1
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
2
|
Aslam M, Akhtar MS, Lim HN, Seo JH, Lee YR. Recent advances in the transformation of maleimides via annulation. Org Biomol Chem 2025; 23:269-291. [PMID: 39545834 DOI: 10.1039/d4ob01632g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the past five years, maleimide scaffolds have gained considerable attention in organic synthesis for their role in forming cyclized molecules through annulation and C-H activation. As versatile and reactive coupling agents, maleimides have enabled the efficient synthesis of various cyclized products, including annulation, benzannulation, cycloaddition, and spirocyclization, with applications in medicinal chemistry, drug discovery, and materials science. Despite the extensive study of maleimide chemistry, certain reactions-such as cycloaddition-based annulation, photoannulation, and electrochemical transformations-remain underexplored despite their promising potential in the pharmaceutical and chemical industries. Recent advancements, such as photocatalysis and electrochemical methods, have expanded the utility of maleimides, providing more sustainable and selective approaches for synthesizing complex molecules. This review compiles research published between 2019 and 2024, highlighting the substrate scope, reaction diversity, and industrial relevance of maleimide-based annulation strategies. Additionally, we discuss emerging trends and future directions in maleimide chemistry, exploring opportunities for novel reaction pathways and broader applications in synthetic biology and materials science.
Collapse
Affiliation(s)
- Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Long L, Wang W, Zhu Y, Luo W, Zhang Y, Chen J, Wei Y, Chen Z. Benzannulation with Et 3N as 1,3-Diene Variants. Org Lett 2023; 25:7775-7779. [PMID: 37874959 DOI: 10.1021/acs.orglett.3c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
With triethylamine as a 1,3-diene variant, a simple and practical process for the synthesis of phthalimides has been developed from readily available maleimide. The transformation can be performed in the absence of a metal catalyst with high levels of functional group tolerance. Various phthalimide compounds were constructed in moderate to good yields under mild conditions. Mechanism research indicates that oxygen and acid also play crucial roles in this reaction.
Collapse
Affiliation(s)
- Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Wenjia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Yuping Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Yi Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Juxiu Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Yuting Wei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China
| |
Collapse
|
4
|
Yousefnejad F, Gholami F, Larijani B, Mahdavi M. Oxime Esters: Flexible Building Blocks for Heterocycle Formation. Top Curr Chem (Cham) 2023; 381:17. [PMID: 37202650 DOI: 10.1007/s41061-023-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Oxime esters as the applicable building blocks, internal oxidizing agents, and directing groups in the synthesis of -, S-, and O-containing heterocycle scaffolds have gained great attention in the last decade. This review provides an overview of recent advances in the cyclization of oxime esters with various functional group reagents under transition metal and transition metal-free catalyzed conditions. Moreover, the mechanistic aspects of these protocols are explained in detail.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Gholami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li YL, Yu N, He KC, Zhou YQ, Zheng WH, Jiang K, Wei Y. Skeletal Transformation of Oxindoles into Quinolinones Enabled by Synergistic Copper/Iminium Catalysis. J Org Chem 2023; 88:4863-4874. [PMID: 36946256 DOI: 10.1021/acs.joc.3c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
We describe a synergistic Cu/secondary amine catalysis for skeletal transformation of an oxindole core into a quinolinone skeleton, which generates several structurally new pyridine-fused quinolinones. The synergistic reactions allow expansion of a five-membered lactam ring by radical cation-triggered C-C bond cleavage and enable a further intramolecular cyclization with the aim to construct totally distinct core skeletons.
Collapse
Affiliation(s)
- Yu-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ning Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kui-Cheng He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Qiang Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei-Hao Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ye Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Li N, Hu B, Zhang X, Fan X. Selective Construction of Spiro or Fused Heterocyclic Scaffolds via One-pot Cascade Reactions of 1-Arylpyrazolidinones with Maleimides. J Org Chem 2023; 88:60-74. [PMID: 36563107 DOI: 10.1021/acs.joc.2c01756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Presented herein is a controllable selective construction of spiro or fused heterocyclic scaffolds through the one-pot cascade reactions of 1-phenylpyrazolidinones with maleimides. To be specific, succinimide spiro pyrazolo[1,2-a]pyrazolones were effectively formed via [4 + 1] spiroannulation of 1-phenylpyrazolidinones with maleimides through simultaneous C(sp2)-H bond activation/functionalization and intramolecular cyclization along with the traceless fusion of the pyrazolidinonyl unit into the final product. In this reaction, air acts as a cost-effective and environmentally sustainable oxidant to assist the regeneration of the Rh(III) catalyst. Alternatively, succinimide-fused pyrazolidinonylcinnolines were formed from the same starting materials through an initial [4 + 1] spiroannulation followed by base-promoted skeleton rearrangement of the in situ formed spiro product without isolation. Notable features of these protocols include easily tunable selectivity, broad substrate scope, cost-effective and sustainable oxidant, excellent atom economy, and facile scalability.
Collapse
Affiliation(s)
- Na Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bing Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Wang Y, Jiang Y, Zhang X, Fan X. Synthesis of 1,3-benzooxazine spirosuccinimides through the cascade reaction of 2-phenoxy-1H-benzo[d]imidazoles with maleimides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
9
|
Li J, Li YA, Wu G, Zhang X. Metal-Free Aminohalogenation of Quinones With Alkylamines and NXS at Room Temperature. Front Chem 2022; 10:917371. [PMID: 35707457 PMCID: PMC9189915 DOI: 10.3389/fchem.2022.917371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
A simple and practical strategy for intermolecular aminohalogenation of quinone with alkyl amines and NXS was developed, in which haloamines generated in situ were employed as bifunctional reagents. The reaction system is reliable, efficient and wide in substrate range, which is suitable for the two-fold aminochlorination of 1, 4-benzoquinones, large-scale reaction and late-stage modification of pharmaceuticals.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-An Li
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yu-An Li, ; Ge Wu,
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yu-An Li, ; Ge Wu,
| | - Xu Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Zheng TY, Zhou YQ, Yu N, Li YL, Wei T, Peng L, Ling Y, Jiang K, Wei Y. Deconstructive Insertion of Oximes into Coumarins: Modular Synthesis of Dihydrobenzofuran-Fused Pyridones. Org Lett 2022; 24:2282-2287. [PMID: 35319216 DOI: 10.1021/acs.orglett.2c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of a copper catalyst, a series of oximes undergo deconstructive insertion into coumarins to afford structurally interesting dihydrobenzofuran-fused pyridones in moderate to good yields with good functional group compatibility. The reaction likely involves a radical relay annulation, leading to the ring opening of the lactone moiety of the coumarins, and simultaneous formation of three new bonds. The investigation of photoluminescent properties reveals that several obtained compounds may have potential as fluorescent materials.
Collapse
Affiliation(s)
- Ting-Yu Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tao Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lan Peng
- Basic Department, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yu Ling
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ye Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
12
|
Ma C, Wang Y, Chen G, Li J, Jiang Y, Zhang X, Fan X. Divergent construction of 3-(indol-2-yl)succinimide/maleimide and fused benzodiazepine skeletons from 2-(1 H-indol-1-yl)anilines and maleimides. Org Chem Front 2022. [DOI: 10.1039/d2qo00779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent construction of 3-(indol-2-yl)succinimide/maleimide and indoyl/pyrrolyl fused benzodiazepine skeletons from 2-(1H-indol-1-yl)anilines and maleimides is presented.
Collapse
Affiliation(s)
- Chunhua Ma
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingyi Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Jiang K, Li SJ, Liu QP, Yu N, Li YL, Zhou YQ, He KC, Lin J, Zheng TY, Lang J, Lan Y, Wei Y. Iminyl radical-triggered relay annulation for the construction of bridged aza-tetracycles bearing four contiguous stereogenic centers. Chem Sci 2022; 13:7283-7288. [PMID: 35799821 PMCID: PMC9214848 DOI: 10.1039/d2sc01548j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Bridged tetracyclic nitrogen scaffolds are found in numerous biologically active molecules and medicinally relevant structures. Traditional methods usually require tedious reaction steps, and/or the use of structurally specific starting materials. We report an unprecedented, iminyl radical-triggered relay annulation from oxime-derived peresters and azadienes, which shows good substrate scope and functional group compatibility, and can deliver various bridged aza-tetracyclic compounds with complex molecular topology and four contiguous stereogenic centers (dr > 19 : 1) in a single operation. This transformation represents the first example of trifunctionalization of iminyl radicals through simultaneous formation of one C–N and two C–C bonds. DFT calculation studies were conducted to obtain an in-depth insight into the reaction pathways, which revealed that the reactions involved an interesting 1,6-hydrogen atom transfer process. A novel radical relay annulation is realized for the construction of various bridged aza-tetracyclic compounds with complex molecular topology and four contiguous stereogenic centers (dr > 19 : 1) in a single operation.![]()
Collapse
Affiliation(s)
- Kun Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shi-Jun Li
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qing-Peng Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kui-Cheng He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ting-Yu Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jian Lang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu Lan
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ye Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
14
|
Tarigopula C, Manojveer S, Balamurugan R. Synthesis of Highly Substituted Biaryls by the Construction of a Benzene Ring via In Situ Formed Acetals. J Org Chem 2021; 86:11871-11883. [PMID: 34425048 DOI: 10.1021/acs.joc.1c01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we present an interesting method for the construction of a benzene ring using propargylic alcohols and 1,3-dicarbonyls, which involves three new C-C bond formations via cascade alkylation, formylation, annulation, and aromatization to make substituted biaryls. This one-pot Brønsted acid-promoted protocol utilizes the unique reactivity of the acetal formed under the reaction conditions. Alkynyl methyl ketones could be employed instead of 1,3-dicarbonyls as they are converted to 1,3-dicarbonyls by hydration under the reaction conditions.
Collapse
|
15
|
Karishma P, Mandal SK, Sakhuja R. Rhodium‐Catalyzed Spirocyclization of Maleimide with
N
‐Aryl‐2,3‐dihydrophthalazine‐1,4‐dione to Access Pentacyclic Spiro‐Succinimides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
16
|
Hu B, Chen G, Zhao J, Xue L, Jiang Y, Zhang X, Fan X. Synthesis of Succinimide Spiro-Fused Sultams from the Reaction of N-(Phenylsulfonyl)acetamides with Maleimides via C(sp 2)-H Activation. J Org Chem 2021; 86:10330-10342. [PMID: 34288686 DOI: 10.1021/acs.joc.1c01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein is an effective preparation of succinimide spiro-fused sultams through the coupling reaction of N-(phenylsulfonyl)acetamides with maleimides. It is deduced that this reaction should proceed through a cascade process including Rh(III)-catalyzed C(sp2)-H bond cleavage of N-(phenylsulfonyl)acetamide, maleimide double bond insertion into the C-Rh bond, β-hydride elimination, reductive elimination, and intramolecular aza-Michael addition. Notably, this cascade procedure features simultaneous annulation and spirocyclization through traceless fusion of the directing group into target product by using air as an economical oxidant to assist the regeneration of the active Rh(III) catalyst. This new method has several advantages including readily accessible starting materials with broad scope, significantly reduced synthetic steps, redox-neutral conditions, high atom-economy, and sustainability.
Collapse
Affiliation(s)
- Bing Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lian Xue
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Zhou X, Yao Y, Wang C, Xu Y, Zhang W, Ma Y, Wu G. Haloamines as Bifunctional Reagents for Oxidative Aminohalogenation of Maleimides. Org Lett 2021; 23:3669-3673. [PMID: 33845578 DOI: 10.1021/acs.orglett.1c01052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented copper-catalyzed oxidative aminohalogenation of electron-deficient maleimides with secondary amines and NXS (X = Cl, Br, I) was developed, in which the N-X bonds generated in situ were used as difunctionalized reagents. The distinctive features of this multicomponent reaction include a simple green catalytic system, a spectral substrate range, and the late-stage modification of drug molecules. Most importantly, this umpolung radical cascade strategy exploits the in situ formation of N-iodoamines that enable efficient alkene aminoiodination.
Collapse
Affiliation(s)
- Xueying Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yujing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Caihong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yaling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Wenliang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
18
|
Krylov IB, Segida OO, Budnikov AS, Terent'ev AO. Oxime‐Derived Iminyl Radicals in Selective Processes of Hydrogen Atom Transfer and Addition to Carbon‐Carbon π‐Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander S. Budnikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
19
|
Alizadeh A, Farajpour B, Knedel TO, Janiak C. Synthesis of Substituted Phthalimides via Ultrasound-Promoted One-Pot Multicomponent Reaction. J Org Chem 2021; 86:574-580. [PMID: 33226238 DOI: 10.1021/acs.joc.0c02245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel strategy for the straightforward synthesis of substituted phthalimides is described, which includes base-mediated Michael addition/intramolecular cyclization/[1,5]-H shift/cleavage of CS2/aromatization/nucleophilic acyl substitution reaction of 2-(4-oxo-2-thioxothiazolidin-5-ylidene)acetates and α,α-dicyanoolefines under ultrasound (US) irradiation. Some advantages of this method are as follows: having simple operation, easily accessible starting materials, chemoselective cascade process, synthetically useful yields, and green conditions by utilizing US irradiation as a source of energy and using ethanol as solvent.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Tim-Oliver Knedel
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Abstract
This review highlights (2010–2021) different strategies for the construction of the phthalimide core apart from traditional synthetic routes.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), 743165, India
| |
Collapse
|
21
|
Lin J, Zheng TY, Fan NQ, Zhang P, Jiang K, Wei Y. Pyrrole synthesis through Cu-catalyzed cascade [3 + 2] spiroannulation/aromatization of oximes with azadienes. Org Chem Front 2021. [DOI: 10.1039/d1qo00443c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We disclose an efficient synthetic protocol for the assembly of poly-substituted pyrroles through cascade [3 + 2] spiroannulation/aromatization of oximes with azadienes.
Collapse
Affiliation(s)
- Jing Lin
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Ting-Yu Zheng
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Neng-Quan Fan
- Chongqing Institute for Food and Drug Control
- Chongqing
- China
| | - Pu Zhang
- Chongqing Institute for Food and Drug Control
- Chongqing
- China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Ye Wei
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| |
Collapse
|
22
|
Duan J, Mao Y, Xian A, Rong B, Xu G, Li Z, Zhao L, Zhu N, Guo K. Copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins. Chem Commun (Camb) 2021; 57:3379-3382. [DOI: 10.1039/d0cc07995b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins was developed, affording valuable 2,3-dihydrooxazole-spirooxindoles in moderate to good yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Yiyang Mao
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Anmei Xian
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Lili Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
23
|
Akhtar MS, Lee YR. Organocatalyzed Synthesis of Highly Functionalized Phthalimides via Diels-Alder Reaction Employing Two Dienophiles. J Org Chem 2020; 85:15129-15138. [PMID: 33147948 DOI: 10.1021/acs.joc.0c01991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and facile protocol for the synthesis of biologically and pharmaceutically important phthalimides is developed by l-proline-catalyzed reaction between two dienophiles of α,β-unsaturated aldehydes and maleimides. The reaction involves an efficient benzannulation that proceeds via a formal [4 + 2] cycloaddition of azadiene intermediates generated in situ from enals and N-substituted maleimides. This protocol provides a variety of functionalized phthalimide derivatives, including a potent COX-2 enzyme inhibitor.
Collapse
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
24
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020; 59:19222-19228. [DOI: 10.1002/anie.202007825] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
25
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
26
|
Gurram RK, Rajesh M, Reddy Singam MK, Nanubolu JB, Reddy MS. A Sequential Activation of Alkyne and C–H Bonds for the Tandem Cyclization and Annulation of Alkynols and Maleimides through Cooperative Sc(III) and Cp*-Free Co(II) Catalysis. Org Lett 2020; 22:5326-5330. [DOI: 10.1021/acs.orglett.0c01533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ravi Kumar Gurram
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
27
|
Abstract
As readily accessible strained carbocycles, cyclopropenes show a diverse range of reactivities, and a lot of novel and useful transformations have been developed.
Collapse
Affiliation(s)
- Penghua Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiaoyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
28
|
Xia Y, Huang H, Zhang F, Deng GJ. Palladium-Catalyzed Aerobic Benzannulation of Amines, Benzaldehydes, and β-Dicarbonyls. Org Lett 2019; 21:7489-7492. [PMID: 31512468 DOI: 10.1021/acs.orglett.9b02786] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed aerobic multicomponent benzannulation of Hantzsch reactants, i.e., amines, aldehydes, and β-dicarbonyls, has been developed. Hence, a viable entry to highly functionalized anilines has been accessed under solvent-free neat conditions. Mechanistically, the palladium chelating with an imine intermediate was proposed to be the key for this novel carbocyclization.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China
| | - Feng Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China.,College of Science , Hunan Agricultural University , Changsha 410128 , China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China
| |
Collapse
|
29
|
Guo C, Li B, Liu H, Zhang X, Zhang X, Fan X. Synthesis of Fused or Spiro Polyheterocyclic Compounds via the Dehydrogenative Annulation Reactions of 2-Arylindazoles with Maleimides. Org Lett 2019; 21:7189-7193. [DOI: 10.1021/acs.orglett.9b01889] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenhao Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huilai Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaopeng Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
30
|
Luo SM, Stellmach KA, Ikuzwe SM, Cao DD. Redox-Active Heteroacene Chromophores Derived from a Nonlinear Aromatic Diimide. J Org Chem 2019; 84:10362-10370. [DOI: 10.1021/acs.joc.9b01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stella M. Luo
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Kellie A. Stellmach
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Stella M. Ikuzwe
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Dennis D. Cao
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| |
Collapse
|
31
|
Ni J, Mao X, Zhang A. Copper‐Catalyzed Synthesis of
gem
‐Bisarylthio Enamines under Redox‐Neutral Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiabin Ni
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- College of PharmacyUniversity of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiaokang Mao
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- Department of Chemistry, Innovative Drug Research CenterShanghai University Shanghai 200444 People's Republic of China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM)Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- College of PharmacyUniversity of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Life Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
32
|
Yang Z, Jiang K, Chen YC, Wei Y. Copper-Catalyzed Dihydroquinolinone Synthesis from Isocyanides and O-Benzoyl Hydroxylamines. J Org Chem 2019; 84:3725-3734. [DOI: 10.1021/acs.joc.9b00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Yang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Kun Jiang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ying-Chun Chen
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ye Wei
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
33
|
Peng F, Zhao Q, Huang W, Liu SJ, Zhong YJ, Mao Q, Zhang N, He G, Han B. Amine-catalyzed and functional group-controlled chemo- and regioselective synthesis of multi-functionalized CF3-benzene via a metal-free process. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02694k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel strategy for the synthesis of CF3-containing multi-substituted benzenes with high chemo- and regioselectivities under metal-free and air-tolerant conditions was established.
Collapse
Affiliation(s)
- Fu Peng
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Nan Zhang
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Gu He
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|
34
|
|
35
|
Zhao J, Pi C, You C, Wang Y, Cui X, Wu Y. Rhodium(III)-Catalyzed Direct C-H Alkylation of 2-Aryl-1,2,3-triazole N
-Oxides with Maleimides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanli Zhao
- Department of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities; Zhengzhou Institution; Zhengzhou University; 75 Daxue Street 450052 Zhengzhou Henan Province China
| | - Chao Pi
- Department of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities; Zhengzhou Institution; Zhengzhou University; 75 Daxue Street 450052 Zhengzhou Henan Province China
| | - Chang You
- Department of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities; Zhengzhou Institution; Zhengzhou University; 75 Daxue Street 450052 Zhengzhou Henan Province China
| | - Yong Wang
- Department of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities; Zhengzhou Institution; Zhengzhou University; 75 Daxue Street 450052 Zhengzhou Henan Province China
| | - Xiuling Cui
- Department of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities; Zhengzhou Institution; Zhengzhou University; 75 Daxue Street 450052 Zhengzhou Henan Province China
| | - Yangjie Wu
- Department of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities; Zhengzhou Institution; Zhengzhou University; 75 Daxue Street 450052 Zhengzhou Henan Province China
| |
Collapse
|
36
|
Yang S, Lu D, Huo H, Luo F, Gong Y. Construction of Substituted 2-Aminophenols via Formal [3 + 3] Cycloaddition of Alkyl 2-Aroyl-1-chlorocyclopropanecarboxylate with in Situ Generated Enamines. Org Lett 2018; 20:6943-6947. [DOI: 10.1021/acs.orglett.8b03090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sen Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Hengrui Huo
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Fan Luo
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
37
|
Zhou S, Yan BW, Fan SX, Tian JS, Loh TP. Regioselective Formal [4 + 2] Cycloadditions of Enaminones with Diazocarbonyls through Rh III-Catalyzed C-H Bond Functionalization. Org Lett 2018; 20:3975-3979. [PMID: 29888603 DOI: 10.1021/acs.orglett.8b01540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A regioselective formal [4 + 2] cycloaddition for the assembly of highly functionalized benzene rings was successfully developed. In this reaction, olefinic C-H bond functionalization/cyclization cascade reaction followed by rearomatization led to the desired molecules in one step under mild reaction conditions. This protocol also displays a broad substrate scope and good tolerance to a wide range of functional groups. Additionally, the potential utility for the synthesis of highly conjugated polybenzenes and diversification of natural products was also demonstrated.
Collapse
Affiliation(s)
- Shuguang Zhou
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Bi-Wei Yan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Shuai-Xin Fan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
38
|
Bai D, Wang X, Zheng G, Li X. Redox‐Divergent Synthesis of Fluoroalkylated Pyridines and 2‐Pyridones through Cu‐Catalyzed N−O Cleavage of Oxime Acetates. Angew Chem Int Ed Engl 2018; 57:6633-6637. [DOI: 10.1002/anie.201802311] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecules and Drugs InnovationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
| | - Xueli Wang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Guangfan Zheng
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecules and Drugs InnovationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
39
|
Bai D, Wang X, Zheng G, Li X. Redox‐Divergent Synthesis of Fluoroalkylated Pyridines and 2‐Pyridones through Cu‐Catalyzed N−O Cleavage of Oxime Acetates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecules and Drugs InnovationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
| | - Xueli Wang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Guangfan Zheng
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecules and Drugs InnovationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
40
|
Liang HW, Yang Z, Jiang K, Ye Y, Wei Y. Atom-Economic Silver-Catalyzed Difunctionalization of the Isocyano Group with Cyclic Oximes: Towards Pyrimidinediones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hong-Wen Liang
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Zhen Yang
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Ying Ye
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| |
Collapse
|
41
|
Liang HW, Yang Z, Jiang K, Ye Y, Wei Y. Atom-Economic Silver-Catalyzed Difunctionalization of the Isocyano Group with Cyclic Oximes: Towards Pyrimidinediones. Angew Chem Int Ed Engl 2018; 57:5720-5724. [PMID: 29601660 DOI: 10.1002/anie.201801363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Indexed: 11/06/2022]
Abstract
An unprecedented silver-catalyzed difunctionalization of the isocyano group with cyclic oximes is described. This method allows efficient and atom-economic assembly of a vast array of structurally novel and interesting pyrimidinediones, and tolerates a range of functionalities. The resulting products can be easily converted into some useful compounds. Furthermore, the method can also be applied for the late-stage modification of a few biologically active molecules.
Collapse
Affiliation(s)
- Hong-Wen Liang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhen Yang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Kun Jiang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ying Ye
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ye Wei
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|