1
|
Alenichev M, Levin A, Yushina A, Kostrikina E, Lebedin Y, Andreeva I, Grigorenko V, Krylov V, Nifantiev N. Nano-biosensor based on the combined use of the dynamic and static light scattering for Aspergillus galactomannan analysis. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
2
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Krylov VB, Nifantiev NE. Synthetic carbohydrate based anti-fungal vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:35-43. [PMID: 33388126 DOI: 10.1016/j.ddtec.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
4
|
Protecting group migrations in carbohydrate chemistry. Carbohydr Res 2020; 497:108151. [PMID: 32977215 DOI: 10.1016/j.carres.2020.108151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Protecting groups are valuable in chemo- and regioselective synthetic manipulations. In particular, they are indispensable in carbohydrate chemistry. Although a wide array of protecting groups are available at the disposal of carbohydrate chemists, their stability and orthogonality make the choice of protecting groups challenging. Another important factor is the migratory aptitude of different protecting groups used in carbohydrate chemistry. Migration of commonly used groups like silyl, acetal and acyl groups under various reaction conditions are discussed. Synthetic application of predicted migrations, alternate protecting groups to avoid migration and conditions favoring and disfavoring migrations are discussed in this review.
Collapse
|
5
|
Laverde D, Romero-Saavedra F, Argunov DA, Enotarpi J, Krylov VB, Kalfopoulou E, Martini C, Torelli R, van der Marel GA, Sanguinetti M, Codée JDC, Nifantiev NE, Huebner J. Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated Enterococcal Infections. ACS Infect Dis 2020; 6:1816-1826. [PMID: 32364376 DOI: 10.1021/acsinfecdis.0c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections caused by Enterococcus spp. are a major concern in the clinical setting. In Enterococcus faecalis, the capsular polysaccharide diheteroglycan (DHG), composed of ß-d-galactofuranose-(1 → 3)-ß-d-glucopyranose repeats, has been described as an important virulence factor and as a potential vaccine candidate against encapsulated strains. Synthetic structures emulating immunogenic polysaccharides present many advantages over native polysaccharides for vaccine development. In this work, we described the synthesis of a library of DHG oligomers, differing in length and order of the monosaccharide constituents. Using suitably protected thioglycoside building blocks, oligosaccharides up to 8-mer in length built up from either Galf-Glcp or Glcp-Galf dimers were generated, and we evaluated their immunoreactivity with antibodies raised against DHG. After the screening, we selected two octasaccharides, having either a galactofuranose or glucopyranose terminus, which were conjugated to a carrier protein for the production of polyclonal antibodies. The resulting antibodies were specific toward the synthetic structures and mediated in vitro opsonophagocytic killing of different encapsulated E. feacalis strains. The evaluated oligosaccharides are the first synthetic structures described to elicit antibodies that target encapsulated E. faecalis strains and are, therefore, promising candidates for the development of a well-defined enterococcal glycoconjugate vaccine.
Collapse
Affiliation(s)
- D. Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - F. Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - D. A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Enotarpi
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - V. B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - E. Kalfopoulou
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - C. Martini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - G. A. van der Marel
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - M. Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - J. D. C. Codée
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - N. E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| |
Collapse
|
6
|
Krylov VB, Petruk MI, Karimova MP, Mukhametova LI, Matveev AL, Tikunova NV, Eremin SA, Nifantiev NE. Potential of fluorescence polarization immunoassay for the detection of Aspergillus fumigatus galactomannan. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Potential of Chemically Synthesized Oligosaccharides To Define the Carbohydrate Moieties of the Fungal Cell Wall Responsible for the Human Immune Response, Using Aspergillus fumigatus Galactomannan as a Model. mSphere 2020; 5:5/1/e00688-19. [PMID: 31915215 PMCID: PMC6952192 DOI: 10.1128/msphere.00688-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Methodologies to identify epitopes or ligands of the fungal cell wall polysaccharides influencing the immune response of human pathogens have to date been imperfect. Using the galactomannan (GM) of Aspergillus fumigatus as a model, we have shown that synthetic oligosaccharides of distinct structures representing key fragments of cell wall polysaccharides are the most precise tools to study the serological and immunomodulatory properties of a fungal polysaccharide. Methodologies to identify epitopes or ligands of the fungal cell wall polysaccharides influencing the immune response of human pathogens have to date been imperfect. Using the galactomannan (GM) of Aspergillus fumigatus as a model, we have shown that synthetic oligosaccharides of distinct structures representing key fragments of cell wall polysaccharides are the most precise tools to study the serological and immunomodulatory properties of a fungal polysaccharide.
Collapse
|
8
|
Schubert M, Xue S, Ebel F, Vaggelas A, Krylov VB, Nifantiev NE, Chudobová I, Schillberg S, Nölke G. Monoclonal Antibody AP3 Binds Galactomannan Antigens Displayed by the Pathogens Aspergillus flavus, A. fumigatus, and A. parasiticus. Front Cell Infect Microbiol 2019; 9:234. [PMID: 31380292 PMCID: PMC6646516 DOI: 10.3389/fcimb.2019.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus and A. flavus are the fungal pathogens responsible for most cases of invasive aspergillosis (IA). Early detection of the circulating antigen galactomannan (GM) in serum allows the prompt application of effective antifungal therapy, thus improving the survival rate of IA patients. However, the use of monoclonal antibodies (mAbs) for the diagnosis of IA is often associated with false positives due to cross-reaction with bacterial polysaccharides. More specific antibodies are therefore needed. Here we describe the characterization of the Aspergillus-specific mAb AP3 (IgG1κ), including the precise identification of its corresponding antigen. The antibody was generated using A. parasiticus cell wall fragments and was shown to bind several Aspergillus species. Immunofluorescence microscopy revealed that AP3 binds a cell wall antigen, but immunoprecipitation and enzyme-linked immunosorbent assays showed that the antigen is also secreted into the culture medium. The inability of AP3 to bind the A. fumigatus galactofuranose (Galf )-deficient mutant ΔglfA confirmed that Galf residues are part of the epitope. Several lines of evidence strongly indicated that AP3 recognizes the Galf residues of O-linked glycans on Aspergillus proteins. Glycoarray analysis revealed that AP3 recognizes oligo-[β-D-Galf-1,5] sequences containing four or more residues with longer chains more efficiently. We also showed that AP3 captures GM in serum, suggesting it may be useful as a diagnostic tool for patients with IA.
Collapse
Affiliation(s)
- Max Schubert
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Frank Ebel
- Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annegret Vaggelas
- Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vadim B Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivana Chudobová
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Greta Nölke
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
9
|
Gerbst AG, Krylov VB, Nifantiev NE. Conformational changes in common monosaccharides caused by per-O-sulfation. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Polysulfated carbohydrates play an important role in many biological processes because of their ability to bind to various protein receptors such as different growth factors, blood coagulation factors, adhesion lectins etc. Precise information about spatial organization of sulfated derivatives is of high demand for molecular modelling of such interactions as well as for understanding of the mechanism of pyranoside-into-furanoside rearrangement. In this review we summarize the changes recently revealed for the conformations of common pyranosides and furanosides upon total O-sulfation which were studied by means of NMR spectroscopy as well as molecular modelling. It was found that pentoses, being more flexible, undergo complete conformational chair inversion. Meanwhile, for hexoses the situation strongly depends on the monosaccharide configuration. Conformational changes are most pronounced in gluco-compounds though quantum chemical calculations helped to establish that no complete chair inversion occurred. In furanosides distortions of two types were observed: either the ring conformation or the conformation of the side chain changed. The presented data may be used for the analysis of chemical, physical and biological properties of sulfated carbohydrates.
Collapse
Affiliation(s)
- Alexey G. Gerbst
- Laboratory of Glycoconjugate Chemistry , N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russia
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry , N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry , N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russia
| |
Collapse
|
10
|
Argunov DA, Trostianetskaia AS, Krylov VB, Kurbatova EA, Nifantiev NE. Convergent Synthesis of Oligosaccharides Structurally Related to Galactan I and Galactan II ofKlebsiella Pneumoniaeand their Use in Screening of Antibody Specificity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dmitry A. Argunov
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Anastasiia S. Trostianetskaia
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
- Higher Chemical College; N.D. Zelinsky Institute of Organic Chemistry; D. I. Mendeleev University of Chemical Technology of Russia; Miusskaya sq. 9 125047 Moscow Russia
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Ekaterina A. Kurbatova
- Laboratory of Immunology; N.D. Zelinsky Institute of Organic Chemistry; I. I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Krylov VB, Argunov DA, Solovev AS, Petruk MI, Gerbst AG, Dmitrenok AS, Shashkov AS, Latgé JP, Nifantiev NE. Synthesis of oligosaccharides related to galactomannans from Aspergillus fumigatus and their NMR spectral data. Org Biomol Chem 2019; 16:1188-1199. [PMID: 29376539 DOI: 10.1039/c7ob02734f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of model oligosaccharides related to antigenic galactomannans of the dangerous fungal pathogen Aspergillus fumigatus has been performed employing pyranoside-into-furanoside (PIF) rearrangement and controlled O(5) → O(6) benzoyl migration as key synthetic methods. The prepared compounds along with some previously synthesized oligosaccharides were studied by NMR spectroscopy with the full assignment of 1H and 13C signals and the determination of 13C NMR glycosylation effects. The obtained NMR database on 13C NMR chemical shifts for oligosaccharides representing galactomannan fragments forms the basis for further structural analysis of galactomannan related polysaccharides by a non-destructive approach based on the calculation of the 13C NMR spectra of polysaccharides by additive schemes.
Collapse
Affiliation(s)
- V B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gerbst AG, Krylov VB, Argunov DA, Petruk MI, Solovev AS, Dmitrenok AS, Nifantiev NE. Influence of per-O-sulfation upon the conformational behaviour of common furanosides. Beilstein J Org Chem 2019; 15:685-694. [PMID: 30931009 PMCID: PMC6423562 DOI: 10.3762/bjoc.15.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
The studies on the recently discovered pyranoside-into-furanoside rearrangement have led us to conformational investigations of furanosides upon their total sulfation. Experimental NMR data showed that in some cases drastic changes of the ring conformation occurred while sometimes only the conformation of the exocyclic C4-C5 linkage changed. Herein we describe a combined quantum chemical and NMR conformational investigation of three common monosaccharide furanosides as their propyl glycosides: α-mannose, β-glucose and β-galactose. Full exploration of the furanoside ring by means of ab initio calculations was performed and coupling constants were calculated for each of the low-energy conformers. The results demonstrated preferred trans-orientation of H4-H5 protons in the non-sulfated molecules which changed to gauche-orientation upon sulfation. The effect is less pronounced in the galactosides. For all the studied structures changes in the conformational distribution were revealed by quantum mechanical calculations, that explained the observed changes in intraring coupling constants occurring upon introduction of sulfates.
Collapse
Affiliation(s)
- Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Maksim I Petruk
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Arsenii S Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey S Dmitrenok
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
13
|
Krylov VB, Solovev AS, Argunov DA, Latgé JP, Nifantiev NE. Reinvestigation of carbohydrate specificity of EB-A2 monoclonal antibody used in the immune detection of Aspergillus fumigatus galactomannan. Heliyon 2019; 5:e01173. [PMID: 30766929 PMCID: PMC6360342 DOI: 10.1016/j.heliyon.2019.e01173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Great progresses have been made in the recent years in the detection of circulating galactofuranose-bearing molecules for the diagnosis of aspergillosis. However, the test used in the clinical practice is hampered by the occurrence of false positives. A glycoarray with dozens of oligosaccharides structurally related to the Aspergillus fumigatus galactomannan has allowed us to reinvestigate the carbohydrate specificity of the EB-A2 monoclonal antibody used in the PlateliaTM Aspergillus sandwich immune assay. We have now demonstrated that the mAb can recognize shorter oligosaccharides than the previously reported tetrasaccharide Galf-β-(1→5)-Galf-β-(1→5)-Galf-β-(1→5)-Galf-β and oligosaccharides which contains alternating β-(1→5)/β-(1→6)-linkages. This result could explain the occurrence of false-positive signals due to the presence of the abovementioned epitopes not only in A. fumigatus galactomannan but also in other bacteria and fungi.
Collapse
Affiliation(s)
- Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Arsenii S. Solovev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Dmitry A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
- Corresponding author.
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Corresponding author.
| |
Collapse
|
14
|
Gerbst AG, Krylov VB, Argunov DA, Dmitrenok AS, Nifantiev NE. Driving Force of the Pyranoside-into-Furanoside Rearrangement. ACS OMEGA 2019; 4:1139-1143. [PMID: 31459389 PMCID: PMC6648646 DOI: 10.1021/acsomega.8b03274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/24/2018] [Indexed: 05/09/2023]
Abstract
Ab initio calculations of fully O-sulfated model monosaccharides, including common hexoses (glucose, galactose, fucose, and mannose) and pentoses (arabinose and xylose), were performed to study the energetic properties of the recently discovered pyranoside-into-furanoside (PIF) rearrangement. It was shown that the per-O-sulfated derivatives of furanoside isomers generally had lower energies than the corresponding per-O-sulfated pyranosides, while nonsulfated furanosides were always less favored than nonsulfated pyranosides. Mannose, which is known to be unreactive in PIF rearrangement, was the only exception. The results of the theoretical calculations were confirmed by experimental studies of monosaccharide models and explained the driving force of such unusual ring contraction process as PIF rearrangement. The conclusions of performed investigation can be used for prediction of new substrates applicability for PIF rearrangement.
Collapse
|
15
|
Malassis J, Vendeville JB, Nguyen QH, Boujon M, Gaignard-Gaillard Q, Light M, Linclau B. Synthesis of vicinal dideoxy-difluorinated galactoses. Org Biomol Chem 2019; 17:5331-5340. [DOI: 10.1039/c9ob00707e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel dideoxydifluorinated galactose derivatives are described.
Collapse
Affiliation(s)
- Julien Malassis
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | | | - Qui-Hien Nguyen
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | - Marie Boujon
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | | | - Mark Light
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | - Bruno Linclau
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| |
Collapse
|
16
|
Krylov VB, Nifantiev NE. Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides. Curr Top Microbiol Immunol 2019; 425:1-16. [PMID: 31875266 DOI: 10.1007/82_2019_187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell wall of pathogenic fungi is highly important for the development of fungal infections and is the first cellular component to interact with the host immune system. The fungal cell wall is mainly built up of different polysaccharides representing ligands for pattern recognition receptors (PRRs) on immune cells and antibodies. Purified fungal polysaccharides are not easily available; in addition, they are structurally heterogenic and have wide molecular weight distribution that limits the possibility to use natural polysaccharides to assess the structure of their active determinants. The synthetic oligosaccharides of definite structure representing distinct polysaccharide fragments are indispensable tools for a variety of biological investigations and represent an advantageous alternative to natural polysaccharides. The attachment of a spacer group to these oligosaccharides permits their efficient transformation into immunogenic glycoconjugates as well as their immobilization on plates or microbeads. Herein, we summarize current information on synthetic availability of the variety of oligosaccharides related to main types of fungal cell wall components: galactomannan, α- and β-mannan, α- and β-(1 → 3)-glucan, chitin, chitosan, and others. These data are supplemented with published results of biochemical and immunological applications of synthetic oligosaccharides as molecular probes especially as the components of thematic glycoarrays suitable for characterization of anti-polysaccharide antibodies and cellular lectins or PRRs.
Collapse
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia.
| |
Collapse
|
17
|
Krylov VB, Petruk MI, Karelin AA, Yashunuskii DV, Tsvetkov YE, Glushko NI, Khaldeeva EV, Mokeeva VL, Bilanenko EN, Lebedin YS, Eremin SA, Nifantiev NE. Carbohydrate Specificity of Antibodies Against Yeast Preparations of Saccharomyces cerevisiae and Candida krusei. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Krylov VB, Petruk MI, Glushko NI, Khaldeeva EV, Mokeeva VL, Bilanenko EN, Lebedin YS, Eremin SA, Nifantiev NE. Carbohydrate Specificity of Antibodies against Phytopathogenic Fungi of the Aspergillus Genus. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818050095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Abronina PI, Malysheva NN, Litvinenko VV, Zinin AI, Kolotyrkina NG, Kononov LO. A Ring Contraction of 2,3-Di-O-Silylated Thiopyranosides To Give Thiofuranosides under Mildly Acidic Conditions. Org Lett 2018; 20:6051-6054. [DOI: 10.1021/acs.orglett.8b02424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Polina I. Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation
| | - Nelly N. Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation
| | - Veronika V. Litvinenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation
| | - Alexander I. Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation
| | - Natalya G. Kolotyrkina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation
| | - Leonid O. Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation
| |
Collapse
|
20
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
21
|
Krylov VB, Petruk MI, Grigoryev IV, Lebedin YS, Glushko NI, Khaldeeva EV, Argunov DA, Khatuntseva EA, Toplishek MV, Komarova BS, Karelin AA, Yudina ON, Menshov VM, Yashunskii DV, Tsvetkov YE, Nifantiev NE. Study of the Carbohydrate Specificity of Antibodies Against Aspergillus fumigatus Using the Library of Synthetic Mycoantigens. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Matveev AL, Krylov VB, Emelyanova LA, Solovev AS, Khlusevich YA, Baykov IK, Fontaine T, Latgé JP, Tikunova NV, Nifantiev NE. Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan. PLoS One 2018. [PMID: 29518144 PMCID: PMC5843280 DOI: 10.1371/journal.pone.0193938] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A panel of specific monoclonal antibodies (mAbs) against synthetic pentasaccharide β-D-Galf-(1→5)-[β-D-Galf-(1→5)]3-α-D-Manp, structurally related to Aspergillus fumigatus galactomannan, was generated using mice immunized with synthetic pentasaccharide-BSA conjugate and by hybridoma technology. Two selected mAbs, 7B8 and 8G4, could bind with the initial pentasaccharide with affinity constants of approximately 5.3 nM and 6.4 nM, respectively, based on surface plasmon resonance-based biosensor assay. The glycoarray, built from a series of synthetic oligosaccharide derivatives representing different galactomannan fragments, demonstrated that mAb 8G4 could effectively recognize the parental pentasaccharide while mAb 7B8 recognizes its constituting trisaccharide parts. Immunofluorescence studies showed that both 7B8 and 8G4 could stain A. fumigatus cells in culture efficiently, but not the mutant strain lacking galactomannan. In addition, confocal microscopy demonstrated that Candida albicans, Bifidobacterium longum, Lactobacillus plantarum, and numerous gram-positive and gram-negative bacteria were not labeled by mAbs 7B8 and 8G4. The generated mAbs can be considered promising for the development of a new specific enzyme-linked assay for detection of A. fumigatus, which is highly demanded for medical and environmental controls.
Collapse
Affiliation(s)
- Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia
| | - Ljudmila A. Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
- Novosibirsk State University, Pirogova str., Novosibirsk, Russia
| | - Arsenii S. Solovev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia
| | - Yana A. Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
| | - Ivan K. Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
| | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
- Novosibirsk State University, Pirogova str., Novosibirsk, Russia
- * E-mail: (NVT); (NEN)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia
- * E-mail: (NVT); (NEN)
| |
Collapse
|
23
|
Vereshchagin AN. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1950-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Paulovičová E, Paulovičová L, Hrubiško M, Krylov VB, Argunov DA, Nifantiev NE. Immunobiological Activity of Synthetically Prepared Immunodominant Galactomannosides Structurally Mimicking Aspergillus Galactomannan. Front Immunol 2017; 8:1273. [PMID: 29081774 PMCID: PMC5645502 DOI: 10.3389/fimmu.2017.01273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
The study is oriented at the in vitro evaluation of the immunobiological activity and efficacy of synthetically prepared isomeric pentasaccharides representing fragments of Aspergillus fumigatus cell-wall galactomannan and containing β-(1→5)-linked tetragalactofuranoside chain attached to O-6 (GM-1) or O-3 (GM-2) of a spacer-armed mannopyranoside residue. These compounds were studied as biotinylated conjugates which both demonstrated immunomodulatory activities on the RAW 264.7 cell line murine macrophages as in vitro innate immunity cell model. Immunobiological studies revealed time- and concentration-dependent efficient immunomodulation. The proliferation of RAW 264.7 macrophages was induced at higher concentration (100 µg/mL) of studied glycoconjugates and longer exposure (48 h), with more pronounced efficacy for GM-1. The increase of proliferation followed the previous increase of IL-2 production. The cytokine profile of the macrophages treated with the glycoconjugates was predominantly pro-inflammatory Th1 type with significant increase of TNFα, IL-6, and IL-12 release for both glycoconjugates. The RAW 264.7 macrophages production of free radicals was not significantly affected by glycoconjugates stimulation. The phagocytic activity of RAW 264.7 cells was reduced following GM-1 treatment and was significantly increased after 24 h stimulation with GM-2, contrary to 48 h stimulation. Moreover, the synthetically prepared galactomannoside derivatives have been evaluated as efficient serodiagnostic antigens recognized by specific Ig isotypes, and significant presence of specific IgM antibodies in serum of patients suffering from vulvovaginitis was observed.
Collapse
Affiliation(s)
- Ema Paulovičová
- Cell Culture Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Hrubiško
- Department of Clinical Immunology and Allergy, Oncology Institute of St. Elisabeth, Bratislava, Slovakia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Ananikov VP, Eremin DB, Yakukhnov SA, Dilman AD, Levin VV, Egorov MP, Karlov SS, Kustov LM, Tarasov AL, Greish AA, Shesterkina AA, Sakharov AM, Nysenko ZN, Sheremetev AB, Stakheev AY, Mashkovsky IS, Sukhorukov AY, Ioffe SL, Terent’ev AO, Vil’ VA, Tomilov YV, Novikov RA, Zlotin SG, Kucherenko AS, Ustyuzhanina NE, Krylov VB, Tsvetkov YE, Gening ML, Nifantiev NE. Organic and hybrid systems: from science to practice. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Krylov VB, Paulovičová L, Paulovičová E, Tsvetkov YE, Nifantiev NE. Recent advances in the synthesis of fungal antigenic oligosaccharides. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe driving force for the constant improvement and development of new synthetic methodologies in carbohydrate chemistry is a growing demand for biologically important oligosaccharide ligands and neoglycoconjugates thereof for numerous biochemical investigations such as cell-to-pathogen interactions, immune response, cell adhesion, etc. Here we report our syntheses of the spacer-armed antigenic oligosaccharides related to three groups of the polysaccharides of the fungal cell-wall including α- and β-mannan, α- and β-glucan and galactomannan chains, which include new rationally designed synthetic blocks, efficient solutions for the stereoselective construction of glycoside bonds, and novel strategy for preparation of furanoside-containing oligosaccharides based on recently discovered pyranoside-into-furanoside (PIF) rearrangement.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia,
| |
Collapse
|
27
|
Verkhnyatskaya SA, Krylov VB, Nifantiev NE. Pyranoside-into-Furanoside Rearrangement of 4-Pentenyl Glycosides in the Synthesis of a Tetrasaccharide-Related to Galactan I ofKlebsiella pneumoniae. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stella A. Verkhnyatskaya
- Laboratory of Glycoconjugate Chemistry; N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry; N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry; N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| |
Collapse
|