilic reactions than neutral benzenoid equivalents. This ability enables it to assist in a variety of chemical reactions. The primary purpose of using tropylium ions in organic reactions is to replace transition metals in catalysis chemistry. It outperforms transition-metal catalysts in terms of its yield, moderate conditions, non-toxic byproducts, functional group tolerance, selectivity, and ease of handling. Furthermore, the tropylium ion is simple to synthesize in the laboratory. The current review incorporates the literature reported from 1950 to 2021; however, the last two decades have witnessed a phenomenal upsurge in the utilization of the tropylium ion in the facilitation of organic conversions. The importance of the tropylium ion as an environmentally safe catalyst in synthesis and a comprehensive summary of some important reactions catalyzed via tropylium cations are described.
Collapse
Affiliation(s)
- Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.T.Z.); (K.M.)
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.T.Z.); (K.M.)
| | - Khansa Mumtaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.T.Z.); (K.M.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Carbocation Catalysis in the Synthesis of Heterocyclic Compounds. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Mann JS, Mai BK, Nguyen TV. Carbocation-Catalyzed Intramolecular and Intermolecular Carbonyl-Alkyne Metathesis Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jasnoor S. Mann
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Li Z, Yao X, Zhang X, Mei H, Han J. Carboxylic Acid O-H Insertion Reaction of β-Ester Diazos Enabling Synthesis of β-Acyloxy Esters. J Org Chem 2022; 87:15483-15491. [PMID: 36354090 DOI: 10.1021/acs.joc.2c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Generation of non-stabilized β-ester diazos and their applications in carboxylic acid O-H insertion reactions have been reported, which afford β-acyloxy esters in excellent yield. Varieties of aryl- and alkyl-substituted diazos are well tolerated in this insertion reaction under mild and convenient conditions. Moreover, structural modification of the natural product and molecular drug can also be achieved in this reaction. This protocol not only realizes the reaction involving unstable β-ester diazos but also provides an efficient strategy for the synthesis of β-acyloxy esters.
Collapse
Affiliation(s)
- Ziyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Functionalization of Sulfonic Acid to Sulfonic Ester Using Diazo Compound under Mild Reaction Conditions in the Absence of Additives. ChemistrySelect 2022. [DOI: 10.1002/slct.202202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Kumar N, Venkatesh R, Kandasamy J. Synthesis of functionalized S-benzyl dithiocarbamates from diazo-compounds via multi-component reactions with carbon disulfide and secondary amines. Org Biomol Chem 2022; 20:6766-6770. [PMID: 35980203 DOI: 10.1039/d2ob01069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triflic acid promoted multi-component synthesis of functionalized S-benzyl dithiocarbamates from diazo compounds, carbon disulfide and secondary amines is reported. The reactions proceeded at room temperature and gave the desired dithiocarbamates in good yields. Wide-substrate scope and easy operation are the important features of this methodology.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Rapelly Venkatesh
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Jeyakumar Kandasamy
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| |
Collapse
|
15
|
Chen CY, Zhao JH, Xiong LX, Wang F, Yang G, Ma C. Borane-catalyzed arylation of aryldiazoacetates with N, N-dialkylanilines. Org Biomol Chem 2022; 20:4101-4104. [PMID: 35537202 DOI: 10.1039/d2ob00447j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective arylation of donor-acceptor diazo compounds with aniline derivatives catalyzed by Lewis acidic boranes is developed. This simple reaction protocol provides an efficient method for the synthesis of diarylacetates under metal-free conditions.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Jing-Hao Zhao
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Li-Xue Xiong
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
16
|
Zhang C. Application of Aromatic Substituted 2,2,2-Trifluoro Diazoethanes in Organic Reactions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220516113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
This review provides an overview of metal-, nonmetal-, light-, or catalyst free-promoting reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with organic molecules for the synthesis of trifluoromethyl-substituted compounds. Several approaches will be reviewed and divided into (i) copper-, iron-, Trop(BF4)-, B(C6F5)3-, light-, or rhodium-promoted reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with silanes, amines, mercaptans, phosphonates, p-cyanophenol, benzoic acid, diphenylphosphinic acid, boranes and nBu3SnH, (ii) rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with amides and phenylhydroxylamine, (iii) copper-, rhodium-, silver-, and light-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkynes, (iv) palladium-, copper-, rhodium- and iron-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkenes, (v) BF3·OEt2-, copper-, tin- or TBAB-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with HF·Py, (difluoroiodo)toluene (p-TolIF2), TMSCF3, AgSCF3, TMSCF2Br or 1,3-dicarbonyl compounds, (vi) palladium-, copper-, gold/silver- or rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with indoles, benzene compounds or pyridines, and (vii) palladium-catalyzed reaction of aromatic substituted 2,2,2-trifluoro diazoethanes with benzyl or allyl bromides.
Collapse
Affiliation(s)
- Cai Zhang
- Department of safety supervision and management, Chongqing Vocational Institute of Safety Technology, Wanzhou District, Chongqing, People’s Republic of China
| |
Collapse
|
17
|
Lyons DJM, Dinh AH, Ton NNH, Crocker RD, Mai BK, Nguyen TV. Ring Contraction of Tropylium Ions into Benzenoid Derivatives. Org Lett 2022; 24:2520-2525. [PMID: 35324211 DOI: 10.1021/acs.orglett.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a method to convert substituted tropylium ions into benzenoid derivatives.
Collapse
Affiliation(s)
- Demelza J M Lyons
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - An H Dinh
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nhan N H Ton
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Reece D Crocker
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Koothradan FF, Suresh Babu A, Pushpakaran KP, Jayarani A, Sivasankar C. Carboxylic Acid Functionalization Using Sulfoxonium Ylides as a Carbene Source. J Org Chem 2022; 87:10564-10575. [PMID: 35316055 DOI: 10.1021/acs.joc.1c02632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functionalization of carboxylic acids using sulfoxonium ylides in the presence of [VO(acac)2] as a catalyst is reported. The usual carbene source, diazo compounds, failed to produce α-carbonyloxy esters in good yield when compared to sulfoxonium ylides. Various standard spectroscopic and analytical techniques were used to characterize the products formed.
Collapse
Affiliation(s)
- Fathima Febin Koothradan
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry 605014, India
| | - Anusree Suresh Babu
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry 605014, India
| | - Krishnendu P Pushpakaran
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry 605014, India
| | - Arumugam Jayarani
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry 605014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry 605014, India
| |
Collapse
|
19
|
Lang J, Wang S, He C, Liu X, Feng X. Asymmetric synthesis of isochromanone derivatives via trapping carboxylic oxonium ylides and aldol cascade. Chem Sci 2022; 13:1163-1168. [PMID: 35211283 PMCID: PMC8790771 DOI: 10.1039/d1sc06025b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient asymmetric synthesis of isochromanone derivatives was realized through Z-selective-1,3-OH insertion/aldol cyclization reaction involving acyclic carboxylic oxonium ylides. The combination of achiral dirhodium salts and chiral N,N′-dioxide–metal complexes, along with the use of α-diazoketones instead of α-diazoesters, enables the cascade reaction efficiently. A variety of benzo-fused δ-lactones bearing vicinal quaternary stereocenters were obtained with good to excellent enantioselectivity, bypassing the competitive 1,1-OH insertion and racemic background aldol reaction. A highly enantioselective cascade Z-selective-1,3-OH insertion/aldol cyclization of ketoacids with diazoketones involving carboxylic oxonium ylides was achieved by using a bimetallic Rh(ii)/chiral N,N′-dioxide-Fe(iii) or Sc(iii) complex catalyst.![]()
Collapse
Affiliation(s)
- Jiawen Lang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Changli He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
20
|
Muthusamy S, Prabu A. BF 3·OEt 2 catalyzed chemoselective CC bond cleavage of α,β-enones: an unexpected synthesis of 3-alkylated oxindoles and spiro-indolooxiranes. Org Biomol Chem 2021; 20:558-564. [PMID: 34939633 DOI: 10.1039/d1ob02002a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A BF3·OEt2 catalyzed highly chemoselective formal CC double bond cleavage reaction of α,β-enones with diazoamides for the synthesis of 3-alkylated oxindoles is developed. Boron trifluoride etherate is found to be an effective catalyst for the chemoselective Cα-Cβ cleavage of enones to obtain 3-alkylated oxindoles. The product formation indicates a selective β-carbon elimination pathway of α,β-enones using the inexpensive BF3·OEt2 as a catalyst, transition metal-free conditions, an open-air environment, good functional tolerance and broad substrate scope. The synthetic utility of this protocol is highlighted by synthesizing spiro-indolooxiranes.
Collapse
Affiliation(s)
| | - Ammasi Prabu
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| |
Collapse
|
21
|
Rekha, Sharma S, Singh G, Vijaya Anand R. Tropylium Salt-Promoted Vinylogous Aza-Michael Addition of Carbamates to para-Quinone Methides: Elaboration to Diastereomerically Pure α,α'-Diarylmethyl Carbamates. ACS ORGANIC & INORGANIC AU 2021; 2:186-196. [PMID: 36855457 PMCID: PMC9954356 DOI: 10.1021/acsorginorgau.1c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Carbocation catalysis is emerging as an important subarea of Lewis acid catalysis. Some stable and isolable carbocations have been successfully utilized as Lewis acid catalysts and promoters in many synthetic transformations. In this manuscript, we report a tropylium cation-promoted vinylogous aza-Michael addition of carbamates to para-quinone methides (QMs) to access a wide range of unsymmetrical α,α'-diarylmethyl carbamates. This mild protocol was effective for the vinylogous conjugate addition of (-)-menthyl carbamate to p-QMs, and the respective diastereomerically pure α,α'-diarylmethyl carbamate derivatives could be obtained in excellent yields and diastereoselectivities (up to >20:1 de).
Collapse
|
22
|
Crocker RD, Pace DP, Zhang B, Lyons DJM, Bhadbhade MM, Wong WWH, Mai BK, Nguyen TV. Unusual Alternating Crystallization-Induced Emission Enhancement Behavior in Nonconjugated ω-Phenylalkyl Tropylium Salts. J Am Chem Soc 2021; 143:20384-20394. [PMID: 34807589 DOI: 10.1021/jacs.1c10038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The alternating physical properties, especially melting points, of α,ω-disubstituted n-alkanes and their parent n-alkanes had been known since Baeyer's report in 1877. There is, however, no general and comprehensive explanation for such a phenomenon. Herein, we report the synthesis and examination of a series of novel ω-phenyl n-alkyl tropylium tetrafluoroborates, which also display alternation in their physicochemical characters. Despite being organic salts, the compounds with odd numbers of carbons in the alkyl bridge exist as room temperature ionic liquids. In stark contrast to this, the analogues with even numbers of carbons in the linker are crystalline solids. These solid nonconjugated molecules exhibit curious photoluminescent properties, which can be attributed to their ability to form through-space charge-transfer complexes to cause crystallization-induced emission enhancement. Most notably, the compound with the highest photoluminescent quantum yield in this series showed an unusual arrangement of carbocationic dimer in the solid state. A combination of XRD analysis and ab initio calculations revealed interesting insights into these systems.
Collapse
Affiliation(s)
- Reece D Crocker
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Domenic P Pace
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bolong Zhang
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.,ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Demelza J M Lyons
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohan M Bhadbhade
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace W H Wong
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.,ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Kato R, Saito H, Uda S, Domon D, Ikeuchi K, Suzuki T, Tanino K. Synthesis of Seven-Membered Cross-Conjugated Cyclic Trienes by 8π Electrocyclic Reaction. Org Lett 2021; 23:8878-8882. [PMID: 34714079 DOI: 10.1021/acs.orglett.1c03383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A method for the synthesis of 3-methylene-1,4-cycloheptadiene derivatives via an 8π electrocyclization reaction was developed. The triene substrate bearing a phosphate or carbamate group was prepared from γ,δ-unsaturated esters and α,β-unsaturated aldehydes in four steps. Upon treatment with NaHMDS or KHMDS, the substrate formed a heptatrienyl anion, which underwent electrocyclization and subsequent β-elimination of the leaving group. The product could be converted into a tropylium salt in two steps.
Collapse
Affiliation(s)
- Ranmaru Kato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Saito
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Shoko Uda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Daisuke Domon
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
24
|
Zhao G, Wu Y, Wu HH, Yang J, Zhang J. Pd/GF-Phos-Catalyzed Asymmetric Three-Component Coupling Reaction to Access Chiral Diarylmethyl Alkynes. J Am Chem Soc 2021; 143:17983-17988. [PMID: 34699199 DOI: 10.1021/jacs.1c09742] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Significant attention has been given in the past few years to the selective transformations of N-tosylhydrazones to various useful compounds. However, the development of enantioselective versions poses considerable challenges. Herein we report a Pd-catalyzed enantioselective three-component coupling of N-tosylhydrazone, aryl halide, and terminal alkyne under mild conditions utilizing a novel chiral sulfinamide phosphine ligand (GF-Phos), which provides a facile access to chiral diarylmethyl alkynes, which are useful synthons in organic synthesis as well as exist as the skeleton in many bioactive molecules. A pair of enantiomers of the product could be easily prepared using the same chiral ligand by simply changing the aryl substituents of the N-tosylhydrazone and aryl halide. The salient features of this reaction include the readily available starting materials, general substrate scope, high enantioselectivity, ease of scale-up, mild reaction conditions, and versatile transformations.
Collapse
Affiliation(s)
- Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Yi Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
25
|
Cao T, Gao C, Kirillov AM, Fang R, Yang L. DFT quest for mechanism and stereoselectivity in B(C6F5)3-catalyzed cyclopropanation of alkenes with aryldiazoacetates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Main Group Catalysis: Cationic Si(II) and Ge(II) Compounds as Catalysts in Organosilicon Chemistry. REACTIONS 2021. [DOI: 10.3390/reactions2040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cyclopentadienyl (Cp)-coordinated cationic Si(II) (1) and Ge(II) compounds (2) are a new class of catalysts for various transformations in organosilicon chemistry. This review demonstrates that these compounds effectively catalyze technically important reactions, such as the hydrosilylation of carbon-carbon multiple bonds and various types of siloxane-coupling reactions, e.g., the Piers-Rubinsztajn reaction and the oxidative siloxane coupling reaction. Whereas the cationic Si(II) compounds are sensitive to air and moisture, the corresponding cationic Ge(II) compounds are bench stable, thus offering further advantages. The new catalysts contribute to the growing need for the substitution of transition metals and heavier main group metals by their lighter congeners, especially in industrially relevant organosilicon chemistry.
Collapse
|
27
|
Abstract
The Ritter reaction used to be one of the most powerful synthetic tools to functionalize alcohols and nitriles, providing valuable N-alkyl amide products. However, this reaction has not been frequently used in modern organic synthesis due to its employment of strongly acidic and harsh reaction conditions, which often lead to complicated side reactions. Herein, we report the development of a new method using salts of the tropylium ion to promote the Ritter reaction. This method works well on a range of alcohol and nitrile substrates, giving the corresponding products in good to excellent yields. This reaction protocol is amenable to microwave and continuous flow reactors, offering an attractive opportunity for further applications in organic synthesis.
Collapse
Affiliation(s)
- Son H Doan
- School of Chemistry, University of New South Wales, Sydney, Australia.
| | - Mohanad A Hussein
- School of Chemistry, University of New South Wales, Sydney, Australia.
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
28
|
Abstract
Herein, we report on the tris(pentafluorophenyl)borane-catalyzed reaction of carbazole heterocycles with aryldiazoacetates. We could demonstrate that selective N-H functionalization occurs in the case of an unprotected carbazole, other N-heterocycles, and secondary amines in good yields. In contract, the protected carbazole undergoes C-H functionalization at the C-3 position in a good yield. The application of both approaches was studied in 41 examples with up to a 97% yield.
Collapse
Affiliation(s)
- Feifei He
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
29
|
Hori D, Yum JH, Sugiyama H, Park S. Tropylium Derivatives as New Entrants that Sense Quadruplex Structures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daisuke Hori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Zhang Y, Zhang X, Zhao J, Jiang J. B(C 6F 5) 3-catalyzed O-H insertion reactions of diazoalkanes with phosphinic acids. Org Biomol Chem 2021; 19:5772-5776. [PMID: 34137768 DOI: 10.1039/d1ob01035b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A highly efficient base-, metal-, and oxidant-free catalytic O-H insertion reaction of diazoalkanes and phosphinic acids in the presence of B(C6F5)3 has been developed. This powerful methodology provides a green approach towards the synthesis of a broad spectrum of α-phosphoryloxy carbonyl compounds with good to excellent yields (up to 99% yield). The protocol features the advantages of operational simplicity, high atom economy, practicality, easy scalability and environmental friendliness.
Collapse
Affiliation(s)
- Yangyang Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Xinzhi Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Jincheng Zhao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China. and Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
31
|
Ton NNH, Mai BK, Nguyen TV. Tropylium-Promoted Hydroboration Reactions: Mechanistic Insights Via Experimental and Computational Studies. J Org Chem 2021; 86:9117-9133. [PMID: 34134487 DOI: 10.1021/acs.joc.1c01208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroboration reaction of alkynes is one of the most synthetically powerful tools to access organoboron compounds, versatile precursors for cross-coupling chemistry. This type of reaction has traditionally been mediated by transition-metal or main group catalysts. Herein, we report a novel method using tropylium salts, typically known as organic oxidants and Lewis acids, to promote the hydroboration reaction of alkynes. A broad range of vinylboranes can be easily accessed via this metal-free protocol. Similar hydroboration reactions of alkenes and epoxides can also be efficiently catalyzed by the same tropylium catalysts. Experimental studies and DFT calculations suggested that the reaction follows an uncommon mechanistic pathway, which is triggered by the hydride abstraction of pinacolborane with tropylium ion. This is followed by a series of in situ counterion-activated substituent exchanges to generate boron intermediates that promote the hydroboration reaction.
Collapse
Affiliation(s)
- Nhan N H Ton
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
32
|
Liu J, Xu J, Pajkert R, Mei H, Röschenthaler GV, Han J. Esterification of Carboxylic Acids with (β-Diazo-α,α-difluoroethyl)phosphonates under Photochemical Conditions. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Zhao D, Luo J, Liu L, Liu Y. Regiospecific and site-selective C–H allylation of phenols with vinyldiazo compounds catalyzed by In( iii). Org Chem Front 2021. [DOI: 10.1039/d1qo01184g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An In(OTf)3-catalyzed regiospecific, site-selective, and C–H chemoselective insertion reaction of phenols with vinyldiazoacetates was developed. The reactions of aryl or alkyl substituted vinyldiazoacetates exhibited different selective manners.
Collapse
Affiliation(s)
- Dan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jingyan Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuanyuan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|