1
|
Jayapriya S, Ebenazer AF, Sampathkumar N, Rajesh J, Rajagopal G. Chromene Carbohydrazide- Schiff Base as a Highly Selective Turn-Off Fluorescence Chemosensor for In 3+ Ion and its Application. J Fluoresc 2024:10.1007/s10895-024-03655-3. [PMID: 38460096 DOI: 10.1007/s10895-024-03655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
A new 7-(diethylamino)-2-oxo-2 H-chromene-3-carbohydrazide design to synthesize a simple Schiff-base condition. The synthesized molecules' (probe L) photophysical properties were investigated in various solvent systems and solvent-poor-solvent assays. Probe L exhibits the absorbance band at 440 nm and the emission band at 488 nm in DMSO: H2O (7:3, v/v). Further, probe L shows selective turn-off emission recognition of In3+ ions in DMSO: H2O (7:3, pH = 7.4). By Job's plot and ESI mass analysis, probe L forms a 1:2 stoichiometry complex with an estimated association constant of 4.04 × 104 M- 2 with In3+ ions. Metal induces CHEQ (chelation-caused fluorescence quenching) to reduce the intensity of probe L's emission, and the estimated quenching constant was 4.52 × 104 M- 1. The limit of detection was found to be 5.93 nM; the time response of the sensor is instantaneous, and its reversible nature was confirmed using EDTA additions. Solid substrates (test strips) were designed and tested for fast, reliable, user-friendly, and real-time sensing of In3+ ions for on-site applications. The binding mechanism of probe L with In3+ ions was investigated using 1H NMR titration and DFT/TD-DFT studies.
Collapse
Affiliation(s)
- S Jayapriya
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur, 641 602, Tamil Nadu, India
- Department of Chemistry, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641 062, Tamil Nadu, India
| | - A Franklin Ebenazer
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur, 641 602, Tamil Nadu, India
| | - N Sampathkumar
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur, 641 602, Tamil Nadu, India
| | - J Rajesh
- Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - G Rajagopal
- Post-Graduate and Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, 641 018, Tamil Nadu, India.
| |
Collapse
|
2
|
Dhara SR, Saha R, Baildya N, Acharya K, Bhattacharya A, Ghosh K. New Cyanostyrylcopillar[5]arene Derivative: Synthesis, Photophysical Study, Chromogenic Detection of Aliphatic Amines, and Biofilm-Antibiofilm Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7275-7287. [PMID: 38304929 DOI: 10.1021/acsami.3c16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The synthesis, characterization, and application of a new cyanostyrylcopillar[5]arene 1 is reported. Single-crystal X-ray diffraction and other spectroscopic techniques confirm the identity of the new copillar 1. The X-ray diffraction study reveals that the copillar 1 exhibits a 1D supramolecular chain in the solid state involving π···π interactions along the crystallographic c-axis and 1D chains are further connected by interchain C-H···π interactions to establish 2D supramolecular layers within the crystallographic bc-plane. 2D supramolecular chains on further packing introduce a 3D structure with void spaces filled with hexane molecules. Through minimal deviation in the dihedral angle, the cyano-substituted ethylenic group in 1 shows a conjugation with the phenolic -OH, favoring intramolecular bond conjugation (ITBC) and colorimetrically detects the aliphatic amines over aromatic amines in CH3CN. Among the aliphatic amines, tertiary amines are differentiated from primary and secondary amines by the naked eye through color change. Both in solution and solid states, 1 displays vapor phase detection of volatile aliphatic amines. Antibacterial activity analysis shows that while 1 exhibits the antibiofilm action against Gram-positive pathogenic bacteria, Staphylococcus aureus, it promotes biofilm formation by Gram-negative pathogenic bacteria, Pseudomonas aeruginosa.
Collapse
Affiliation(s)
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol 713340, India
| | - Nabajyoti Baildya
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata 700126, India
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata 700126, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
3
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
4
|
Ghosh S, Saha R, Sarkar S, Biswas A, Ghosh K. Rhodamine hydrazide-linked naphthalimide derivative: Selective naked eye detection of Cu 2+, S 2- and understanding the therapeutic potential of the copper complex as an anti-cervical cancer agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123428. [PMID: 37806240 DOI: 10.1016/j.saa.2023.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
A naphthalimide-labeled rhodamine hydrazone derivative HL has been synthesized, characterized and examined in metal ion recognition. It shows selective colorimetric detection of Cu2+ over a number of other metal ions with a detection limit of 1.66 × 10-7 M in CH3CN/HEPES buffer (v/v = 2:1, pH = 6.8). The spirolactam ring of rhodamine and the imino-phenol motif of naphthalimide in HL are involved in complexation of Cu2+ as shown by single crystal X-ray. Single crystal of the copper-complex is prepared by utilizing NaSCN and it is characterized as CuL(SCN). The emergence of new absorption at 550 nm in UV-vis and the pink color of the solution reveal the selective interaction toward Cu2+. HL is characterized as a fluorescence resonance energy transfer (FRET) system that remains 'turned OFF' while spirolactam ring exists. In the presence of Cu2+, FRET is 'turned ON' via the opening of spirolactam ring to give emission at 580 nm which is less intense due to the quenching effect of Cu2+ ion. The complexation is reversible and the ensemble of Cu2+.HL selectively recognizes S2- over a series of different anions involving a color change from pink to colorless via the formation of spirolactam ring. The copper complex CuL(SCN) is further employed to understand its efficacy as a therapeutic agent. The complex is cytotoxic to high-risk HPV positive cervical cancer cell lines like SiHa and HeLa and is efficient in the generation and accumulation of reactive oxygen species (ROS). The complex also initiates nuclear blebbing and shows DNA degradation as understood by DNA laddering assay.
Collapse
Affiliation(s)
- Subhasis Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol 713340, India
| | - Solanki Sarkar
- Department of Zoology, University of Kalyani, Kalyani 741235, India
| | - Arunima Biswas
- Department of Zoology, University of Kalyani, Kalyani 741235, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
5
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Dang LR, Wei TB, Hu JP, Jia Y, Lin Q, Yao H, Zhang YM, Qu WJ. 2-Hydroyphenyl-(1H-imidazo[4,5-b]phenazine: Synthesis, structure and optical properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Shi B, Zhao X, Chai Y, Qin P, Qu W, Lin Q, Zhang Y. Detection of L‐Aspartic Acid and L‐Glutamic Acid in Water Using a Fluorescent Nanoparticle Constructed by Pillar[5]arene‐Based Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Xing‐Xing Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Yongping Chai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Peng Qin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
- Gansu Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| |
Collapse
|
8
|
Yan L, Saha A, Zhao W, Neal JF, Chen Y, Flood AH, Allen HC. Recognition competes with hydration in anion-triggered monolayer formation of cyanostar supra-amphiphiles at aqueous interfaces. Chem Sci 2022; 13:4283-4294. [PMID: 35509460 PMCID: PMC9006960 DOI: 10.1039/d2sc00986b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
The triggered self-assembly of surfactants into organized layers at aqueous interfaces is important for creating adaptive nanosystems and understanding selective ion extraction. While these transformations require molecular recognition, the underlying driving forces are modified by the local environment in ways that are not well understood. Herein, we investigate the role of ion binding and ion hydration using cyanosurf, which is composed of the cyanostar macrocycle, and its binding to anions that are either size-matched or mis-matched and either weakly or highly hydrated. We utilize the supra-amphiphile concept where anion binding converts cyanosurf into a charged and amphiphilic complex triggering its self-organization into monolayers at the air-water interface. Initially, cyanosurf forms aggregates at the surface of a pure water solution. When the weakly hydrated and size-matched hexafluorophosphate (PF6 -) and perchlorate (ClO4 -) anions are added, the macrocycles form distinct monolayer architectures. Surface-pressure isotherms reveal significant reorganization of the surface-active molecules upon anion binding while infrared reflection absorption spectroscopy show the ion-bound complexes are well ordered at the interface. Vibrational sum frequency generation spectroscopy shows the water molecules in the interfacial region are highly ordered in response to the charged monolayer of cyanosurf complexes. Consistent with the importance of recognition, we find the smaller mis-matched chloride does not trigger the transformation. However, the size-matched phosphate (H2PO4 -) also does not trigger monolayer formation indicating hydration inhibits its interfacial binding. These studies reveal how anion-selective recognition and hydration both control the binding and thus the switching of a responsive molecular interface.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Ankur Saha
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Wei Zhao
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Jennifer F Neal
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Yusheng Chen
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Amar H Flood
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| |
Collapse
|
9
|
Liu L, Zhou Q, He Q, Duan W, Huang Y. A pH-Responsive Supramolecular Drug Delivery System Constructed by Cationic Pillar[5]arene for Enhancing Antitumor Activity. Front Chem 2021; 9:661143. [PMID: 33912542 PMCID: PMC8072374 DOI: 10.3389/fchem.2021.661143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Drug delivery systems have good biocompatibiliy and low side effects for cancer treatment, but overcoming high efficiency of drug-loading and the drug-targeting controlled release still remains challenging. In this work, supramolecular vesicles, with pH-triggering effect, have been successfully constructed for drug delivery, which are fabricated by the complexation between a cationic pillar[5]arene (DAWP5) and a sodium dodecyl sulfonate (SDS) in aqueous solution. Drug-loading and releasing results demonstrated that anticancer drug doxorubicin (DOX) could be loaded efficiently by such cationic vesicles in neutral condition, and the drug release could be controlled in the simulated weak acid environment of tumor cells. Moreover, the vesicles had low cytotoxicity to normal human cell (L02), while the DOX-loaded vesicles could significantly enhance the cytotoxicity of free DOX for normal cell L02 and four tested tumor cells (Hela, HepG2, MGC-803 and T24). Especially for HepG2, after 24 h incubation time, IC50 of DOX-loaded vesicles was only 0.79 μM, about 23% of that of DOX (3.43 μM). These results suggested that such novel vesicles have promising potential to construct nano-drug delivery systems for various biomedical applications.
Collapse
Affiliation(s)
- Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, China
| | - Qingqing Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Qin He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Yan Huang
- Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, China
| |
Collapse
|
10
|
Rasheed T, Nabeel F, Sher F, Khan SUD, Al Kheraif AA. Tailored functional polymeric vesicles as smart nanostructured materials for aqueous monitoring of transition metal cations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Highly sensitive detection of mercury(II) and silver(I) ions in aqueous solution via a chromene-functionalized imidazophenazine derivative. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Liang R, Hu Y, Li G. Monodisperse pillar[5]arene-based polymeric sub-microsphere for on-line extraction coupling with high-performance liquid chromatography to determine antioxidants in the migration of food contact materials. J Chromatogr A 2020; 1625:461276. [PMID: 32709328 DOI: 10.1016/j.chroma.2020.461276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/26/2023]
Abstract
The monodisperse pillar[5]arene-based polymeric sub-microsphere was prepared by polycondensation of hydroxylated pillar[5]arene and cyanuric chloride through a one-pot reaction in mild condition. The preparation was realized by a simple two-step temperature-programmed process without heating operation. The obtained polymeric sub-microsphere exhibited monodisperse and regular spherical structure with uniform particle size distribution of 220-320 nm accounting for 94%. The prominent adsorption capacity of the polymeric sub-microsphere for antioxidants was demonstrated and attributed to the synergistic effect of the cladding interaction with the π-electron rich cavity and hydrophilic interaction with terminal hydroxyl on pillar[5]arene. Then the pillar[5]arene sub-microsphere was packed into a micro-column to realize effective on-line enrichment of antioxidants coupling with high-performance liquid chromatography (HPLC). The flow rate of extraction and desorption solvent, clean-up and desorption volume were assessed to optimize the method. The method showed wide linear ranges with R2 greater than 0.9926, low limits of detection (0.030-0.20 μg/L) and limits of quantification (0.10-0.67 μg/L). The developed method was successfully applied to determine trace antioxidants in the migration of food contact materials with simulated solution, which demonstrated the promising potential of this method for practical analysis. Furthermore, the migration behavior of antioxidants from food packaging materials into different food matrix was also investigated.
Collapse
Affiliation(s)
- Ruiyu Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
16
|
Wang P, Wang R, Xia D. pH-Induced Transition Between Single-Chain Macrocyclic Amphiphile and [ c2]Daisy Chain-Based Bola-Type Amphiphile and the Related Self-Assembly Behavior in Water. Front Chem 2020; 7:894. [PMID: 32039140 PMCID: PMC6992661 DOI: 10.3389/fchem.2019.00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Macrocyclic amphiphiles, a type of amphiphiles synthesized based on macrocyclic compounds, have attracted much attention over the past decades due to their unique superiority in the construction of various functional nanomaterials. The regulation of the state of macrocyclic amphiphiles by introducing stimuli-responsive motif to macrocyclic amphiphiles is an efficient way to extend their applications in diverse fields. Herein, pillararene-based macrocyclic amphiphile H1 was prepared. H1 can act as single-chain amphiphile to self-assemble into micelles in water when the pH was ≥5.0. H1 can be protonated to turn into H2 when pH changed to <5.0. Interestingly, H2 formed [c2]daisy chain-based bola-type supramolecular amphiphile. This bola-type supramolecular amphiphile self-assembled into nanosheets in water. Therefore, pH-induced transition between single-chain macrocyclic amphiphile and bola-type amphiphile and the corresponding self-assembly system based on pillararene in water were constructed.
Collapse
Affiliation(s)
- Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Ruihuan Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Varshney R, Alam M, Agashe C, Joseph R, Patra D. Pillar[5]arene microcapsules turn on fluid flow in the presence of paraquat. Chem Commun (Camb) 2020; 56:9284-9287. [DOI: 10.1039/d0cc04282j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the fabrication of pillar[5]arene (P[5]A) stabilized MCs via the self-assembly and crosslinking of P[5]A nanoaggregates at the liquid–liquid interface. These P[5]A MCs microengines turn on fluid flow in the presence of paraquat (PQ) due to host–guest molecular recognition.
Collapse
Affiliation(s)
| | - Mujeeb Alam
- Institute of Nano Science and Technology
- Mohali
- India
| | | | - Roymon Joseph
- Department of Chemistry
- University of Calicut
- Calicut 673635
- India
| | | |
Collapse
|
19
|
Ding JD, Jin WJ, Pei Z, Pei Y. Morphology transformation of pillararene-based supramolecular nanostructures. Chem Commun (Camb) 2020; 56:10113-10126. [DOI: 10.1039/d0cc03682j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this feature article, the construction methods and the factors that influence the morphological transformation of pillararene-based supramolecular nanostructures are reviewed.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Wen-Juan Jin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
20
|
Yang JL, Yang YH, Xun YP, Wei KK, Gu J, Chen M, Yang LJ. Novel Amino-pillar[5]arene as a Fluorescent Probe for Highly Selective Detection of Au 3+ Ions. ACS OMEGA 2019; 4:17903-17909. [PMID: 31681900 PMCID: PMC6822224 DOI: 10.1021/acsomega.9b02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A novel fluorescent probe, amino-pillar[5]arene (APA), was prepared via a green, effective, and convenient synthetic method, which was characterized by nuclear magnetic resonance (NMR), infrared (IR), and high-resolution mass spectrometry. The fluorescence sensing behavior of the APA probe toward 22 metal ions in aqueous solutions were studied by fluorescence spectroscopy. The results showed that APA could be used as a selective fluorescent probe for the specificity detection of Au3+ ions. Moreover, the detection characteristics were investigated by fluorescence spectral titration, pH effect, fluorescence competitive experiments, Job's plot analysis, 1H NMR, and IR. The results indicated that detection of Au3+ ions by the APA probe could be achieved in the range of pH 1-13.5 and that other coexisting metal ions did not cause any marked interference. The titration analysis results indicated that the fluorescence intensity decreased as the concentration of Au3+ ions increased, with an excellent correlation (R 2 = 0.9942). The detection limit was as low as 7.59 × 10-8 mol·L-1, and the binding ratio of the APA probe with Au3+ ions was 2:1. Therefore, the APA probe has potential applications for detecting Au3+ ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Jun-Li Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yun-Han Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yu-Peng Xun
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Ke-Ke Wei
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Jie Gu
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Mei Chen
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Li-Juan Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
21
|
Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Role of hydrophobicity in tuning the intracellular uptake of dendron-based fluorophores for in vitro metal ion sensing. Colloids Surf B Biointerfaces 2019; 179:180-189. [PMID: 30959230 DOI: 10.1016/j.colsurfb.2019.03.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Fluorophores are used for sensing biologically relevant ions, toxic metals or pathogenic markers. However, the mode of entry of such fluorophores into the cell greatly depends on their size, shape, surface charge, functional groups, and hydrophobicity. In particular, the influence of hydrophobicity on the intracellular uptake of fluorophores is poorly investigated. Self-assembly is a recent strategy to tune the intracellular uptake of fluorophores, facilitating increased intracellular sensing and fluorescence. Herein, self-assembly of three novel poly(aryl ether) dendron derivatives that contain rhodamine units was used to investigate the effect of hydrophobicity on the intracellular uptake of self-assembled fluorophores. The results suggest that monomer hydrophobicity plays an important role in the uptake. The dendron-based fluorophores, which upon self-assembly, formed stable spherical aggregates ranging from 300 to 500 nm. The rhodamine-based dendrons could selectively sense Hg2+ ions in the presence of other competing metal cations. Intracellular imaging of the dendron-based fluorophores displayed bright red fluorescence in human embryonic kidney cells. The rate of intracellular uptake of the three dendron-based fluorophores was analyzed by flow cytometry. The results establish the importance of the hydrophilic-lipophilic balance of the self-assembled amphiphiles for tuning the intracellular uptake.
Collapse
|
23
|
Wang P, Liang B, Xia D. A Linear AIE Supramolecular Polymer Based on a Salicylaldehyde Azine-Containing Pillararene and Its Reversible Cross-Linking by CuII and Cyanide. Inorg Chem 2019; 58:2252-2256. [DOI: 10.1021/acs.inorgchem.8b02896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Bicong Liang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
24
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
25
|
Hu G, Yang C, Liu H, Shen J. Pillar[5]arene-functionalized paper as a fluorescent sensor for cyanide ions in water. NEW J CHEM 2019. [DOI: 10.1039/c9nj02062d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we developed a strategy to prepare pillararene-functionalized paper, which absorbed 10-methyacridinium iodide as a fluorescent indicator for cyanide ions, allowing their naked-eye detection from 10−7 to 10−3 M.
Collapse
Affiliation(s)
- Ganlin Hu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering & Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
- P. R. China
| | - Chunxin Yang
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering & Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
- P. R. China
| | - Hui Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering & Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
- P. R. China
| | - Jianming Shen
- Chibi Environmental Protection Agency
- Chibi 437300
- P. R. China
| |
Collapse
|
26
|
Fluorescent detection of Zn(II) and In(III) and colorimetric detection of Cu(II) and Co(II) by a versatile chemosensor. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Liu W, Lu X, Xue W, Samanta SK, Zavalij PY, Meng Z, Isaacs L. Hybrid Molecular Container Based on Glycoluril and Triptycene: Synthesis, Binding Properties, and Triggered Release. Chemistry 2018; 24:14101-14110. [PMID: 30044903 DOI: 10.1002/chem.201802981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Indexed: 12/11/2022]
Abstract
We designed and synthesized a "hybrid" molecular container 1, which is structurally related to both cucurbit[n]uril (CB[n]) and pillar[n]arene type receptors. Receptor 1 was fully characterized by 1 H NMR, 13 C NMR, IR, MS and X-ray single crystal diffraction. The self-association behavior, host-guest recognition properties of 1, and the [salt] dependence of Ka were investigated in detail by 1 H NMR and isothermal titration calorimetry (ITC). Optical transmittance and TEM measurements provide strong evidence that receptor 1 undergoes co-assemble with amphiphilic guest C10 in water to form supramolecular bilayer vesicles (diameter 25.6±2.7 nm, wall thickness ≈3.5 nm) that can encapsulate the hydrophilic anticancer drug doxorubicin (DOX) and the hydrophobic dye Nile red (NR). The release of encapsulated DOX or NR from the vesicles can be triggered by hexamethonium (8 c) or spermine (10) which leads to the disruption of the supramolecular vesicles.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China.,Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Xiaoyong Lu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
28
|
Abstract
Pillararenes are a unique group of supramolecular macrocycles, presenting important features and potential applications on account of their intrinsic structural properties and functionality. Developing pillararene-based self-assembled amphiphiles (PSAs) is an efficient approach to translate pillararenes into functional systems and materials for facilitating their practical applications. In this review article, we highlight recent significant advancements in PSAs. A new standard according to the number, solubility, and amphiphilicity of building blocks is employed for dividing PSAs into different categories. The fabrication of PSAs based on various building blocks and supramolecular interactions, and the formation of amphiphile-based self-assemblies are then discussed based on this standard. Furthermore, interesting stimulus-responsiveness to various factors, such as pH, redox, temperature, light, ionic effect, and host-guest competition, generated by the functional groups on various building blocks is summarized, and the corresponding supramolecular interactions in PSAs and their self-assemblies are elaborated. In addition, some important applications of PSAs and their assemblies are discussed. This review not only provides fundamental findings on the construction of PSAs, but also foresees future research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | | | | |
Collapse
|
29
|
Li P, Yao Q, Lü B, Ma G, Yin M. Visible Light-Induced Supra-Amphiphilic Switch Leads to Transition from Supramolecular Nanosphere to Nanovesicle Activated by Pillar[5]arene-Based Host-Guest Interaction. Macromol Rapid Commun 2018; 39:e1800133. [PMID: 29786904 DOI: 10.1002/marc.201800133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Qianfang Yao
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Baozhong Lü
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| |
Collapse
|
30
|
Xia D, Wang L, Lv X, Chao J, Wei X, Wang P. Dual-Responsive [2]Pseudorotaxane On the basis of a pH-Sensitive Pillar[5]arene and Its Application in the Fabrication of Metallosupramolecular Polypseudorotaxane. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Liyun Wang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiaoqing Lv
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| |
Collapse
|
31
|
Yalçın E, Alkış M, Seferoğlu N, Seferoğlu Z. A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Ma L, Wang S, Li C, Cao D, Li T, Ma X. Photo-controlled fluorescence on/off switching of a pseudo[3]rotaxane between an AIE-active pillar[5]arene host and a photochromic bithienylethene guest. Chem Commun (Camb) 2018; 54:2405-2408. [PMID: 29457184 DOI: 10.1039/c8cc00213d] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A fluorescence photo-switch was constructed based on a host-guest pseudo[3]rotaxane between an AIE-active pillar[5]arene host bearing tetraphenyl ethylene moieties and a photo-responsive dithienylethylene guest containing two cyano-triazole branches. Its fluorescence on/off switching could be controlled by the photochromism reaction of the dithienylethylene unit.
Collapse
Affiliation(s)
- Liangwei Ma
- School of Chemistry and Chemical Engineering, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, China. and School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, China. and School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Chengpeng Li
- School of Chemistry and Chemical Engineering, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, China.
| | - Derong Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Teng Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
33
|
Sun J, Hua B, Li Q, Zhou J, Yang J. Acid/Base-Controllable FRET and Self-Assembling Systems Fabricated by Rhodamine B Functionalized Pillar[5]arene-Based Host–Guest Recognition Motifs. Org Lett 2018; 20:365-368. [DOI: 10.1021/acs.orglett.7b03612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jifu Sun
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
34
|
Wang P, Ma J, Xia D. A H2S and I− dual-responsive supramolecular polymer constructed via pillar[5]arene-based host–guest interactions and metal coordination. Org Chem Front 2018. [DOI: 10.1039/c7qo01165b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A supramolecular polymer was designed and prepared by self-assembly of a pillar[5]arene dimer (AA-type), constructed from Ag-coordination, and a homoditopic (BB-type) guest (G). The supramolecular polymer displayed H2S and I− dual responsiveness due to the sensitivity of Ag+ to H2S and I−.
Collapse
Affiliation(s)
- Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials
- Research Center of Advanced Materials Science and Technology
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jiao Ma
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials
- Research Center of Advanced Materials Science and Technology
- Taiyuan University of Technology
- Taiyuan
- China
| | - Danyu Xia
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
35
|
Wang G, Hu WB, Zhao XL, Liu YA, Li JS, Jiang B, Wen K. Engineering a pillar[5]arene-based supramolecular organic framework by a co-crystallization method. Dalton Trans 2018; 47:5144-5148. [DOI: 10.1039/c8dt00566d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A perhydroxyl-pillar[5]arene and 4,4-bipyridine based supramolecular organic framework (SOF) was prepared by using a co-crystallization approach.
Collapse
Affiliation(s)
- Guo Wang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
- School of Physical Science and Technology
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- and Department of Chemistry
- East China Normal University
- Shanghai 200062
- China
| | - Yahu A. Liu
- Medicinal Chemistry
- ChemBridge Research Laboratories
- San Diego
- USA
| | - Jiu-Sheng Li
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Biao Jiang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Ke Wen
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
36
|
Zhu W, Fang H, He JX, Jia WH, Yao H, Wei TB, Lin Q, Zhang YM. Novel 2-(hydroxy)-naphthyl imino functionalized pillar[5]arene: a highly efficient supramolecular sensor for tandem fluorescence detection of Fe3+ and F− and the facile separation of Fe3+. NEW J CHEM 2018. [DOI: 10.1039/c8nj01335g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel pillar[5]arene-based supramolecular sensor (AP5N) for tandem fluorescence detection of Fe3+ and F− was successfully prepared. Interestingly, the sensor AP5N shows excellent facile separation property for Fe3+.
Collapse
Affiliation(s)
- Wei Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hu Fang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jun-Xia He
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Wen-Hua Jia
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
37
|
Luo D, Wang XZ, Yang C, Zhou XP, Li D. Self-Assembly of Chiral Metal–Organic Tetartoid. J Am Chem Soc 2017; 140:118-121. [DOI: 10.1021/jacs.7b11285] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Luo
- College
of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Zhi Wang
- Department
of Chemistry, Shantou University, Guangdong 515063, P. R. China
| | - Chen Yang
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiao-Ping Zhou
- Department
of Chemistry, Shantou University, Guangdong 515063, P. R. China
| | - Dan Li
- College
of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
38
|
Matsuno T, Kogashi K, Sato S, Isobe H. Enhanced yet Inverted Effects of π-Extension in Self-Assembly of Curved π-Systems with Helicity. Org Lett 2017; 19:6456-6459. [PMID: 29160077 DOI: 10.1021/acs.orglett.7b03534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sextuple helix molecule possessing four cove regions of helicene and two axes of biaryls was synthesized. The entropy-driven self-assembly in solution was determined by concentration- and temperature-dependent NMR spectra, which also revealed unique dynamics of isomerization involving structural changes at the cove regions. Unexpectedly, the assembly retarded the isomerization in solution, and the sextuple helix structure was rigidified.
Collapse
Affiliation(s)
- Taisuke Matsuno
- Department of Chemistry, The University of Tokyo and JST, ERATO, Isobe Degenerate π-Integration Project , Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanako Kogashi
- Department of Chemistry, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Sota Sato
- Department of Chemistry, The University of Tokyo and JST, ERATO, Isobe Degenerate π-Integration Project , Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo and JST, ERATO, Isobe Degenerate π-Integration Project , Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Yao Q, Lü B, Ji C, Cai Y, Yin M. Supramolecular Host-Guest System as Ratiometric Fe 3+ Ion Sensor Based on Water-Soluble Pillar[5]arene. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36320-36326. [PMID: 28891642 DOI: 10.1021/acsami.7b12063] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing a specific, ratiometric, and reversible detection method for metal ions is significant to guard against the threat of metal-caused environmental pollution and organisms poisoning. Here a supramolecular host-guest system (WP5⊃G) based on water-soluble pillar[5]arene (WP5) and water-soluble quaternized perylene diimide derivative (G) was constructed. Morphological transformation was achieved during the process of adding WP5 into G aqueous solution, and a fluorescence "turn-off" phenomenon was observed which was caused by supramolecular photoinduced electron transfer (PET). Meanwhile, hydrophobic effect and electrostatic interaction played important roles in this supramolecular process, which was confirmed by isothermal titration calorimeter (ITC) and ζ potential experiments. Furthermore, the supramolecular host-guest system could be a "turn-on" fluorescent probe for Fe3+ ion detection through the process of interdicting supramolecular PET. Moreover, the Fe3+ ion detection showed specific, ratiometric, and reversible performances with a detection limit of 2.13 × 10-7 M, which might have great potentials in biological and environmental monitoring.
Collapse
Affiliation(s)
- Qianfang Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Baozhong Lü
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Yang Cai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| |
Collapse
|
40
|
Lin Q, Mao PP, Fan YQ, Liu L, Liu J, Zhang YM, Yao H, Wei TB. A novel supramolecular polymer gel based on naphthalimide functionalized-pillar[5]arene for the fluorescence detection of Hg 2+ and I - and recyclable removal of Hg 2+via cation-π interactions. SOFT MATTER 2017; 13:7085-7089. [PMID: 28849853 DOI: 10.1039/c7sm01447c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The development of novel materials for the detection and removal of Hg2+ is a very important issue due to the acute toxicity of Hg2+. Herein, a novel supramolecular polymer P5BD-DPHB has been constructed by the collaboration of a naphthalimide functionalized-pillar[5]arene host (P5BD) and a bis-bromohexane functionalized-pillar[5]arene guest (DPHB). P5BD-DPHB could form a stable supramolecular gel (P5BD-DPHB-G). Interestingly, P5BD-DPHB-G shows selective fluorescent "turn-on" detection for Hg2+via cation-π interactions with high selectivity and sensitivity. Furthermore, the Hg2+ coordinated supramolecular gel P5BD-DPHB-HgG can detect I- successively. The detection limits for Hg2+ and I- are 1.65 × 10-9 and 1.84 × 10-8 mol L-1, respectively. Even more significantly, the xerogel of P5BD-DPHB-G could remove Hg2+ from aqueous solution with excellent recyclability and ingestion capacity, and with a Hg2+ removal rate of 98%.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Fang Guo
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Bohan Xi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Wei TB, Chen JF, Cheng XB, Li H, Han BB, Yao H, Zhang YM, Lin Q. Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions. Polym Chem 2017. [DOI: 10.1039/c7py00335h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A linear supramolecular polymer has been constructed from host–guest recognition. Furthermore, the linear supramolecular polymer could self-assemble to form a supramolecular gel at high concentration, which exhibited external stimuli-responsiveness.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
43
|
Lin Q, Mao PP, Zheng F, Liu L, Liu J, Zhang YM, Yao H, Wei TB. Novel supramolecular sensors constructed from pillar[5]arene and a naphthalimide for efficient detection of Fe3+ and F− in water. NEW J CHEM 2017. [DOI: 10.1039/c7nj02581e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel water soluble supramolecular sensors for efficient detection of Fe3+ and F− were constructed by assembling a novel naphthalimide and pillar[5]arene.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peng-Peng Mao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Feng Zheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Lu Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Juan Liu
- College of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|