1
|
Zhang S, Liu Y, Sun L, Wang B, Zhao J, Qu J, Zhou Y. Palladium-catalyzed regio- and enantio-selective trifluoromethylated allylic alkylation of diphenylphosphine oxides. Org Biomol Chem 2025. [PMID: 40208064 DOI: 10.1039/d5ob00096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The first convenient method for the allylic alkylation of diphenylphosphine oxides catalyzed by palladium has been designed and developed, affording various chiral allylphosphine oxides bearing CF3 groups with exclusive regio-selectivity and excellent enantioselective control. The reaction was performed in one pot under relatively mild reaction conditions using "easy-to-prepare" starting materials and relatively inexpensive chiral bis(phosphines) ligands. Further transformations of a representative product confirm the feasibility and potential applications of our synthetic strategies. In conclusion, this study provides a valuable method method for synthesizing chiral molecules bearing CF3 and allylphosphine oxide.
Collapse
Affiliation(s)
- Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Luyang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bangzhong Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
2
|
Wang B, Sun L, Zhang P, Zhang S, Zhao J, Qu J, Zhou Y. Pd-catalyzed asymmetric etherification of 2 H-chromenes: enantioselective construction of chiral 4-alkoxy-4 H-chromenes. Org Biomol Chem 2025; 23:3431-3436. [PMID: 40079574 DOI: 10.1039/d5ob00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
A new strategy for the construction of a chiral 4-alkoxy-4H-chromene skeleton was reported. A series of chiral 4-alkoxy-4H-chromenes containing the trifluoromethyl group were obtained in good yields (up to 80% yield) and excellent enantioselectivity (up to 93% ee).
Collapse
Affiliation(s)
- Bangzhong Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Luyang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Pengyue Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
3
|
Wang B, Sun L, Zhang P, Zhang S, Zhao J, Qu J, Zhou Y. Pd-Catalyzed Asymmetric Synthesis of Chiral 2-Trifluoromethyl-4-(indol-3-yl)-4 H-chromene Derivatives. J Org Chem 2025; 90:1755-1767. [PMID: 39878415 DOI: 10.1021/acs.joc.4c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This paper presents a new strategy for the construction of the chiral 4H-chromene skeleton. A series of chiral 2-trifluoromethyl-4-(indol-3-yl)-4H-chromenes were synthesized in moderate to good yields (60-92%) with excellent enantioselectivity (up to 97% ee) through the palladium-catalyzed asymmetric condensation of 2H-chromenes and indoles. These trifluoromethylated, stereochemically rich building blocks hold potential value in medicinal chemistry.
Collapse
Affiliation(s)
- Bangzhong Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Luyang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Pengyue Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
4
|
Cai N, Gao X, Jia L, Liu Y, Zhao J, Qu J, Zhou Y. 2-Trifluoromethyl-2H-chromene ethers: The dual triumph of anti-inflammation and analgesia with minimal ulcer threat. Bioorg Chem 2025; 154:108050. [PMID: 39675096 DOI: 10.1016/j.bioorg.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
In this report, we disclose the design and synthesis of a series of 2-trifluoromethyl-2H- chromene ethers as novel COX-2 inhibitors with low ulcerogenicity. Among them, 6-fluoro-3-(4-methoxyphenyl)-2-(2-(thiophen-3-yl)ethoxy)-2-(trifluoromethyl)-2H-chromene (E25) significantly suppressed LPS-induced release of NO and PGE2, expression of COX-2 and iNOS, and activation of NF-κB pathway. The inhibitory effect of E25 on human recombinant COX-2 (IC50 = 70.7 ± 4.7 nM) and molecular docking studies suggest that E25 functions as a COX-2 inhibitor. Moreover, the results of the cellular thermal shift assay also substantiate the interaction between E25 and COX-2. E25 manifests potent anti-inflammatory and analgesic efficacy on a par with or even superior to indomethacin in rodent models including carrageenan-induced paw edema, cotton pellet-induced granuloma, acetic acid-induced writhes, and adjuvant-induced arthritis. The possible mechanism of action of E25 might be to bind to COX-2 and suppress the NF-κB pathway as well as the expression of related proteins, thereby exerting anti-inflammatory and analgesic effects. Encouragingly, compared with indomethacin, E25 induces smaller areas and fewer ulcers, a lower level of inflammatory infiltration, a lower expression of MMP-9 and apoptosis of mucosal epithelial cells in rat gastric tissues. Overall, E25 and other analogues are promising candidates worthy of further investigation for the treatment of inflammation and pain, as well as other symptoms in which COX-2 and PGE2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
5
|
Sun S, Zhang Y, Banwell MG, White LV, Zhou L. Iridium-Catalyzed, Highly Selective Allylation of Pyrazolones for the Convenient Construction of Adjacent Stereocenters. Org Lett 2024; 26:10229-10234. [PMID: 39576759 DOI: 10.1021/acs.orglett.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology. The use of Cu(OTf)2 as a co-catalyst greatly enhances the regioselectivity of the reaction and permits selective syntheses of branched allylation products.
Collapse
Affiliation(s)
- Shixiang Sun
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuqi Zhang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| | - Leijie Zhou
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
6
|
Cai N, Gao X, Jia L, Liu Y, Zhou L, Zhao J, Qu J, Zhou Y. 3-(2-Trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles: Mastering anti-inflammation and analgesia while mitigating gastrointestinal side effects. Bioorg Chem 2024; 153:107805. [PMID: 39255608 DOI: 10.1016/j.bioorg.2024.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
A series of 3-(2-trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles (5-1 to 5-29) were developed and characterized. Most of compounds were found to be potent for inhibiting the production of NO in LPS-induced RAW264.7 cells, of which 3-(3-(4-chlorophenyl)-6-methoxy-2-(trifluoromethyl)-4H-chromen-4-yl)-1H-indole (5-25) was the most optimal (IC50 = 4.82 ± 0.34 μΜ) and was capable of significantly suppressing the release of PGE2. The inhibitory effect of 5-25 on human recombinant COX-2 (IC50 = 51.7 ± 1.3 nM) was measured and molecular docking was performed, determining 5-25 as a COX-2 inhibitor. Additionally, the interaction between 5-25 and COX-2 was determined by the CETSA technique. Then, 5-25 inhibited the degradation of IκB, the phosphorylation and nuclear translocation of NF-κB p65, and the expression of COX-2 and iNOS. Moreover, it was verified that 5-25 exhibited efficacy in rodent models of inflammation and pain, encompassing the paw edema, cotton pellet-induced granuloma, acid-induced writhing, and adjuvant-induced arthritis models. Therefore, the mechanism of 5-25 may be to bind to COX-2 and exert anti-inflammatory and analgesic effects in vitro and in vivo by suppressing the NF-κB pathway. Encouragingly, in comparison with indomethacin, 5-25 exhibited a lower ulcerative potential in rats, as manifested by generating smaller areas and fewer ulcers, less inflammatory infiltration, a lower expression of MMP-9, and less apoptosis. In conclusion, 5-25 is a candidate drug with high activity and low ulcerogenic potential, and it deserves further research for the treatment of inflammation, pain, and other symptoms in which COX-2 plays a role in their pathogenesis.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Lingwei Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
7
|
Priyanka C, Madhu D, Gangadhar PS, Giribabu L, Punna N. Cross-conjugated vinylogous annulation of π-CF 3-allyl Pd-complexes with 4-methyl-3-trifluoroacetyl-quinolones. Chem Commun (Camb) 2024; 60:12233-12236. [PMID: 39360402 DOI: 10.1039/d4cc03953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, we disclose the hitherto unknown cross-conjugated vinylogous annulation of π-CF3-allyl Pd complexes with 4-methyl-3-trifluoroacetyl-quinolones to access phenanthridones. The CF3 group in the Pd-π-allyl complex is key for exclusive γ-regioselectivity and further annulation. The solvent switch orchestrates the dihydro-phenanthridones (CH3CN) and hydroxy-phenanthridones (DMF) in good yields, and also showed excellent optoelectronic properties.
Collapse
Affiliation(s)
- Chiliveru Priyanka
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Desagoni Madhu
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Palivela Siva Gangadhar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Lingamallu Giribabu
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Nagender Punna
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
8
|
Wang Y, Wang Y, Du X, Zheng K, Zhai S, Bai S, Fang L, Zhang T. Catalytic Enantioselective Propargylation of Pyrazolones by Amide-Based Phase-Transfer Catalysts. Org Lett 2024; 26:7318-7323. [PMID: 39185762 DOI: 10.1021/acs.orglett.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this paper, we developed a highly enantioselective alkylation of 4-substituted pyrazolones catalyzed by phase-transfer catalysis. Cheap halohydrocarbons were employed as electrophilic alkylationg agents, and propargyl, allyl, and benzyl products with all-carbon quaternary stereocenters were afforded with excellent enantioselectivities and good yields. We found that the unique structures of the catalyst (hydrogen bond donors of the C-9 hydroxyl group and amide group, the triphenyl at the NH-position) were important for good enantioselectivity. Furthermore, chiral propargyl products could be easily connected to azide molecules by click cycloaddition, which offers unique opportunities to obtain structurally diverse chiral pyrazolones.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Kaiting Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuman Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
9
|
Cai N, Gao X, Li W, Yang L, Zhao J, Qu J, Zhou Y. Novel trifluoromethyl ketone derivatives as oral cPLA 2/COX-2 dual inhibitors for resolution of inflammation in rheumatoid arthritis. Bioorg Chem 2024; 148:107453. [PMID: 38761708 DOI: 10.1016/j.bioorg.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 μM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
10
|
Cai N, Gao X, Yang L, Li W, Sun W, Zhang S, Zhao J, Qu J, Zhou Y. Discovery of novel NSAID hybrids as cPLA 2/COX-2 dual inhibitors alleviating rheumatoid arthritis via inhibiting p38 MAPK pathway. Eur J Med Chem 2024; 267:116176. [PMID: 38286094 DOI: 10.1016/j.ejmech.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 μΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| |
Collapse
|
11
|
Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53:1936-1983. [PMID: 38206332 DOI: 10.1039/d3cs00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This review provides an in-depth analysis of recent advances and strategies employed in the Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of nucleophilic prochiral heterocycles. The review is divided into sections each focused on a specific family of heterocycle, where optimisation data and reaction scope have been carefully analysed in order to bring forward specific reactivity and selectivity trends. The review eventually opens on how computer-based technologies could be used to predict an ideally matched catalytic system for any given substrate. This user-guide targets chemists from all horizons interested in running a Pd-AAA reaction for the preparation of highly enantioenriched heterocyclic compounds.
Collapse
Affiliation(s)
- François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Paul Clark
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Al Hannam
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
12
|
Chai Y, Chen P, Wu R, Zhou J, Ou J, Min Y, Wang H, Zhang D, Zhou H, Liu Y, Zhou J. Enantioselective Alkynylation of Pyrazole-4,5-diones with Terminal Alkynes Catalyzed by Copper/PyBisulidine. J Org Chem 2023; 88:13645-13654. [PMID: 37681260 DOI: 10.1021/acs.joc.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A copper/PyBisulidine-catalyzed enantioselective alkynylation of electrophilic pyrazole-4,5-dione with terminal alkynes has been developed. Chiral tertiary propargylic alcohols bearing the pyrazolone motif were prepared with yields (up to 99%) and enantioselectivities (up to 99% ee). The prominent feature of this protocol includes its mild reaction conditions and good stereoselectivities. The nonlinear effect study showed that the catalytically active specie was a monomeric catalyst and that the excess copper activated the alkynes through the π-system.
Collapse
Affiliation(s)
- Yu Chai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ruoran Wu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junyu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Min
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Haoting Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Liu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Wannenmacher N, Heberle M, Yu X, Demircan A, Wanner DM, Pfeffer C, Peters R. Diastereospecific Enantiodivergent Allylation of Pyrazolones as an Entry to β‐Aminoamides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nick Wannenmacher
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Martin Heberle
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Xin Yu
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Aysegül Demircan
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Daniel M. Wanner
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Camilla Pfeffer
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
14
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Li D, Zhang S, Wang B, Sun W, Zhao J, Qu J, Zhou Y. Palladium-catalyzed stereoselective trifluoromethylated allylic alkylation of 3-substituted oxindoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01597d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The palladium-catalyzed asymmetric trifluoromethylated allylic alkylation of 3-substituted oxindoles using α-(trifluoromethyl)alkenyl acetates as trifluoromethyl-containing allyl precursors was developed.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bangzhong Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
16
|
Priyanka C, Subbarao M, Punna N. Palladium-catalyzed ortho-vinylation of β-naphthols with α-trifluoromethyl allyl carbonates: one-pot access to naphtho[2,1- b]furans. Org Biomol Chem 2021; 19:8241-8245. [PMID: 34505862 DOI: 10.1039/d1ob01429c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly regio- and stereoselective palladium-catalyzed ortho-vinylation of β-naphthols (2) has been reported using easily accessible CF3-allyl carbonates (1). The regioselective nucleophilic γ-attack of the CF3-π-allyl-Pd-intermediate is the key to furnish (Z)-CF3-vinylnaphthols (3) in good yields. Furthermore, we achieved a one-pot synthesis of CF3-naphtho[2,1-b]furans (4) through an uninterrupted ortho-vinylation/oxidative radical cyclization reaction sequence.
Collapse
Affiliation(s)
- Chiliveru Priyanka
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|