1
|
Agrawal R, Gorai S, Yadav SS, Wadawale AP, Mula S. Tetraarylpyrrolo[3,2- b]pyrrole-BODIPY dyad: a molecular rotor for FRET-based viscosity sensing. Front Chem 2024; 12:1473769. [PMID: 39449693 PMCID: PMC11499138 DOI: 10.3389/fchem.2024.1473769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
With the aim to develop a FRET-based viscosity sensor, two dyad molecules, 4 and 5, comprising tetraarylpyrrolo[3,2-b]pyrrole (TAPP) (donor) and naked boron-dipyrromethene (BODIPY) dyes (acceptor), were designed. Dyads were synthesized via acid-catalyzed multicomponent reactions followed by Sonogashira coupling. In both dyads, the BODIPY and TAPP moieties are linked through phenylethynyl groups, which allow free rotation of the BODIPY dyes; that is, they can act as molecular rotors. This was supported by X-ray crystallographic and DFT-optimized structures. Spectroscopic studies also confirmed the presence of both TAPP and BODIPY dyes in dyads with no electronic interactions that are suitable for fluorescence resonance energy transfer (FRET). Very high energy transfer efficiency (ETE >99%) from the donor TAPP moiety to the acceptor BODIPY moiety on excitation at the TAPP part was observed. However, due to the non-fluorescent nature of naked BODIPY dyes, no fluorescence emission was observed from the BODIPY moiety in both dyads. With increasing solvent viscosities, emission from the BODIPY moieties increases due to the restricted rotation of the BODIPY moieties. Plotting the logarithms of the fluorescent intensity of dyad 5 and the viscosity of the solution showed a good linear correlation obeying a Förster-Hoffmann equation. Non-fluorescent dyad 5 in methanol became greenish-yellow fluorescent in a methanol/glycerol (1:1) solvent. Furthermore, with an increase in the temperature of the methanol/glycerol (1:1) system, as the viscosity decreases, the fluorescence also starts decreasing. Thus, dyad 5 is capable of sensing the viscosity of the medium via a FRET-based "Off-On" mechanism. This type of viscosity sensor with a very large pseudo-Stokes shift and increased sensitivity will be useful for advancing chemo-bio sensing and imaging applications.
Collapse
Affiliation(s)
- Richa Agrawal
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudip Gorai
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sunil Suresh Yadav
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Mumbai, India
| | - Amey P. Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Mekeda IS, Balakhonov RY, Shirinian VZ. Switching the regioselectivity of acid-catalyzed reactions of arylnaphtho[2,1- b]furans via a [1,2]-aryl shift. Org Biomol Chem 2024; 22:7715-7724. [PMID: 39225492 DOI: 10.1039/d4ob01223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The [1,2]-aryl shift reaction was used to synthesize naphtho[2,1-b]furans as promising fluorescent scaffolds for organic electronics. The target compounds are furan analogues of phenanthrene formally accessed by isosteric replacement of the CHCH moiety with an oxygen atom. The straightforward and robust approach involving a [1,2]-aryl shift as a key step provides easy access to a wide range of naphtho[2,1-b]furans with the possibility of late-stage functionalization. Efficient switching of the regioselectivity of acid-catalyzed reactions of arylnaphtho[2,1-b]furans via a [1,2]-aryl shift has been demonstrated. A one-pot protocol involving sequential intramolecular condensation/[1,2]-aryl shift/intermolecular oxidative aromatic coupling to provide access to binaphtho[2,1-b]furan analogues of BINOL was developed. The advantage of these compounds lies in the strong variation in chemical properties and spectral performance depending on the nature and position of the aryl substituent, which facilitates the synthesis of compounds with desired spectral characteristics and opens up prospects for their further use in electronics, biotechnologies and organic synthesis.
Collapse
Affiliation(s)
- I S Mekeda
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| | - R Yu Balakhonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Ponugoti N, Maddala S, Venkatakrishnan P. From Serendipity to Precision: Decoding the Enigma of Rearrangement in Scholl-Type Reactions for Programmable Cyclization. J Org Chem 2024; 89:4185-4190. [PMID: 38423994 DOI: 10.1021/acs.joc.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Rearrangements in the Scholl reaction have traditionally been serendipitous, lacking a systematic approach for synthesizing rearranged and cyclized products. This paper introduces a strategic pathway to achieve rearranged-cyclized thienotetrahelicene derivatives over direct-cyclized chrysenothiophene derivatives by finely modifying the reaction conditions and tuning the electronic properties in Scholl-type reaction precursors, tetraarylthiophenes. Through careful design principles, we demonstrate the programmable synthesis of these distinct products.
Collapse
Affiliation(s)
- Nagaraju Ponugoti
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Sudhakar Maddala
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | | |
Collapse
|
4
|
Sanil G, Krzeszewski M, Chaładaj W, Danikiewicz W, Knysh I, Dobrzycki Ł, Staszewska-Krajewska O, Cyrański MK, Jacquemin D, Gryko DT. Gold-Catalyzed 1,2-Aryl Shift and Double Alkyne Benzannulation. Angew Chem Int Ed Engl 2023; 62:e202311123. [PMID: 37823245 DOI: 10.1002/anie.202311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Collapse
Affiliation(s)
- Gana Sanil
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
5
|
Huang G, Fang Y, Wright JS, Ni SF, Li MD, Dang L. The Essence in Selectivity of Copper-Mediated Intermolecular Nucleophilic Substitution of a meta C-H Bond in 2-Methyl- N-methoxyaniline: A Theoretical Study. J Phys Chem A 2023; 127:9473-9482. [PMID: 37824456 DOI: 10.1021/acs.jpca.3c05223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The detailed mechanism for NHC-Cu(I)-catalyzed intermolecular nucleophilic substitution of the C-H bonds at aniline (2-methyl-N-methoxyaniline) was studied via DFT methods to reveal the essence of the selectivity. Calculations revealed that the meta C-H functionalization proceeds via two nucleophilic attacks on the aromatic ring rather than a one-step meta C-H substitution to give the experimentally observed major product. The reaction is initiated by activation of the substrate via oxidative addition with an NHC-Cu(I) catalyst, through which an umpolung occurs at the ring. From the activated intermediate, methoxyl group transfer to benzyl forms a resting state, while a nucleophile can attack the ortho position of benzyl to form a more stable intermediate. The nucleophile group can then transfer to the meta position by a 1,2-Wagner-Meerwein rearrangement to form the final product through a proton shuttle. In contrast, other transfer processes affording ortho- or para-substituted products encounter higher activation barriers. This work investigates the relationship of product selectivity with the umpolung of the aromatic ring, as well as the priority of a nucleophilic attack at the ortho position of the aromatic, 1,2-Wagner-Meerwein rearrangement from the ortho-substituted intermediate, and proton shuttle from the meta-substituted intermediate.
Collapse
Affiliation(s)
- Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - Yuqi Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| |
Collapse
|
6
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
7
|
Krzeszewski M, Dobrzycki Ł, Sobolewski AL, Cyrański MK, Gryko DT. Saddle-shaped aza-nanographene with multiple odd-membered rings. Chem Sci 2023; 14:2353-2360. [PMID: 36873850 PMCID: PMC9977460 DOI: 10.1039/d2sc05858h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
A saddle-shaped aza-nanographene containing a central 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) has been prepared via a rationally designed four-step synthetic pathway encompassing intramolecular direct arylation, the Scholl reaction, and finally photo-induced radical cyclization. The target non-alternant, nitrogen-embedded polycyclic aromatic hydrocarbon (PAH) incorporates two abutting pentagons between four adjacent heptagons forming unique 7-7-5-5-7-7 topology. Such a combination of odd-membered-ring defects entails a negative Gaussian curvature within its surface with a significant distortion from planarity (saddle height ≈ 4.3 Å). Its absorption and fluorescence maxima are located in the orange-red region, with weak emission originating from the intramolecular charge-transfer character of a low-energy absorption band. Cyclic voltammetry measurements revealed that this stable under ambient conditions aza-nanographene underwent three fully reversible oxidation steps (two one-electron followed by one two-electron) with an exceptionally low first oxidation potential of E ox1 = -0.38 V (vs. Fc/Fc+).
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
8
|
Real-space imaging of a phenyl group migration reaction on metal surfaces. Nat Commun 2023; 14:970. [PMID: 36810857 PMCID: PMC9944283 DOI: 10.1038/s41467-023-36696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
The explorations to extend present chemical synthetic methods are of great importance to simplify synthetic routes of chemical species. Additionally, understanding the chemical reaction mechanisms is critical to achieve controllable synthesis for applications. Here, we report the on-surface visualization and identification of a phenyl group migration reaction of 1,4-dimethyl-2,3,5,6-tetraphenyl benzene (DMTPB) precursor on Au(111), Cu(111) and Ag(110) substrates. With the combination of bond-resolved scanning tunneling microscopy (BR-STM), noncontact atomic force microscopy (nc-AFM) and density functional theory (DFT) calculations, the phenyl group migration reaction of DMTPB precursor is observed, forming various polycyclic aromatic hydrocarbons on the substrates. DFT calculations reveal that the multiple-step migrations are facilitated by the hydrogen radical attack, inducing cleavage of phenyl groups and subsequent rearomatization of the intermediates. This study provides insights into complex surface reaction mechanisms at the single molecule level, which may guide the design of chemical species.
Collapse
|
9
|
Abstract
We report a 1,2-migration (aryl dance reaction) of the aryl group on heteroles. AlCl3 can efficiently convert C3-arylheteroles to C2-arylheteroles. Depending on the electron density of the substrate, conversion from C2- to C3-arylheteroles was also possible with catalytic Zn(OTf)2. A one-pot aryl dance/acylation or bromination and arylation/aryl dance cascade was also demonstrated.
Collapse
Affiliation(s)
- Hikaru Nakahara
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
10
|
Abstract
In this study, we propose that the curvature of graphene can be exploited to perform directional molecular motion and provide atomistic insights into the curvature-dependent molecular migration through density functional theory calculations. We first reveal the origin of the different migration trends observed experimentally for aromatic molecules with electron-donating and -withdrawing groups on p-doped functionalized graphene. Next, we show that the kinetic barrier for migration depends on the amount and nature of the curvature, that is, positive versus negative curvature. We find that the molecular migration on a wrinkled/rippled graphene sheet preferentially happens from the valley (positive curvature) to the mountain (negative curvature) regions. To understand the origin of such curvature-dependent molecular motion and migrational kinetic barrier trends, we develop a descriptor based on the frontier orbital orientation of graphene. Finally, based on these findings, we predict that time- and space-varying curvature can drive directional molecular motion on graphene and thus further propose that efforts should focus on exploring other two-dimensional materials as active platforms for performing controlled molecular motion.
Collapse
Affiliation(s)
- Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
11
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene‐Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2‐Phenyl Migration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
12
|
Kubota Y, Koide K, Mizuno Y, Nakazawa M, Inuzuka T, Funabiki K, Sato H, Matsui M. Synthesis and fluorescence properties of unsymmetrical 1,4-dihydropyrrolo[3,2- b]pyrrole dyes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04663b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite being regioisomers, unsymmetrical 1,4-dihydropyrrolo[3,2-b]pyrroles 5 and 6 showed significantly different absorption and fluorescence properties due to the difference of the resonance structure between 5 and 6.
Collapse
Affiliation(s)
- Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kenta Koide
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuka Mizuno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Nakazawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Toshiyasu Inuzuka
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroyasu Sato
- Rigaku Corporation 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Masaki Matsui
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
13
|
Abstract
Rearrangements in Scholl reaction are mostly serendipitous. The design of molecular precursors is what seems to guide the course of rearrangement. This review consolidates different classes of precursors used in Scholl reaction and their accompanying rearrangements that include aryl migration, migration followed by cyclization and skeletal rearrangements involving ring expansion, ring contraction and both, under the reaction conditions. The attempt in collating heretofore-reported examples in this review is to guide designing appropriate precursors to predictably achieve complex molecular structures or nanographenes or defect-nanographenes via rearrangement.
Collapse
Affiliation(s)
| | - Nagaraju Ponugoti
- Indian Institute of Technology Madras, Chemistry, Adyar, 600036, Chennai, INDIA
| |
Collapse
|
14
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration. Angew Chem Int Ed Engl 2021; 61:e202115979. [PMID: 34854182 DOI: 10.1002/anie.202115979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol-1 . These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.
Collapse
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Maeda C, Nomoto S, Akiyama K, Tanaka T, Ema T. Facile Synthesis of Azahelicenes and Diaza[8]circulenes through the Intramolecular Scholl Reaction. Chemistry 2021; 27:15699-15705. [PMID: 34449114 DOI: 10.1002/chem.202102269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/07/2022]
Abstract
Carbazole-based aza[7]helicenes and hetero[9]helicenes were successfully obtained via the intramolecular Scholl reaction of 3,6-bis(biphenyl-2-yl)carbazole congeners, while the reaction of 3,6-bis(naphthylphenyl)-appended carbazole gave a triple helicene via an unexpected simultaneous double aryl rearrangement. DFT calculations suggested that the rearrangement proceeded via an arenium cation intermediate. In addition, the reaction of methoxy-appended substrate gave an azahepta[8]circulene via the concurrent C-C bond formation. These helical dyes showed circularly polarized luminescence. The azahepta[8]circulene was further transformed into deeply saddle-distorted dibenzodiaza[8]circulenes as the first example of its solution-based synthesis and unambiguous structural determination.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Shuichi Nomoto
- Division of Applied Chemistry Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Koki Akiyama
- Division of Applied Chemistry Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Takayuki Tanaka
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
16
|
Zhao M, Pun SH, Gong Q, Miao Q. Carbazole‐Fused Polycyclic Aromatics Enabled by Regioselective Scholl Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mengna Zhao
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Sai Ho Pun
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Qi Gong
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Qian Miao
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| |
Collapse
|
17
|
Zhao M, Pun SH, Gong Q, Miao Q. Carbazole-Fused Polycyclic Aromatics Enabled by Regioselective Scholl Reactions. Angew Chem Int Ed Engl 2021; 60:24124-24130. [PMID: 34519417 DOI: 10.1002/anie.202107373] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/13/2022]
Abstract
The synthesis of new carbazole-fused polycyclic aromatics with interesting geometry and useful properties was explored using Scholl reactions. As found from the Scholl reactions of substrates having two carbazole units linked at different positions through o-phenylene, oxidative coupling of carbazole units occurred in a regioselective manner with new carbon-carbon bonds preferably formed at C3 and C4 in N-alkyl carbazoles. A new N-containing aromatic bowl was characterized by single-crystal X-ray crystallography, and new p-type organic semiconductors exhibited field effect mobility of up to 0.070 cm2 V-1 s-1 in solution-processed thin-film transistors.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sai Ho Pun
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qi Gong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
18
|
Jassas RS, Mughal EU, Sadiq A, Alsantali RI, Al-Rooqi MM, Naeem N, Moussa Z, Ahmed SA. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Adv 2021; 11:32158-32202. [PMID: 35495486 PMCID: PMC9041733 DOI: 10.1039/d1ra05910f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3-Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Collapse
Affiliation(s)
- Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
19
|
Krzeszewski M, Dobrzycki Ł, Sobolewski AL, Cyrański MK, Gryko DT. Bowl-Shaped Pentagon- and Heptagon-Embedded Nanographene Containing a Central Pyrrolo[3,2-b]pyrrole Core. Angew Chem Int Ed Engl 2021; 60:14998-15005. [PMID: 33831270 DOI: 10.1002/anie.202104092] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/11/2022]
Abstract
A bowl-shaped nitrogen-doped nanographene composed of a pyrrolo[3,2-b]pyrrole core substituted with six arene rings circularly bonded with one another has been prepared via a concise synthetic strategy encompassing the multicomponent tetraarylpyrrolopyrrole (TAPP) synthesis, the Scholl reaction, and intramolecular direct arylation. This synthesis represents the first case of programmed sequential intramolecular direct arylation reactions utilizing the different reactivity of C-Br and C-Cl bonds. The target compound contains two central pentagons confined between two adjacent heptagons-the inverse Stone-Thrower-Wales topology. The presence of both five- and seven-membered rings in the final structure is responsible for interesting properties such as a perpendicularly aligned dipole moment, absorption and fluorescence in the orange-red region, weak emission originating from the charge-transfer character of a low-energy absorption band, and a high lying HOMO. In the solid state slipped convex-to-convex π-π stacking dominates.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Andrzej L Sobolewski
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| |
Collapse
|
20
|
Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl Reaction of Perylene-Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? Angew Chem Int Ed Engl 2021; 60:17654-17663. [PMID: 34002913 DOI: 10.1002/anie.202105427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/19/2022]
Abstract
A planar dibenzo-peri-hexacene derivative (2) was synthesized via FeCl3 -mediated Scholl reaction from a cyclopenta-fused perylene (CP) based polyphenylene precursor (1). However, an unexpected octagon-containing, negatively curved molecule (3) was obtained in nearly quantitative yield when 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and methanesulfonic acid (MeSO3 H) were used. Similar results were observed when two smaller-sized precursors containing one (4) or two CP units (5) were tested. X-ray crystallographic analysis also revealed that there is no close π-π stacking between neighboring π-conjugated skeletons. DFT calculations suggest a radical cation mechanism in the presence of FeCl3 while an arenium ion pathway for the DDQ/MeSO3 H mediated Scholl reaction, which can well explain the selective formation of hexagons and octagons under different conditions. The obtained compounds showed tunable optical and electrochemical properties.
Collapse
Affiliation(s)
- Ya Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Chi Hao Eugene Chow
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
21
|
Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl Reaction of Perylene‐Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ya Zou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Chi Hao Eugene Chow
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
22
|
Krzeszewski M, Dobrzycki Ł, Sobolewski AL, Cyrański MK, Gryko DT. Bowl‐Shaped Pentagon‐ and Heptagon‐Embedded Nanographene Containing a Central Pyrrolo[3,2‐
b
]pyrrole Core. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Andrzej L. Sobolewski
- Institute of Physics Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Michał K. Cyrański
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| |
Collapse
|
23
|
Poronik YM, Baryshnikov GV, Deperasińska I, Espinoza EM, Clark JA, Ågren H, Gryko DT, Vullev VI. Deciphering the unusual fluorescence in weakly coupled bis-nitro-pyrrolo[3,2-b]pyrroles. Commun Chem 2020; 3:190. [PMID: 36703353 PMCID: PMC9814504 DOI: 10.1038/s42004-020-00434-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/13/2020] [Indexed: 01/29/2023] Open
Abstract
Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor-donor-acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of the bis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.
Collapse
Affiliation(s)
- Yevgen M. Poronik
- grid.413454.30000 0001 1958 0162Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Glib V. Baryshnikov
- grid.8993.b0000 0004 1936 9457Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Irena Deperasińska
- grid.413454.30000 0001 1958 0162Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Eli M. Espinoza
- grid.266097.c0000 0001 2222 1582Department of Chemistry, University of California, Riverside, CA USA ,grid.47840.3f0000 0001 2181 7878Present Address: College of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - John A. Clark
- grid.266097.c0000 0001 2222 1582Department of Bioengineering, University of California, Riverside, CA USA
| | - Hans Ågren
- grid.8993.b0000 0004 1936 9457Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden ,grid.77602.340000 0001 1088 3909Department of Physics, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050 Russian Federation
| | - Daniel T. Gryko
- grid.413454.30000 0001 1958 0162Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Valentine I. Vullev
- grid.266097.c0000 0001 2222 1582Department of Chemistry, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Department of Bioengineering, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Department of Biochemistry, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Materials Science and Engineering Program, University of California, Riverside, CA USA
| |
Collapse
|
24
|
Tasior M, Vakuliuk O, Koga D, Koszarna B, Górski K, Grzybowski M, Kielesiński Ł, Krzeszewski M, Gryko DT. Method for the Large-Scale Synthesis of Multifunctional 1,4-Dihydro-pyrrolo[3,2- b]pyrroles. J Org Chem 2020; 85:13529-13543. [PMID: 32907329 PMCID: PMC7656515 DOI: 10.1021/acs.joc.0c01665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
A thorough investigation has enabled
the optimization of the synthesis
of 1,4-dihydro-pyrrolo[3,2-b]pyrroles. Although salts
of such metals as vanadium, niobium, cerium, and manganese were found
to facilitate the formation of 1,4-dihydro-pyrrolo[3,2-b]pyrroles from amines, aldehydes, and diacetyl, we confirmed that
iron salts are the most efficient catalysts. The conditions identified
(first step: toluene/AcOH = 1:1, 1 h, 50 °C; second step: toluene/AcOH
= 1:1, Fe(ClO4)3·H2O, 16 h,
50 °C) resulted in the formation of tetraarylpyrrolo[3,2-b]pyrroles in a 6–69% yield. For the first time,
very electron-rich substituents (4-Me2NC6H4, 3-(OH)C6H4, pyrrol-2-yl) originating
from aldehydes and sterically hindered substituents (2-ClC6H4, 2-BrC6H4, 2-CNC6H4, 2-(CO2Me)C6H4, 2-(TMS-C≡C)C6H4) present on anilines can be appended to the
pyrrolo[3,2-b]pyrrole core. It is now also possible
to prepare 1,4-dihydropyrrolo[3,2-b]pyrroles bearing
an ordered arrangement of N-substituents and C-substituents ranging from coumarin, quinoline, phthalimide
to truxene. These advances in scope enable independent regulations
of many desired photophysical properties, including the Stokes shift
value and emission color ranging from violet-blue through deep blue,
green, yellow to red. Simultaneously, the optimized conditions have
finally allowed the synthesis of these extremely promising heterocycles
in amounts of more than 10 g per run without a concomitant decrease
in yield or product contamination. Empowered with better functional
group compatibility, novel derivatization strategies were developed.
Collapse
Affiliation(s)
- Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Daiki Koga
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Beata Koszarna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Krzysztof Górski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Łukasz Kielesiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| |
Collapse
|
25
|
Abstract
The design and synthesis of molecular systems able to carry out movements resembling macroscopic objects is an exciting and challenging endeavor. Molecules that can walk covalently on a track have been demonstrated, and we now report how aryl groups that can migrate over a graphene surface. Specifically, we describe a system comprised of covalently functionalized aryl groups on graphene that undergo continuous aryl shifts. The dynamic aryl shift allows the aryl groups on graphene to effectively migrate step-by-step wherein each step involves reversible bond breaking and making that is initiated by a combination of an activated arene and p-doping of the graphene surface. Raman spectroscopic mapping of the distribution of the covalent attachment revealed that activated 4-methoxyphenyl groups migrate several microns from regions of high functionalization to regions with no prior functionalization.
Collapse
Affiliation(s)
- Maggie He
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Qiu Z, Asako S, Hu Y, Ju CW, Liu T, Rondin L, Schollmeyer D, Lauret JS, Müllen K, Narita A. Negatively Curved Nanographene with Heptagonal and [5]Helicene Units. J Am Chem Soc 2020; 142:14814-14819. [PMID: 32809808 PMCID: PMC7472433 DOI: 10.1021/jacs.0c05504] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Negatively
curved nanographene (NG) 4, having two
heptagons and a [5]helicene, was unexpectedly obtained by aryl rearrangement
and stepwise cyclodehydrogenations. X-ray crystallography confirmed
the saddle-shaped structures of intermediate 3 and NG 4. The favorability of rearrangement over helicene formation
following radical cation or arenium cation mechanisms is supported
by theoretical calculations. NG 4 demonstrates a reversible
mechanochromic color change and solid-state emission, presumably benefiting
from its loose crystal packing. After resolution by chiral high-performance
liquid chromatography, the circular dichroism spectra of enantiomers 4-(P) and 4-(M) were measured and showed moderate Cotton effects at 350 nm (|Δε|
= 148 M–1 cm–1).
Collapse
Affiliation(s)
- Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yunbin Hu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Cheng-Wei Ju
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,College of Chemistry, Nankai University, Tianjin 300071, China
| | - Thomas Liu
- Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, LUMIN, 91405 Orsay Cedex, France
| | - Loïc Rondin
- Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, LUMIN, 91405 Orsay Cedex, France
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Jean-Sébastien Lauret
- Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, LUMIN, 91405 Orsay Cedex, France
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939 Cologne, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
27
|
Li QQ, Ochiai K, Lee CA, Ito S. Synthesis of π-Extended Imidazoles by 1,3-Dipolar Cycloaddition of Polycyclic Aromatic Azomethine Ylides with Nitriles. Org Lett 2020; 22:6132-6137. [DOI: 10.1021/acs.orglett.0c02203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Kotaro Ochiai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cherie-Anne Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
28
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl 2020; 59:2998-3027. [PMID: 31342599 PMCID: PMC7027897 DOI: 10.1002/anie.201904934] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Oxidative aromatic coupling occupies a fundamental place in the modern chemistry of aromatic compounds. It is a method of choice for the assembly of large and bewildering architectures. Considerable effort was also devoted to applications of the Scholl reaction for the synthesis of chiral biphenols and natural products. The ability to form biaryl linkages without any prefunctionalization provides an efficient pathway to many complex structures. Although the chemistry of this process is only now becoming fully understood, this reaction continues to both fascinate and challenge researchers. This is especially true for heterocoupling, that is, oxidative aromatic coupling with the chemoselective formation of a C-C bond between two different arenes. Analysis of the progress achieved in this field since 2013 reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted (cyclo)dehydrogenation, and developing new reagents.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Holger Butenschön
- Institut für Organische ChemieLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
29
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904934] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
30
|
Miao W, Feng Y, Wu Q, Sheng W, Li M, Liu Q, Hao E, Jiao L. Phenanthro[b]-Fused BODIPYs through Tandem Suzuki and Oxidative Aromatic Couplings: Synthesis and Photophysical Properties. J Org Chem 2019; 84:9693-9704. [DOI: 10.1021/acs.joc.9b01425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Miao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yuanmei Feng
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanle Sheng
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Mao Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
31
|
Wu D, Zheng J, Xu C, Kang D, Hong W, Duan Z, Mathey F. Phosphindole fused pyrrolo[3,2-b]pyrroles: a new single-molecule junction for charge transport. Dalton Trans 2019; 48:6347-6352. [PMID: 30994138 DOI: 10.1039/c9dt01299k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of phosphindole fused ladder-type heteroacenes with a pyrrolo[3,2-b]pyrrole core were synthesized and characterized, which show good luminescence efficiency, high thermostability and tunable conductance.
Collapse
Affiliation(s)
- Di Wu
- International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
He X, Wang H, Cai X, Li Q, Tao J, Shang Y. FeCl 3-promoted tandem 1,4-conjugate addition/6-endo-dig cyclization/oxidation of propargylamines and benzoylacetonitriles/malononitriles: direct access to functionalized 2-aryl-4H-chromenes. Org Biomol Chem 2019; 16:7191-7202. [PMID: 30255179 DOI: 10.1039/c8ob01927d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient and concise procedure has been developed for the synthesis of functionalized 2-aryl-4H-chromenes based on a tandem reaction of propargylamines and benzoylacetonitriles/malononitriles in the presence of FeCl3 as an environmentally friendly promoter. This reaction involves a highly efficient tandem sequence consisting of 1,4-conjugate addition, 6-endo-dig cyclization, and oxidation. This protocol tolerates a variety of functional groups, thereby providing a practical and efficient method for the fabrication of 2-aryl-4H-chromene skeletons.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Qiu L, Hu W, Wu D, Duan Z, Mathey F. Regioselective Synthesis of 2- or 2,7-Functionalized Pyrenes via Migration. Org Lett 2018; 20:7821-7824. [DOI: 10.1021/acs.orglett.8b03270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liqi Qiu
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Hu
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Di Wu
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Francois Mathey
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
34
|
Zheng MW, Yuan X, Cui YS, Qiu JK, Li G, Guo K. Electrochemical Sulfonylation/Heteroarylation of Alkenes via Distal Heteroaryl ipso-Migration. Org Lett 2018; 20:7784-7789. [DOI: 10.1021/acs.orglett.8b03191] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Wei Zheng
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Institute of Chemistry & Biomedical Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xin Yuan
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Institute of Chemistry & Biomedical Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Yu-Sheng Cui
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiang-Kai Qiu
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Sciences, Nanjing University, Nanjing 210093, P. R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
35
|
Tasior M, Clermont G, Blanchard-Desce M, Jacquemin D, Gryko DT. Synthesis of Bis(arylethynyl)pyrrolo[3,2-b
]pyrroles and Effect of Intramolecular Charge Transfer on Their Photophysical Behavior. Chemistry 2018; 25:598-608. [DOI: 10.1002/chem.201804325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Mariusz Tasior
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Guillaume Clermont
- Institut des Sciences Moléculaires, UMR CNRS 5255; Université de Bordeaux; Cours de la libération 351 33405 Talence France
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires, UMR CNRS 5255; Université de Bordeaux; Cours de la libération 351 33405 Talence France
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230; Université de Nantes; Rue de la Houssinière 2 44322 Nantes Cedex 3 France
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
36
|
Sadowski B, Hassanein K, Ventura B, Gryko DT. Tetraphenylethylenepyrrolo[3,2-b]pyrrole Hybrids as Solid-State Emitters: The Role of Substitution Pattern. Org Lett 2018; 20:3183-3186. [DOI: 10.1021/acs.orglett.8b01011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
37
|
Sheng W, Wu Y, Yu C, Bobadova-Parvanova P, Hao E, Jiao L. Synthesis, Crystal Structure, and the Deep Near-Infrared Absorption/Emission of Bright AzaBODIPY-Based Organic Fluorophores. Org Lett 2018; 20:2620-2623. [DOI: 10.1021/acs.orglett.8b00820] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wanle Sheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yayang Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Petia Bobadova-Parvanova
- Department of Chemistry, Rockhurst University, 1100 Rockhurst Road, Kansas City, Missouri 64110, United States
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|