1
|
Yanai H, Kurogi S, Hoshikawa S, Matsumoto T. HFIP-Mediated Desulfinative Friedel-Crafts Cyclobutenylation Reaction. Chemistry 2024; 30:e202400843. [PMID: 38639573 DOI: 10.1002/chem.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
In 1,1,1,3,3,3-hexafluoroisopropyl alcohol (HFIP), gem-bis(triflyl)cyclobutenes, which can be prepared by the (2+2) cycloaddition reaction of Tf2C=CH2 with alkynes, underwent desulfination to generate the corresponding cyclobutenyl cation. This unique reactivity was successfully applied to the Friedel-Crafts type cyclobutenylation reaction of several (hetero)aromatic compounds.
Collapse
Affiliation(s)
- Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shota Kurogi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoki Hoshikawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
2
|
Lei S, Wang H, Wang SR. Catalytic Intramolecular Ketone Haloacylation Enabled Stereoselective Heterolytic Cleavage of Cyclopropyl Ketones with Enhanced Reactivity and Regioselectivity beyond Electronics. Org Lett 2024; 26:4111-4116. [PMID: 38717836 DOI: 10.1021/acs.orglett.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
By integration of oxocarbenium activation and Lewis acid coordination activation via conformational proximity-driven, Pd(II)- or Cu(I)-catalyzed intramolecular ketone haloacylation, regio- and stereoselective heterolytic ring-opening 1,5-haloacylation of cyclopropyl ketones, including those with weak single alkyl donors, has been developed for the synthesis of valuable α-quaternary halo-γ-butenolides. The vicinal carboxylic acid and ketone acceptors are no longer just spectator activators. Further, this reaction delivers a constant regioselectivity regardless of the electronic nature of substituents, even the malonate.
Collapse
|
3
|
Pramanik S, Samanta A, Maity S. A two carbon homologation of Friedel-Crafts alkylation enabled by photochemical alkene stitching: modular assembly of cyclolignans. Chem Commun (Camb) 2024; 60:5282-5285. [PMID: 38656305 DOI: 10.1039/d4cc00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein we report an efficient two-carbon homologated variant of Friedel-Crafts alkylation via photochemical radical alkene stitching. Readily available feedstock alkenes are used as bridges between photogenerated alkyl radicals and arenes, opening a route to γ-aryl-carbonyls for chemo-divergent access to aryltetralone and γ-lactones, a gateway to 2,7'-cyclolignans.
Collapse
Affiliation(s)
- Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
4
|
Vinayagam V, Sadhukhan SK, Botla DV, Chittem RR, Kasu SR, Hajay Kumar TV. Mild Method for Deprotection of the N-Benzyloxycarbonyl ( N-Cbz) Group by the Combination of AlCl 3 and HFIP. J Org Chem 2024; 89:5665-5674. [PMID: 38574289 DOI: 10.1021/acs.joc.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Herein, we report our findings on the novel ability of aluminum chloride (AlCl3) in fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol [HFIP] to selectively deprotect the N-benzyloxycarbonyl group (N-Cbz). The salient features of this method are good functional group tolerance including other reducible groups, cost-effectiveness, easy-to-handle, safe protocol, amenable to scale-up, high yields, and ambient temperature reactions. The methodology would serve as an excellent alternative to the use of pyrophoric hydrogen gas and metal catalyst reagents that pose severe safety and environmental concerns. The most notable feature of this methodology is the orthogonal deprotection of the N-Cbz group in the presence of O- and N-Bn protecting groups, hence, expanding the scope for designing synthetic routes to target compounds requiring multiple functional group transformations.
Collapse
Affiliation(s)
- Vinothkumar Vinayagam
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Subir Kumar Sadhukhan
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Durga Varaprasad Botla
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Rajashekar Reddy Chittem
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Sreenivasa Reddy Kasu
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Tanguturi Venkatanarayana Hajay Kumar
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| |
Collapse
|
5
|
Hu L, Xiang Y, Lan XB, Xie Y. An Intermolecular Hydroarylation of Unactivated Arylcyclopropane via Re 2O 7/HFIP-Mediated Ring Opening. Org Lett 2024; 26:2085-2090. [PMID: 38441049 DOI: 10.1021/acs.orglett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In this paper, we describe a Re2O7-mediated ring-opening arylation of unactivated arylcyclopropane because of its functionalization with various arenes via Friedel-Crafts-type reactivity. This protocol allows facile access to functionalized 1,1-diaryl alkanes and is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. Both density functional theory calculations and deuterium labeling experiments were carried out to justify the indispensable role of HFIP in this transformation and pointed to Re2O7-mediated ring opening being the rate-determining step.
Collapse
Affiliation(s)
- Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yao Xiang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
6
|
Jiang Y, Ma HJ, Zhai CY, Wang XL. Sn(OTf) 2-Catalyzed (3 + 2) Cycloaddition/Sulfur Rearrangement Reaction of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. Org Lett 2024; 26:1672-1676. [PMID: 38359067 DOI: 10.1021/acs.orglett.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The (3 + 2) cycloaddition/sulfur rearrangement reaction of donor-acceptor cyclopropanes bearing a single keto acceptor with indoline-2-thiones has been realized. Under the catalysis of Sn(OTf)2, a series of functionalized 3-indolyl-4,5-dihydrothiophenes were synthesized with moderate to excellent yields.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Chen-Ying Zhai
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
7
|
Meng Y, Gu J, Xin M, Jiang Y, Du Z, Lu G, Jiang J, Chan ASC, Ke Z, Zou Y. Chalcone-Based Synthesis of Tetrahydropyridazines via Cloke-Wilson-Type Rearrangement-Involved Tandem Reaction between Cyclopropyl Ketones and Hydrazines. J Org Chem 2024; 89:2726-2740. [PMID: 38307838 DOI: 10.1021/acs.joc.3c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A facile and efficient approach for the synthesis of multisubstituted tetrahydropyridazines starting from cyclopropyl ketones and hydrazines has been developed. The transformation is chalcone-based and takes place via a Cloke-Wilson-type rearrangement-involved tandem reaction catalyzed by TfOH in HFIP.
Collapse
Affiliation(s)
- Yingfen Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiayi Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixiu Xin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhibo Du
- Zhongshan WanHan Pharmceutical Company, Ltd., Zhongshan 528451, People's Republic of China
| | - Guoqing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiayao Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
8
|
Plodukhin AY, Boichenko MA, Andreev IA, Tarasenko EA, Anisovich KV, Ratmanova NK, Zhokhov SS, Trushkov IV, Ivanova OA. Concise approach to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids. Synthesis of vigabatrin. Org Biomol Chem 2024; 22:1027-1033. [PMID: 38193622 DOI: 10.1039/d3ob01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
γ-Aminobutyric acid (GABA) and GABA derivatives have attracted increased attention over the years in the fields of medicinal chemistry and chemical biology due to their interesting biological properties and synthetic relevance. Here, we report a short synthetic route to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids, including the antiepileptic drug vigabatrin, from readily available donor-acceptor cyclopropanes and ammonia or methylamine. This protocol includes a facile synthesis of 2-oxopyrrolidine-3-carboxamides and their acid hydrolysis to γ-aryl- or γ-alkenyl-substituted GABAs, which can serve as perspective building blocks for the synthesis of various GABA-based N-heterocycles and bioactive compounds.
Collapse
Affiliation(s)
- Andrey Yu Plodukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Maksim A Boichenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Elena A Tarasenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Kanstantsin V Anisovich
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| |
Collapse
|
9
|
Raju S, Ghosh P, Nayani K, Prashanth J, Sridhar B, Mainkar PS, Chandrasekhar S. Construction of Octahydro-4H-cyclopenta[b]pyridin-6-one Skeletons using Pot, Atom, and Step Economy (PASE) Synthesis. Chemistry 2023; 29:e202301058. [PMID: 37337465 DOI: 10.1002/chem.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Cascade aza-Piancatelli reaction and [3+3]/[4+2] cycloaddition reactions are carried out using the ideality principles of pot, atom, and step economy (PASE) synthesis. The reaction resulted in generation of octahydro-4H-cyclopenta[b]pyridin-6-one scaffolds. Moreover, octahydro-5,7a-epoxycyclopenta[cd]isoindol-4-one frameworks of gracilamine alkaloid and a novel decahydro-1H-dicyclopenta[cd,hi]isoindol-6-one were also realized in good yields with excellent regio- and diastereo-selectivities.
Collapse
Affiliation(s)
- Silver Raju
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Dalkilic O, Turbedaroglu O, Lafzi F, Kilic H. Regioselective C3-H Alkylation of Imidazopyridines with Donor-Acceptor Cyclopropanes. J Org Chem 2023; 88:11834-11846. [PMID: 37535468 PMCID: PMC10443042 DOI: 10.1021/acs.joc.3c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Alkylated imidazopyridines are crucial structures for medicinal chemistry. Here, an efficient method for the C3-H alkylation of imidazopyridines was devised. Under Lewis acid-catalyzed conditions, reactions of imidazopyridines with different donor-acceptor cyclopropanes were carried out. Finally, 1,3-bisfunctionalizaton of donor-acceptor cyclopropanes was performed. In addition, synthesized C3-alkylated imidazopyridines are amenable for diverse synthetic applications.
Collapse
Affiliation(s)
| | | | - Ferruh Lafzi
- Department of Chemistry,
Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Haydar Kilic
- Department of Chemistry,
Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| |
Collapse
|
11
|
Ma HJ, Gao K, Wang XL, Zeng JY, Yang Y, Jiang Y. AlCl 3-mediated ring-opening reactions of indoline-2-thiones with acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes. Org Biomol Chem 2023; 21:6312-6316. [PMID: 37493459 DOI: 10.1039/d3ob00909b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
AlCl3-mediated nucleophilic ring-opening reactions of indoline-2-thiones with various acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes were investigated. A series of ketones functionalized with indolylthio groups were synthesized in yields ranging from moderate to good. Moreover, chemical transformations of 4-indolylthio butan-1-ones to dihydro-2H-thiepino[2,3-b]indoles and sulfone were carried out to further expand both synthetic utility and structural complexity.
Collapse
Affiliation(s)
- Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Ke Gao
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xue-Long Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Jun-Yi Zeng
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
12
|
Baguli S, Kundu A, Nath S, Adhikari D, Mukherjee D. A Donor-Acceptor Cyclopropane by Intramolecular C(sp 3)-H Activation at a Cyclic(alkyl)(amino)carbene Center and Its Fascinating Ring-Opening Chemistry. Org Lett 2023; 25:3141-3145. [PMID: 37093744 DOI: 10.1021/acs.orglett.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Virtually irreversible intramolecular C-H activations are deleterious for aza-carbenes. A picolyl-tethered cyclic(alkyl)(amino)carbene (CAAC) isomerizes into a donor-acceptor cyclopropane in this manner but restores the CAAC status by retro-C-H activation in the presence of trapping agents like Se or CuCl. The same DA cyclopropane is readily hydrolyzed to a pyrrolidin-2-ol that acts as another picoCAAC precursor by undergoing 1,1-dehydration in the presence of Se or CuCl. The chemistry is distinct from the N-heterocyclic carbene analogue throughout.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli, Punjab 140306, India
| | - Soumajit Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia, West Bengal 741246, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli, Punjab 140306, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
13
|
Yuan B, Zhang C, Dong H, Wang C. Iron-Catalyzed Reductive Ring Opening/ gem-Difluoroallylation of Cyclopropyl Ketones. Org Lett 2023; 25:1883-1888. [PMID: 36912491 DOI: 10.1021/acs.orglett.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
By merging C-C and C-F bond cleavage, we developed a regioselective ring opening/gem-difluoroallylation of cyclopropyl ketones with α-trifluoromethylstyrenes, which proceeds under the catalysis of iron with the combination of manganese and TMSCl as the reducing agents, providing a new entry to the synthesis of carbonyl-containing gem-difluoroalkenes. Remarkably, the ketyl radical-induced selective C-C bond cleavage and the following generation of more-stable carbon-centered radicals enable complete regiocontrol of this ring opening reaction for various substitution patterns of the cyclopropane ring.
Collapse
Affiliation(s)
- Bing Yuan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chang Zhang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | | | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
14
|
Deswal S, Guin A, Biju AT. Benzotriazole-Triggered Three-Component Lewis Acid-Catalyzed Ring-Opening 1,3-Aminofunctionalization of Donor-Acceptor Cyclopropanes. Org Lett 2023; 25:1643-1648. [PMID: 36876870 DOI: 10.1021/acs.orglett.3c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of benzotriazoles as nucleophilic triggers in the three-component Yb(OTf)3-catalyzed ring-opening 1,3-aminofunctionalization of donor-acceptor (D-A) cyclopropanes is presented. Using N-halo succinimide (NXS) as the third component, the reaction afforded the 1,3-aminohalogenation product in up to an 84% yield. Moreover, using alkyl halides or Michael acceptors as the third components, the 3,1-carboaminated products are formed in up to a 96% yield in a one-pot operation. Employing Selectfluor as the electrophile, the reaction furnished the 1,3-aminofluorinated product in a 61% yield.
Collapse
Affiliation(s)
- Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
15
|
Xiao JA, Peng H, Zhang H, Meng RF, Lin C, Su W, Huang Y. Synergistic Sc(III)/Au(I)-Catalyzed Dearomative Spiroannulation of 2-(Ethynyl)aryl Cyclopropanes with 2-Aryl Indoles. Org Lett 2022; 24:8709-8713. [DOI: 10.1021/acs.orglett.2c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Hai Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Huan Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Ru-Fang Meng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| |
Collapse
|
16
|
Jaithum K, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Synergistic Lewis–Brønsted Acid Catalysis in Cascade Cyclization of ortho-Alkynylaryl Cyclopropylketones for the Synthesis of 2,3-Dihydronaphtho[1,2- b]furans. J Org Chem 2022; 87:15358-15379. [DOI: 10.1021/acs.joc.2c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
17
|
Wang J, Han F, Hao S, Tang YJ, Xiong C, Xiong L, Li X, Lu J, Zhou Q. Metal-Free Regioselective Hydrophosphorodithioation of Spirovinylcyclopropyl Oxindoles: Rapid Access to Allyl Dialkylphosphorodithioates. J Org Chem 2022; 87:12844-12853. [PMID: 36166737 DOI: 10.1021/acs.joc.2c01435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorodithioates are important substructures due to their great use in bioactive compounds and functional materials. A metal-free 1,5-addition of spirovinylcyclopropyl oxindoles have been developed by choosing P4S10 and alcohol as nucleophiles through the regioselective ring-opening of spirovinylcyclopropyl oxindoles. This method provides access to allylic organothiophosphates with high efficiency, wide functional group tolerance, good chemo- and regioselectivity, and E-selectivity. 1,3-Addition products were also prepared in high yield. Furthermore, the resulting organothiophosphates could be readily transformed into other allylic derivatives.
Collapse
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Fang Han
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Siyuan Hao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yu-Jiang Tang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiancheng Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jinrong Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
18
|
Vartanova AE, Levina II, Ratmanova NK, Andreev IA, Ivanova OA, Trushkov IV. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes. Org Biomol Chem 2022; 20:7795-7802. [PMID: 36148530 DOI: 10.1039/d2ob01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalysed reactions of donor-acceptor cyclopropanes with 1,3-disubstituted 5-aminopyrazoles were investigated. Under catalysis with gallium(III) chloride, products of the three-membered ring opening via a nucleophilic attack of the exocyclic amino group were obtained in a chemoselective manner. Oppositely, in the presence of scandium(III) triflate, products of either N-alkylation or C(4)-alkylation, or a mixture of both were formed. The products of the C(4) alkylation were transformed in one step into tetrahydropyrazolo[3,4-b]azepines that are attractive for medicinal chemistry and pharmacology.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| |
Collapse
|
19
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
20
|
Tang P, Wei YY, Wen L, Ma HJ, Yang Y, Jiang Y. MgI 2-Catalyzed Nucleophilic Ring-Opening Reactions of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. J Org Chem 2022; 87:10890-10901. [PMID: 35918174 DOI: 10.1021/acs.joc.2c01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MgI2-catalyzed nucleophilic ring-opening reactions of donor-acceptor cyclopropanes with indoline-2-thiones as easy-to-handle sulfur nucleophiles were investigated. A series of functionalized γ-indolylthio butyric acid derivatives were synthesized in good to excellent yields under mild reaction conditions. Furthermore, the thioether functionalized ring-opening products could be transformed to sulfone and methionine analogues.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - You-Yuan Wei
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
21
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
22
|
Guin A, Deswal S, Biju AT. Ring-Opening 1,3-Carbothiolation of Donor-Acceptor Cyclopropanes Using Alkyl Halides and In Situ Generated Dithiocarbamates. J Org Chem 2022; 87:6504-6513. [PMID: 35412311 DOI: 10.1021/acs.joc.2c00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two-step, ring-opening 1,3-carbothiolation of donor-acceptor (D-A) cyclopropanes employing alkyl halides and in situ generated dithiocarbamates (from amines and CS2) has been demonstrated under mild conditions. The reaction is operationally simple and works with good functional group compatibility. Three new bonds including C-N, C-S, and C-C are formed in this 1,3-bifunctionalization strategy. Electron-poor olefins can also be used as electrophiles instead of alkyl halides. The use of enantiomerically pure D-A cyclopropane afforded enantiopure 1,3-carbothiolated product, thus demonstrating the stereospecificity of the reaction.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Yuan B, Ding D, Wang C. Nickel-Catalyzed Regioselective Reductive Ring Opening of Aryl Cyclopropyl Ketones with Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bing Yuan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
24
|
More SG, Suryavanshi G. Lewis acid triggered N-alkylation of sulfoximines through nucleophilic ring-opening of donor-acceptor cyclopropanes: synthesis of γ-sulfoximino malonic diesters. Org Biomol Chem 2022; 20:2518-2529. [PMID: 35266938 DOI: 10.1039/d2ob00213b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium triflate (Sc(OTf)3) catalyzed, mild, and regioselective ring-opening reaction of donor-acceptor (D-A) cyclopropanes has been developed using sulfoximines for the synthesis of γ-sulfoximino malonic diesters. This protocol allows the synthesis of different N-alkyl sulfoximines in good to excellent yields (up to 94%) with broad functional group tolerance. In this process, N-H and C-C bonds are cleaved to form new C-N and C-H bonds. The feasibility of this method is supported by a gram-scale reaction and synthetic elaboration of the obtained product.
Collapse
Affiliation(s)
- Satish G More
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gurunath Suryavanshi
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
25
|
Tian FX, Qu J. Studies on the Origin of the Stabilizing Effects of Fluorinated Alcohols and Weakly Coordinated Fluorine-Containing Anions on Cationic Reaction Intermediates. J Org Chem 2022; 87:1814-1829. [PMID: 35020378 DOI: 10.1021/acs.joc.1c02361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many synthetic methods that use fluorinated alcohols as solvents have been reported, and the fluorinated alcohols have been found to be crucial to the success of these methods. In addition, there have been reports indicating that adding a weakly coordinated fluorine-containing anion, such as BF4-, PF6-, or SbF6-, to fluorinated alcohols can improve yields. The boosting effect of fluorinated alcohols is attributed mainly to hydrogen bond activation. A few studies have suggested that the very polar fluorinated alcohols can stabilize cationic reaction intermediates. However, how they do so and why weakly coordinated fluorine-containing anions improve yields have not been studied in depth. Here, we used quaternary ammonium cations, a quaternary phosphonium cation, and a triaryl-substituted carbocation as models for short-lived cationic intermediates and studied the possible interactions of these cations with fluorinated alcohols and BF4-, PF6-, or SbF6-. On the basis of the results, we propose that the C-F dipoles of fluorinated alcohols and the E-F dipoles (where E is B, P, or Sb) of weakly coordinated fluorine-containing anions stabilized these cations by intermolecular charge-dipole interactions. We deduced that in the same fashion the C-F and E-F dipoles can thermodynamically stabilize cationic reaction intermediates.
Collapse
Affiliation(s)
- Feng-Xian Tian
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin Qu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Zheng Y, Fang X, Deng WH, Zhao B, Liao RZ, Xie Y. Direct activation of alcohols via perrhenate ester formation for an intramolecular dehydrative Friedel–Crafts reaction. Org Chem Front 2022. [DOI: 10.1039/d2qo00229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and highly efficient intramolecular dehydrative Friedel–Crafts reactions via Re2O7 mediated hydroxyl group activation is described for the syntheses of tetrahydronaphthalene, tetrahydroquinoline, tetrahydroisoquinoline, chromane, and isochromane derivatives.
Collapse
Affiliation(s)
- Yuzhu Zheng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiong Fang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Hao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bin Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Youwei Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
27
|
Shirsath SR, Chandgude SM, Muthukrishnan M. Iron catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols with p-quinone methides: new access to γ,γ-diaryl ketones. Chem Commun (Camb) 2021; 57:13582-13585. [PMID: 34846388 DOI: 10.1039/d1cc05997a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An iron(III) catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols to p-quinone methides leading to γ,γ-diaryl ketones has been described. This catalytic protocol provides a novel and efficient method to access γ,γ-diaryl ketone derivatives in good to excellent yields with high functional group tolerance. Importantly, γ,γ-diaryl ketone can be further functionalized to give a versatile set of useful products.
Collapse
Affiliation(s)
- Sachin R Shirsath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar M Chandgude
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Lewis-Acid-Catalyzed (3+2)-Cycloadditions of Donor-Acceptor Cyclopropanes with Thioketenes. European J Org Chem 2021; 2021:6250-6253. [PMID: 35875264 PMCID: PMC9290834 DOI: 10.1002/ejoc.202100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/28/2021] [Indexed: 11/06/2022]
Abstract
The reactivity of donor-acceptor (D-A) cyclopropanes towards thioketenes was investigated. In a (3+2)-cycloaddition using Sc(OTf)3 as a Lewis acidic catalyst, the corresponding exocyclic thioenol ethers (2-methylidene tetrahydrothiophenes) were formed in moderate to good yields. Unsymmetrical thioketenes provided E/Z mixtures at the double bond, with the Z isomer being preferred.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- University of ŁodźDepartment of Organic & Applied ChemistryTamka 1291-403ŁodźPoland
| | - Mateusz Kowalczyk
- University of ŁodźDepartment of Organic & Applied ChemistryTamka 1291-403ŁodźPoland
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
29
|
Sergeev PG, Novikov RA, Tomilov YV. Lewis Acid‐Catalyzed Formal (4+2)‐ and (2+2+2)‐Cycloaddition Between 1‐Azadienes and Styrylmalonates as Analogues of Donor‐Acceptor Cyclopropanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pavel G. Sergeev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Yury V. Tomilov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
30
|
Norjmaa G, Ujaque G, Lledós A. Beyond Continuum Solvent Models in Computational Homogeneous Catalysis. Top Catal 2021. [DOI: 10.1007/s11244-021-01520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractIn homogeneous catalysis solvent is an inherent part of the catalytic system. As such, it must be considered in the computational modeling. The most common approach to include solvent effects in quantum mechanical calculations is by means of continuum solvent models. When they are properly used, average solvent effects are efficiently captured, mainly those related with solvent polarity. However, neglecting atomistic description of solvent molecules has its limitations, and continuum solvent models all alone cannot be applied to whatever situation. In many cases, inclusion of explicit solvent molecules in the quantum mechanical description of the system is mandatory. The purpose of this article is to highlight through selected examples what are the reasons that urge to go beyond the continuum models to the employment of micro-solvated (cluster-continuum) of fully explicit solvent models, in this way setting the limits of continuum solvent models in computational homogeneous catalysis. These examples showcase that inclusion of solvent molecules in the calculation not only can improve the description of already known mechanisms but can yield new mechanistic views of a reaction. With the aim of systematizing the use of explicit solvent models, after discussing the success and limitations of continuum solvent models, issues related with solvent coordination and solvent dynamics, solvent effects in reactions involving small, charged species, as well as reactions in protic solvents and the role of solvent as reagent itself are successively considered.
Collapse
|
31
|
Saha D, Maajid Taily I, Banerjee P. Electricity Driven 1,3‐Oxohydroxylation of Donor‐Acceptor Cyclopropanes: a Mild and Straightforward Access to β‐Hydroxy Ketones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Debarshi Saha
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| | - Irshad Maajid Taily
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| | - Prabal Banerjee
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar Punjab 140001
| |
Collapse
|
32
|
Vartanova AE, Levina II, Rybakov VB, Ivanova OA, Trushkov IV. Donor-Acceptor Cyclopropane Ring Opening with 6-Amino-1,3-dimethyluracil and Its Use in Pyrimido[4,5- b]azepines Synthesis. J Org Chem 2021; 86:12300-12308. [PMID: 34382810 DOI: 10.1021/acs.joc.1c01064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A scandium trifluoromethanesulfonate-catalyzed reaction of donor-acceptor cyclopropanes with 6-amino-1,3-dimethyluracil was found to proceed as three-membered ring opening via nucleophilic attack of the C(5) atom of an ambident nucleophile serving as an enamine equivalent. It was shown that, under basic conditions, the obtained products underwent cyclization to 6,7-dihydro-1H-pyrimido[4,5-b]azepine-2,4,8-triones, an interesting subclass of nucleobase analogues.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Faculty of Science, RUDN University, Miklukho-Maklaya 6, Moscow 117198, Russian Federation
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Laboratory of Chemical Synthesis, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| |
Collapse
|
33
|
Dual XH-π Interaction of Hexafluoroisopropanol with Arenes. Molecules 2021; 26:molecules26154558. [PMID: 34361719 PMCID: PMC8347120 DOI: 10.3390/molecules26154558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The dual XH (OH and CH) hydrogen-bond-donating property of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and the strong dual XH-π interaction with arenes were firstly disclosed by theoretical studies. Here, the high accuracy post-Hartree-Fock methods, CCSD(T)/CBS, reveal the interaction energy of HFIP/benzene complex (-7.22 kcal/mol) and the contribution of the electronic correlation energy in the total interaction energy. Strong orbital interaction between HFIP and benzene was found by using the DFT method in this work to disclose the dual XH-π intermolecular orbital interaction of HFIP with benzene-forming bonding and antibonding orbitals resulting from the orbital symmetry of HFIP. The density of states and charge decomposition analyses were used to investigate the orbital interactions. Isopropanol (IP), an analogue of HFIP, and chloroform (CHCl3) were studied to compare them with the classical OH-π, and non-classical CH-π interactions. In addition, the influence of the aggregating effect of HFIP, and the numbers of substituted methyl groups in benzene rings were also studied. The interaction energies of HFIP with the selected 24 common organic compounds were calculated to understand the role of HFIP as solvent or additive in organic transformation in a more detailed manner. A single-crystal X-ray diffraction study of hexafluoroisopropyl benzoate further disclosed and confirmed that the CH of HFIP shows the non-classical hydrogen-bond-donating behavior.
Collapse
|
34
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. Transition-Metal-Free [3+2] Dehydration Cycloaddition of Donor-Acceptor Cyclopropanes With 2-Naphthols. Front Chem 2021; 9:711257. [PMID: 34336794 PMCID: PMC8322234 DOI: 10.3389/fchem.2021.711257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
A Brønsted acid-catalyzed domino ring-opening cyclization transformation of donor-acceptor (D-A) cyclopropanes and 2-naphthols has been developed. This formal [3+2] cyclization reaction provided novel and efficient access to the naphthalene-fused cyclopentanes in the absence of any transition-metal catalysts or additives. This robust procedure was completed smoothly on a gram-scale to afford the corresponding product with comparable efficiency. Furthermore, the synthetic application of the prepared product has been demonstrated by its transformation into a variety of synthetically useful molecules.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
35
|
Kolb S, Ahlburg NL, Werz DB. Friedel-Crafts-Type Reactions with Electrochemically Generated Electrophiles from Donor-Acceptor Cyclopropanes and -Butanes. Org Lett 2021; 23:5549-5553. [PMID: 34231368 DOI: 10.1021/acs.orglett.1c01890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a general electrochemical method to functionalize donor-acceptor (D-A) cyclopropanes and -butanes with arenes utilizing Friedel-Crafts-type reactivity. The catalyst-free strategy relies on the direct anodic oxidation of the strained carbocycles, which leads after C(sp3)-C(sp3) cleavage to radical cations that act as electrophiles for the arylation reaction. Broad reaction scopes in regard to cyclopropanes, cyclobutanes, and aromatic reaction partners are presented. Additionally, a plausible electrolysis mechanism is proposed.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Nils L Ahlburg
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
36
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor-Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp 3 )-C(sp 3 ) Cleavage Mode. Angew Chem Int Ed Engl 2021; 60:15928-15934. [PMID: 33890714 PMCID: PMC8362004 DOI: 10.1002/anie.202101477] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Indexed: 12/03/2022]
Abstract
We describe the first electrochemical activation of D-A cyclopropanes and D-A cyclobutanes leading after C(sp3 )-C(sp3 ) cleavage to the formation of highly reactive radical cations. This concept is utilized to formally insert molecular oxygen after direct or DDQ-assisted anodic oxidation of the strained carbocycles, delivering β- and γ-hydroxy ketones and 1,2-dioxanes electrocatalytically. Furthermore, insights into the mechanism of the oxidative process, obtained experimentally and by additional quantum-chemical calculations are presented. The synthetic potential of the reaction products is demonstrated by diverse derivatizations.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Martin Petzold
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Felix Brandt
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph R. Jacob
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
37
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor–Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp
3
)−C(sp
3
) Cleavage Mode. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Martin Petzold
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Felix Brandt
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
38
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. The Regioselective Functionalization Reaction of Unprotected Carbazoles with Donor-Acceptor Cyclopropanes. J Org Chem 2021; 86:9189-9199. [PMID: 34111921 DOI: 10.1021/acs.joc.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regioselective functionalization reaction of unprotected carbazoles with donor-acceptor (D-A) cyclopropanes has been demonstrated for the first time. With Sc(OTf)3 as Lewis acid catalyst, the N-H functionalization of carbazoles takes place through a highly selective nitrogen-initiated nucleophilic ring opening reaction. Significantly, by engaging TfOH as Brønsted acid catalyst, a straightforward C-H functionalization at the 3-position of the unprotected carbazole proceeds via Friedel-Crafts-type addition. This strategy facilitates the diversity-oriented synthesis of carbazole-containing heterocycles and expands the novel application of D-A cyclopropanes.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
39
|
Piperidine‐Mediated [3+2] Cyclization of Donor‐Acceptor Cyclopropanes and β‐Nitrostyrenes: Access to Polysubsituted Cyclopentenes with High Diastereoselectivity. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Wang S, Force G, Carpentier JF, Sarazin Y, Bour C, Gandon V, Lebœuf D. Modular Synthesis of 9,10-Dihydroacridines through an ortho-C Alkenylation/Hydroarylation Sequence between Anilines and Aryl Alkynes in Hexafluoroisopropanol. Org Lett 2021; 23:2565-2570. [PMID: 33724043 DOI: 10.1021/acs.orglett.1c00487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
9,10-Dihydroacridines are frequently encountered as key scaffolds in OLEDs. However, accessing those compounds from feedstock precursors typically requires multiple steps. Herein, a modular one-pot synthesis of 9,10-dihydroacridine frameworks is achieved through a reaction sequence featuring a selective ortho-C alkenylation of diarylamines with aryl alkynes followed by an intramolecular hydroarylation of the olefin formed as an intermediate. This transformation was accomplished by virtue of the combination of hexafluoroisopropanol and triflimide as a catalyst that triggers the whole process.
Collapse
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France.,The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Jean-François Carpentier
- Université Rennes, CNRS UMR 6226, Institut des Sciences Chimiques de Rennes (ISCR), 35000 Rennes, France
| | - Yann Sarazin
- Université Rennes, CNRS UMR 6226, Institut des Sciences Chimiques de Rennes (ISCR), 35000 Rennes, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
41
|
Ghosh K, Das S. Recent advances in ring-opening of donor acceptor cyclopropanes using C-nucleophiles. Org Biomol Chem 2021; 19:965-982. [PMID: 33471020 DOI: 10.1039/d0ob02437f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ring-opening transformations of donor-acceptor cyclopropanes (DAC) with carbon-centered nucleophiles is a simple, straight-forward approach to 1,3-bifunctional compounds that has witnessed remarkable progress over the past several years. To date, different reactivity patterns of DACs have been successfully exploited in racemic/stereoselective syntheses of various acyclic compounds or carbocycles with an impressive structural diversity. The thriving strategies have been successfully utilized in multistep synthesis of complex target molecules. Herein, the recent advances (2015-present) in the ring-opening of DAC involving electron rich arenes and indoles, active methylene compounds, various dipolarophiles, organoborates/boronates, vinyl ethers etc. following Friedel-Crafts alkylation, annulation/formal cycloaddition reaction, organocatalytic reaction, Nazarov cyclisation etc. are presented.
Collapse
Affiliation(s)
- Koena Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India.
| | - Subhomoy Das
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
42
|
Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1-Methylimidazolium Thiocyanate. Angew Chem Int Ed Engl 2021; 60:7927-7934. [PMID: 33433034 PMCID: PMC8048580 DOI: 10.1002/anie.202016593] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 02/06/2023]
Abstract
We propose a new concept of the triple role of protic ionic liquids with nucleophilic anions: a) a regenerable solvent, b) a Brønsted acid inducing diverse transformations via general acid catalysis, and c) a source of a nucleophile. The efficiency of this strategy was demonstrated using thiocyanate-based protic ionic liquids for the ring-opening of donor-acceptor cyclopropanes. A wide variety of activated cyclopropanes were found to react with 1-methylimidazolium thiocyanate under mild metal-free conditions via unusual nitrogen attack of the ambident thiocyanate ion on the electrophilic center of the three-membered ring affording pyrrolidine-2-thiones bearing donor and acceptor substituents at the C(5) and C(3) atoms, respectively, in a single time-efficient step. The ability of 1-methylimidazolium thiocyanate to serve as a triplex reagent was exemplarily illustrated by (4+2)-annulation with 1-acyl-2-(2-hydroxyphenyl)cyclopropane, epoxide ring-opening and other organic transformations.
Collapse
Affiliation(s)
- Ivan A. Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
| | - Nina K. Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Olga A. Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
- Department of ChemistryLomonosov Moscow State UniversityLeninskie Gory 1–3119991MoscowRussian Federation
| | - Irina I. Levina
- Institute of Biochemical PhysicsRussian Academy of SciencesKosygina 4119334MoscowRussian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
- Faculty of ScienceRUDN UniversityMiklukho-Maklaya 6117198MoscowRussian Federation
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Igor V. Trushkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
| |
Collapse
|
43
|
Borisova IA, Ratova DMV, Potapov KV, Tarasova AV, Novikov RA, Tomilov YV. "Cyclopropanation of Cyclopropanes": GaCl 3-Mediated Ionic Cyclopropanation of Donor-Acceptor Cyclopropanes with Diazo Esters as a Route to Tetrasubstituted Activated Cyclopropanes. J Org Chem 2021; 86:4567-4579. [PMID: 33661016 DOI: 10.1021/acs.joc.0c02983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new ionic cyclopropanation process involving the addition of diazo esters to donor-acceptor cyclopropanes (DAC) activated by GaCl3 has been developed. The reactions occur via 1,2-zwitterionic gallium complexes with elimination of nitrogen in all cases to give 1,1,2,3-tetrasubstituted cyclopropanes as the main products. Also, a number of related processes with the formation of various polysubstituted cyclopropanes, alkenes, and cyclobutanes, including products of multiple diazo ester addition, have been developed. Obtained by the developed method tetrasubstituted cyclopropanes are activated cyclopropanes such as DAC and can be used for further synthesis in this capacity. Their new reaction with benzaldehyde promoted by TiCl4 and involving one of the additional functional groups has been demonstrated, which leads to five-membered lactones. The mechanisms of the occurring processes, as well as the structures and stereochemistry of a rich range of products formed, are discussed in detail.
Collapse
Affiliation(s)
- Irina A Borisova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Daria-Maria V Ratova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Konstantin V Potapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Anna V Tarasova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| |
Collapse
|
44
|
Augustin AU, Werz DB. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry. Acc Chem Res 2021; 54:1528-1541. [PMID: 33661599 DOI: 10.1021/acs.accounts.1c00023] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) cyclopropanes have gained increased momentum over the past two decades. The use of these highly strained three-membered entities paved the way to innovative and original transformations yielding complex cyclic and acyclic architectures that otherwise might be difficult to address. Since the fundamentals were laid by Wenkert and Reissig in the late 1970s, the field has flourished impressively including asymmetric transformations as well as elegant synthetic applications in the construction of natural occurring products. In this Account, we aim to highlight especially our efforts in the context of an efficient access to sulfur- and selenium-containing compounds, of either cyclic or open-chain nature, by exploiting D-A cyclopropane chemistry. Light will be shed on the three fundamental transformations: ring-opening reactions, cycloadditions, and rearrangements.Our synthetic endeavors started back in 2011 guided by quantum chemical studies to obtain 3,3'-linked bisthiophenes along with an unprecedented rearrangement delivering sulfur- and selenium-containing cagelike scaffolds. Inspired by these surprising results, we further deepened our efforts to the construction of new sulfur-carbon and selenium-carbon bonds within the context of D-A cyclopropane chemistry. In the first instance, we capitalized on the great versatility of organosulfur and organoselenium compounds regarding their amphiphilic character to act either as nucleophilic or as electrophilic species. By such an approach, ring-openings via a nucleophilic attack of sulfenyl and selenyl halides furnished 1,3-bishalochalcogenated products. A similar protocol led us to a desymmetrization reaction of meso-cyclopropyl carbaldehydes employing novel chiral imidazolidinone organocatalysts. In contrast, electrophilic sulfur was supplied by N-(arylthio)succinimide substrates to access thiolated γ-amino acid derivatives and their selenium equivalents.Combining the highly reactive thiocarbonyl compounds and vicinal donor-acceptor substituted cyclopropanes opened new vistas in the field of atom-economic cycloaddition reactions to build up sulfur-containing heterocycles of various sizes. The first systematic study of such transformations was made by our group in 2017 leading to highly decorated thiolanes, whereas an intramolecular approach furnished thia-[n.2.1]bicyclic ring systems. Our investigations were then successfully extended to the synthesis of tetrahydroselenophenes by using capricious selenoketones. Recently, we were able to yield the unsaturated analogues, selenophenes, by a (3 + 2)-cycloaddition of D-A cyclopropanes with ammonium selenocyanates followed by oxidation. The formal insertion of thioketenes was realized by employing 3-thioxocyclobutanones as surrogates for disubstituted thioketenes to obtain 2-substituted tetrahydrothiophenes bearing a semicyclic double bond via a (3 + 2) spiroannulation/(2 + 2) cycloreversion sequence. Even the formation of seven-membered S-heterocycles was realized by (4 + 3)-cycloaddition processes. In 2016, we demonstrated the synthesis of benzo-fused dithiepines from in situ generated ortho-bisthioquinones, whereas the utilization of thia-Michael systems as a hetero-4π-component delivered tetrahydrothiepine derivatives containing just one sulfur atom embedded in the ring system.
Collapse
Affiliation(s)
- André U. Augustin
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
45
|
Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1‐Methylimidazolium Thiocyanate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ivan A. Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela 1 117997 Moscow Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
| | - Nina K. Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela 1 117997 Moscow Russian Federation
| | - André U. Augustin
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Olga A. Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
- Department of Chemistry Lomonosov Moscow State University Leninskie Gory 1–3 119991 Moscow Russian Federation
| | - Irina I. Levina
- Institute of Biochemical Physics Russian Academy of Sciences Kosygina 4 119334 Moscow Russian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
- Faculty of Science RUDN University Miklukho-Maklaya 6 117198 Moscow Russian Federation
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Igor V. Trushkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela 1 117997 Moscow Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
| |
Collapse
|
46
|
Ahlburg NL, Freese T, Kolb S, Mummel S, Schmidt A, Werz DB. Functionalization of Sydnones with Donor‐Acceptor Cyclopropanes, Cyclobutanes, and Michael Acceptors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Tyll Freese
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Simon Kolb
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Sebastian Mummel
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstraße 6 38678 Clausthal-Zellerfeld Germany
| | - Andreas Schmidt
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstraße 6 38678 Clausthal-Zellerfeld Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
47
|
Marichev KO, Wang K, Greco N, Dong K, Chen J, Lei J, Doyle MP. Strain-Induced Nucleophilic Ring Opening of Donor-Acceptor Cyclopropenes for Synthesis of Monosubstituted Succinic Acid Derivatives. Chemistry 2021; 27:340-347. [PMID: 32853426 DOI: 10.1002/chem.202003427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Indexed: 01/05/2023]
Abstract
1,2,3-Trisubstituted donor-acceptor cyclopropenes (DACPs) generated in situ from enoldiazo compounds react with nucleophiles to form α-substituted succinic acid derivatives in high yields. Initial dirhodium(II) carboxylate catalysis rapidly converts enoldiazo-acetates or -acetamides to DACPs that undergo catalyst-free Favorskii ring opening with amines, and also with anilines, alcohols, and thiols, when facilitated by catalytic amounts of 4-dimethylaminopyridine (DMAP). This methodology provides easy access to mixed esters and amides of monosubstituted succinic acids, including derivatives of naturally occurring compounds. It also affords dihydrazide, dihydroxamic acid, and diamide derivatives, as well as α-substituted tetrahydropyridazine-3,6-diones in high yields. Attempts to generate optically enriched DACPs were not successful because their populations having the R and S configurations formed with a chiral dirhodium catalyst are quite similar, and the loss of enantiocontrol likely originates from the DACP ring forming step which is reversible with its intermediate metal carbene.
Collapse
Affiliation(s)
- Kostiantyn O Marichev
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicole Greco
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Jinzhou Chen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guang Zhou, 510006, P. R. China
| | - Jinping Lei
- School of Pharmaceutical Science, Sun Yat-Sen University, Guang Zhou, 510006, P. R. China
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
48
|
Wang Y, Qiao Y, Lan Y, Wei D. Predicting the origin of selectivity in NHC-catalyzed ring opening of formylcyclopropane: a theoretical investigation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01768j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using density functional theory, we investigated the origin of selectivity in the N-heterocyclic carbene (NHC)-catalyzed transformation of formylcyclopropane with an alkylidene oxindole.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yu Lan
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
49
|
Manel A, Berreur J, Leroux FR, Panossian A. Electrophilic fluorosulfoxonium cations as hidden Brønsted acid catalysts in ( n + 2) annulations of strained cycloalkanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00840d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fluorosulfoxonium cation and triflic acid were shown to promote (n + 2) annulations of donor–acceptor cyclopropanes or -butanes with 1,2-dipoles, with different activity and selectivity but a presumed similar role as (hidden) Brønsted acids.
Collapse
Affiliation(s)
- Augustin Manel
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, 67000 Strasbourg, France
| | - Jordan Berreur
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, 67000 Strasbourg, France
| | - Frédéric R. Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, 67000 Strasbourg, France
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, 67000 Strasbourg, France
| |
Collapse
|
50
|
Potapov KV, Denisov DA, Glushkova VV, Novikov RA, Tomilov YV. Donor-Acceptor Bicyclopropyls as 1,6-Zwitterionic Intermediates: Synthesis and Reactions with 4-Phenyl-1,2,4-triazoline-3,5-dione and Terminal Acetylenes. J Org Chem 2020; 85:15562-15576. [PMID: 33175521 DOI: 10.1021/acs.joc.0c02293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bicyclopropyl system activated by incorporation of donor and acceptor groups in the presence of Lewis acids was used as a synthetic equivalent of 1,6-zwitterions. Opening of both cyclopropane rings in 2'-aryl-1,1'-bicyclopropyl-2,2-dicarboxylates (D-A bicyclopropyl, ABCDs) in the presence of GaI3 + Bu4N+GaI4- results in 5-iodo-5-arylpent-2-enylmalonates as products of HI formal 1,6-addition to the bicyclopropyl system. The use of GaCl3 or GaBr3 as a Lewis acid and terminal aryl or alkyl acetylenes as 1,6-zwitterion interceptors allows the alkyl substituent to be grown to give the corresponding acyclic 7-chloro(bromo)-hepta-2,6-dienylmalonates. The reaction of ABCDs with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) catalyzed by Yb(OTf)3 also results in the opening of both cyclopropane rings. The reaction products are tetrahydropyridazine derivatives - (7,9-dioxo-1,6,8-triazabicyclo[4.3.0]non-3-en-2-ylmethyl)malonates - containing one more PTAD moiety in the malonyl group.
Collapse
Affiliation(s)
- Konstantin V Potapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| | - Dmitry A Denisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| | - Valeriia V Glushkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| |
Collapse
|