1
|
Shi YF, Zhu YT, Zhang ZH, Chen MS, Gao S, Zhang Q, Li CH. Structurally diverse chromane meroterpenoids from Rhododendron capitatum with multifunctional neuroprotective effects. Eur J Med Chem 2025; 283:117188. [PMID: 39709792 DOI: 10.1016/j.ejmech.2024.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Eleven new chromane meroterpenoids (1-11), along with 24 known ones (12-35) were isolated from Rhododendron capitatum, a Tibetan medicine. Their structures were determined via extensive spectroscopic methods. The absolute configurations of 1 and 2 were determined by comparison of the experimental and theoretically calculated ECD data. For compounds 3-9, the absolute configurations at the C-2 were assigned according to the empirical chromane helicity rule. The stereochemistry of the chiral alcohols at C-13 in 3 and C-15 in 4 were determined using the Rh2(OCOCF3)4-induced ECD spectra based on the bulkiness rule. Additionally, the absolute configurations of secondary alcohols at C-13 in 8 and 9 were unambiguously established by Mosher's method. Neuroprotection evaluations in vitro and in vivo revealed that compounds 1, 18, and 21 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Compound 21 also down-regulated MAPK signal pathway in BV-2 cells. The PC-12 cell damage induced by H2O2 and 6-hydroxydopamine (6-OHDA) was attenuated by compounds 1, 21, and 22, especially for 22. Moreover, compounds 3, 6, 22, 23, and 28 significantly enhanced NGF-induced neurite growth in PC-12 cells. Notably, compound 6 demonstrated the most potent neurite growth promotion with a rate of 22.93 ± 2.24 % at 10 μM, which was approximately 3-fold higher than that induced by nerve growth factor (NGF). In AD Caenorhabditis elegans CL4176 model, compounds 1 and 21 delayed Aβ-induced paralysis and reduced ROS expression levels. These studies provide new potential neuroprotective agents for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ye-Fan Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Yue-Tong Zhu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Zi-Han Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Meng-Song Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Song Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Chun-Huan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
2
|
Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv 2024; 14:13100-13128. [PMID: 38655462 PMCID: PMC11036177 DOI: 10.1039/d4ra01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).
Collapse
Affiliation(s)
- Madiha Hanif
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Liu XJ, Su HG, Peng XR, Bi HC, Qiu MH. An updated review of the genus Rhododendron since 2010: Traditional uses, phytochemistry, and pharmacology. PHYTOCHEMISTRY 2024; 217:113899. [PMID: 37866447 DOI: 10.1016/j.phytochem.2023.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Rhododendron, the largest genus of Ericaceae, consists of approximately 1000 species that are widely distributed in Europe, Asia, and North America but mainly exist in Asia. Rhododendron plants have not only good ornamental and economic value but also significant medicinal potential. In China, many Rhododendron plants are used as traditional Chinese medicine or ethnic medicine for the treatment of respiratory diseases, pain, bleeding and inflammation. Rhododendron is known for its abundant metabolites, especially diterpenoids. In the past 13 years, a total of 610 chemical constituents were reported from Rhododendron plants, including 222 diterpenoids, 122 triterpenoids, 103 meroterpenoids, 71 flavonoids and 92 other constituents (lignans, phenylpropanoids, phenolic acids, monoterpenoids, sesquiterpenoids, coumarins, steroids, fatty acids). Moreover, the bioactivities of various extracts and isolates, both in vitro and in vivo, were also investigated. Our review summarized the research progress of Rhododendron regarding traditional uses, phytochemistry and pharmacology in the past 13 years (2010 to December 2022), which will provide new insight for prompting further research on Rhododendron application and drug development.
Collapse
Affiliation(s)
- Xing-Jian Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Guo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Hui-Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
| |
Collapse
|
4
|
Jeon H, Kang G, Kim MJ, Shin JS, Han S, Lee HY. On the Erosion of Enantiopurity of Rhodonoids via Their Asymmetric Total Synthesis. Org Lett 2022; 24:2181-2185. [PMID: 35266724 DOI: 10.1021/acs.orglett.2c00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodonoid natural products are found in nature as a scalemic mixture. This interesting phytochemical feature is presumed to originate from a reversible electrocyclic ring opening of the chromene core present in the biogenetic precursors of rhodonoids. Herein, we systematically investigated factors that are responsible for this racemization event. This eventually led us to complete the asymmetric total synthesis of rhodonoids A, C, D, and G.
Collapse
Affiliation(s)
- Hyeju Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myungjo J Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Soo Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hee-Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Arevalo GE, Frank MK, Decker KS, Theodoraki MA, Theodorakis EA. Gambogic acid: Multi-gram scale isolation, stereochemical erosion toward epi-gambogic acid and biological profile. FRONTIERS IN NATURAL PRODUCTS 2022; 1:1018765. [PMID: 39211297 PMCID: PMC11361287 DOI: 10.3389/fntpr.2022.1018765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Extracted from gamboge resin, gambogic acid (GBA) is a natural product that displays a complex caged xanthone structure and exhibits promising antitumor properties. However, efforts to advance this compound to clinical applications have been thwarted by its limited availability that in turn, restricts its pharmacological optimization. Methods We report here an efficient method that allows multigram scale isolation of GBA in greater than 97% diastereomeric purity from various sources of commercially available gamboge. The overall process includes: (a) isolation of organic components from the resin; (b) separation of GBA from the organic components via crystallization as its pyridinium salt; and (c) acidification of the salt to isolate the free GBA. Results and Discussion We found that GBA is susceptible to epimerization at the C2 center that produces epi-gambogic acid ( epi-GBA), a common contaminant of all commercial sources of this compound. Mechanistic studies indicate that this epimerization proceeds via an ortho-quinone methide intermediate. Although the observed stereochemical erosion accounts for the chemical fragility of GBA, it does not significantly affect its biological activity especially as it relates to cancer cell cytotoxicity. Specifically, we measured similar levels of cytotoxicity for either pure GBA or an equilibrated mixture of GBA/ epi-GBA in MBA-MB-231 cells with IC50 values at submicromolar concentration and induction of apoptosis after 12 hours of incubation. The results validate the pharmacological promise of gambogic acid and, combined with the multigram-scale isolation, should enable drug design and development studies.
Collapse
Affiliation(s)
- Gary E. Arevalo
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Michelle K. Frank
- Department of Biology, Arcadia University, Glenside, PA, United States
| | - Katelin S. Decker
- Department of Biology, Arcadia University, Glenside, PA, United States
| | | | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Polley A, Varalaxmi K, Nandi A, Jana R. Divergent Total Synthesis of (±)‐Mahanine and Other Carbazole Alkaloids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arghya Polley
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| | - Kasarla Varalaxmi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Organic and Medicinal Chemistry Division National Institute of Pharmaceutical Education and Research (NIPER) Kolkata 700054 West Bengal India
| | - Arijit Nandi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| |
Collapse
|
7
|
Burchill L, Day AJ, Yahiaoui O, George JH. Biomimetic Total Synthesis of the Rubiginosin Meroterpenoids. Org Lett 2021; 23:578-582. [PMID: 33372801 DOI: 10.1021/acs.orglett.0c04117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Total synthesis of the Rhododendron meroterpenoids rubiginosins A and G, which both contain unusual 6-6-6-4 ring systems, has been achieved using a bioinspired cascade approach. Stepwise synthesis of these natural products, and the related 6-6-5-4 meroterpenoids fastinoid B and rhodonoid B, from naturally occurring chromene precursors is also reported.
Collapse
Affiliation(s)
- Laura Burchill
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Aaron J Day
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H George
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Shi Q, Li TT, Wu YM, Sun XY, Lei C, Li JY, Hou AJ. Meroterpenoids with diverse structures and anti-inflammatory activities from Rhododendron anthopogonoides. PHYTOCHEMISTRY 2020; 180:112524. [PMID: 33038550 DOI: 10.1016/j.phytochem.2020.112524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Eight pairs of meroterpenoid enantiomers and four achiral meroterpenoids were isolated from Rhododendron anthopogonoides Maxim. Seventeen of them, named (+)-/(-)-anthoponoids A-G, (+)-daurichromene D, and anthoponoids H and I, are undescribed compounds with structural diversity. Their structures were characterized herein by a combined application of spectroscopic techniques, X-ray crystallographic analysis, ECD calculation, and the modified Mosher's method. (+)-/(-)-Anthoponoid A and anthoponoid I are the first Rhododendron meroterpenoids found to possess a hexahydroxanthene motif and a diterpene unit, respectively. Some isolates were identified as NF-κB pathway inhibitors, and (+)-anthoponoid E, (-)-anthoponoid G, and anthoponoid H showed suppressive effects on LPS-induced inflammatory responses in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Qing Shi
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China
| | - Teng-Teng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin-Yu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun Lei
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China
| | - Jing-Ya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ai-Jun Hou
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
9
|
Huang GH, Lei C, Zhu KX, Li JY, Li J, Hou AJ. Enantiomeric pairs of meroterpenoids from Rhododendron fastigiatum. Chin J Nat Med 2020; 17:963-969. [PMID: 31882052 DOI: 10.1016/s1875-5364(19)30119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 01/19/2023]
Abstract
Five pairs of optically pure meroterpenoid enantiomers (1a/1b-5a/5b) and two known compounds (6 and 7) were isolated from Rhododendron fastigiatum. Compounds 1a/1b-5a/5b were resolved from naturally scalemic mixtures by chiral HPLC. Their structures were elucidated by spectroscopic methods, X-ray crystallographic experiments, and ECD analyses. Compounds 1a/1b, 2a/2b, 3b, 4a/4b, and 5a/5b were new meroterpenoids with different polycyclic systems. Two enantiomeric pairs (2a/2b and 3a/3b), 6, and 7 exhibited inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) in vitro.
Collapse
Affiliation(s)
- Guang-Hui Huang
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 201203, China
| | - Chun Lei
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 201203, China.
| | - Ke-Xin Zhu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-Ya Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ai-Jun Hou
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 201203, China.
| |
Collapse
|
10
|
Burchill L, George JH. Total Synthesis of Rhodonoids A, B, E, and F, Enabled by Singlet Oxygen Ene Reactions. J Org Chem 2020; 85:2260-2265. [DOI: 10.1021/acs.joc.9b02968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Laura Burchill
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Day AJ, Sumby CJ, George JH. Biomimetic Synthetic Studies on the Bruceol Family of Meroterpenoid Natural Products. J Org Chem 2019; 85:2103-2117. [DOI: 10.1021/acs.joc.9b02862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron J. Day
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christopher J. Sumby
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
12
|
Burchill L, Pepper HP, Sumby CJ, George JH. ortho-Quinone Methide Cyclizations Inspired by the Busseihydroquinone Family of Natural Products. Org Lett 2019; 21:8304-8307. [PMID: 31593469 DOI: 10.1021/acs.orglett.9b03060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of cascade reactions of o-quinone methides have been developed based on the proposed biosynthesis of busseihydroquinone and parvinaphthol meroterpenoid natural products. The polycyclic framework of the most complex family members, busseihydroquinone E and parvinaphthol C, was assembled by an intramolecular [4 + 2] cycloaddition of an electron-rich chromene substrate. The resultant cyclic enol ether underwent rearrangements under acidic or oxidative conditions, which led to a new total synthesis of rhodonoid D.
Collapse
Affiliation(s)
- Laura Burchill
- Department of Chemistry , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Henry P Pepper
- Department of Chemistry , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Christopher J Sumby
- Department of Chemistry , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Jonathan H George
- Department of Chemistry , University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
13
|
Assoah B, Riihonen V, Vale JR, Valkonen A, Candeias NR. Synthesis of 6,12-Disubstituted Methanodibenzo[b,f][1,5]dioxocins: Pyrrolidine Catalyzed Self-Condensation of 2′-Hydroxyacetophenones. Molecules 2019; 24:molecules24132405. [PMID: 31261870 PMCID: PMC6651863 DOI: 10.3390/molecules24132405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
The preparation of unprecedented 6,12-disubstituted methanodibenzo[b,f][1,5]dioxocins from pyrrolidine catalyzed self-condensation of 2′-hydroxyacetophenones is herein described. This method provides easy access to this highly bridged complex core, resulting in construction of two C–O and two C–C bonds, a methylene bridge and two quaternary centers in a single step. The intricate methanodibenzo[b,f][1,5]dioxocin compounds were obtained in up to moderate yields after optimization of the reaction conditions concerning solvent, reaction times and the use of additives. Several halide substituted methanodibenzo[b,f][1,5]dioxocins could be prepared from correspondent 2′-hydroxyacetophenones.
Collapse
Affiliation(s)
- Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| | - Vesa Riihonen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - João R Vale
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| |
Collapse
|
14
|
Day AJ, Lee JHZ, Phan QD, Lam HC, Ametovski A, Sumby CJ, Bell SG, George JH. Biomimetic and Biocatalytic Synthesis of Bruceol. Angew Chem Int Ed Engl 2018; 58:1427-1431. [DOI: 10.1002/anie.201812432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Aaron J. Day
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Joel H. Z. Lee
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Quang D. Phan
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Hiu C. Lam
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Adam Ametovski
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | | | - Stephen G. Bell
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Jonathan H. George
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
15
|
Day AJ, Lee JHZ, Phan QD, Lam HC, Ametovski A, Sumby CJ, Bell SG, George JH. Biomimetic and Biocatalytic Synthesis of Bruceol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aaron J. Day
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Joel H. Z. Lee
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Quang D. Phan
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Hiu C. Lam
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Adam Ametovski
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | | | - Stephen G. Bell
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Jonathan H. George
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
16
|
Song X, Gao C, Zhang X, Fan X. Synthesis of Diversely Functionalized 2 H-Chromenes through Pd-Catalyzed Cascade Reactions of 1,1-Dibromoolefin Derivatives with Arylboronic Acids. J Org Chem 2018; 83:15256-15267. [PMID: 30465428 DOI: 10.1021/acs.joc.8b02456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, an unprecedented synthesis of (2 H-chromen-2-ylidene)acetates and (2 H-chromen-2-ylidene)ethanones with controlled stereoselectivity via Pd-catalyzed cascade reactions of 3-(2-(2,2-dibromovinyl)phenoxy)acrylates or 3-(2-(2,2-dibromovinyl)phenoxy)enones with aryl boronic acids has been established. This protocol combines two C-C bond forming reactions (an intermolecular Suzuki coupling followed by an intramolecular Heck coupling) in one pot under the catalysis of the same catalyst. Compared with literature methods for the preparation of 2 H-chromene derivatives, it has advantages such as easily obtainable or commercially available substrates, diverse substitution pattern of products, simple procedure, and excellent stereoselectivity. Interestingly, this cascade reaction could distinguish the subtle difference of the electron-withdrawing capacity and the size of various functional groups and thus resulted in a different chemoselectivity. In addition, the utility of the (2 H-chromen-2-ylidene)acetate thus obtained was showcased by its facile transformation into the synthetically and photophysically significant 3 H-xanthen-3-one derivative.
Collapse
Affiliation(s)
- Xia Song
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Cai Gao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
17
|
Huang GH, Hu Z, Lei C, Wang PP, Yang J, Li JY, Li J, Hou AJ. Enantiomeric Pairs of Meroterpenoids with Diverse Heterocyclic Systems from Rhododendron nyingchiense. JOURNAL OF NATURAL PRODUCTS 2018; 81:1810-1818. [PMID: 30067363 DOI: 10.1021/acs.jnatprod.8b00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eight enantiomeric pairs of new meromonoterpenoids (1a/1b-8a/8b) and four known compounds (9-12) were isolated from Rhododendron nyingchiense. Their structures were established by spectroscopic methods, quantum chemical calculations, and X-ray crystallography. The enantiomeric pairs were acquired from scalemic mixtures by chiral-phase HPLC and showed diverse heterocyclic frameworks. Compounds 1a/1b possess a rare 6/7/5/5 heterocyclic system, and 2a/2b incorporate a new 6/6/3/5 heterocyclic system featuring a quinone motif. Compounds 3a/3b represent the first meroterpenoids with a 6/6/5 ring system from the Rhododendron genus. Putative biosynthetic pathways of these compounds are proposed. Compounds 1b, 2a-4a, 8a, 8b, and 11 exhibited weak inhibitory effects on PTP1B, with IC50 values ranging from 5.7 ± 0.5 to 61.0 ± 4.8 μM.
Collapse
Affiliation(s)
- Guang-Hui Huang
- Department of Pharmacognosy, School of Pharmacy, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 201203 , People's Republic of China
| | - Zhu Hu
- Department of Pharmacognosy, School of Pharmacy, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 201203 , People's Republic of China
| | - Chun Lei
- Department of Pharmacognosy, School of Pharmacy, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 201203 , People's Republic of China
| | - Pei-Pei Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
| | - Jing-Ya Li
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Ai-Jun Hou
- Department of Pharmacognosy, School of Pharmacy, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 201203 , People's Republic of China
| |
Collapse
|
18
|
Liu H, Wang Y, Guo X, Huo L, Xu Z, Zhang W, Qiu S, Yang B, Tan H. A Bioinspired Cascade Sequence Enables Facile Assembly of Methanodibenzo[b,f][1,5]dioxocin Flavonoid Scaffold. Org Lett 2018; 20:546-549. [DOI: 10.1021/acs.orglett.7b03630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongxin Liu
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- State
Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial
Key Laboratory of Microbial Culture Collection and Application, Guangdong
Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yu Wang
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xueying Guo
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Luqiong Huo
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhifang Xu
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weimin Zhang
- State
Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial
Key Laboratory of Microbial Culture Collection and Application, Guangdong
Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Shengxiang Qiu
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Haibo Tan
- Program
for Natural Products Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
19
|
Wu H, Hsung RP, Tang Y. Total Syntheses of (±)-Rhodonoids C, D, E, F, and G and Ranhuadujuanine B. Org Lett 2017; 19:3505-3507. [PMID: 28604000 DOI: 10.1021/acs.orglett.7b01463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we describe the divergent, biosynthetically inspired syntheses of (±)-rhodonoids C-G and (±)-ranhuadujuanine B. The key steps of the syntheses include the construction of the chromene unit through a formal oxa-[3 + 3] annulation and a biomimetic acid-catalyzed ring cyclization. Cationic [2 + 2] cycloaddition is accomplished to form the cyclobutane core of (±)-rhodonoids E and F.
Collapse
Affiliation(s)
- Hao Wu
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Richard P Hsung
- Division of Pharmaceutical Sciences, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Yu Tang
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237, P. R. China
| |
Collapse
|