1
|
Wohlgemuth M, Schmidt S, Mayer M, Pickhardt W, Graetz S, Borchardt L. Solid-State Oxidation of Alcohols in Gold-Coated Milling Vessels via Direct Mechanocatalysis. Angew Chem Int Ed Engl 2024; 63:e202405342. [PMID: 38801736 DOI: 10.1002/anie.202405342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
This paper presents a novel approach for the selective oxidation of alcohols to their corresponding aldehydes through direct mechanocatalysis, employing a gold-coated milling vessel as catalyst and air as the oxidation agent. By adjusting milling frequency, media, and duration, high catalytic efficiencies and selectivities are achieved. Remarkably, yields of up to 99 % are obtained for specific substrates, with a turnover number (TON) of 8200 and a turnover frequency (TOF) of 0.77 s-1, surpassing existing alternatives. Confirmation of the catalytic reaction indeed occurring on the milling tool surface was achieved through X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Maximilian Wohlgemuth
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sarah Schmidt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Maike Mayer
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Wilm Pickhardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sven Graetz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Sharma A, Singh J, Sharma A. Synthesis of Quinazolinones and Benzothiazoles Using α-Keto Acids under Ball Milling. J Org Chem 2024; 89:5229-5238. [PMID: 38551089 DOI: 10.1021/acs.joc.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Mechanochemistry refers to the initiation of chemical reactions via mechanical forces such as milling, grinding, or shearing to achieve the chemical transformations. As a manifestation of mechanocatalysis, herein, an oxidant-free and solvent-free approach for the synthesis of quinazolinones (23 derivatives) and benzothiazoles (23 derivatives) has been developed through stainless-steel-driven decarboxylative acyl radical generation from α-keto acids. A library of 2-arylquinazolinones and 2-arylbenzothiazoles has been prepared in moderate to good yields at room temperature. Moreover, control experiments and XPS studies supported the reduction (by zerovalent iron) of molecular oxygen through the moderate abrasion of balls, which promoted the generation of a superoxide radical anion via a SET process.
Collapse
Affiliation(s)
- Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Lennox CB, Borchers TH, Gonnet L, Barrett CJ, Koenig SG, Nagapudi K, Friščić T. Direct mechanocatalysis by resonant acoustic mixing (RAM). Chem Sci 2023; 14:7475-7481. [PMID: 37449073 PMCID: PMC10337763 DOI: 10.1039/d3sc01591b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023] Open
Abstract
We demonstrate the use of a metal surface to directly catalyse copper-catalysed alkyne-azide click-coupling (CuAAC) reactions under the conditions of Resonant Acoustic Mixing (RAM) - a recently introduced and scalable mechanochemical methodology that uniquely eliminates the need for bulk solvent, as well as milling media. By using a simple copper coil as a catalyst, this work shows that direct mechanocatalysis can occur in an impact-free environment, relying solely on high-speed mixing of reagents against a metal surface, without the need for specially designed milling containers and media. By introducing an experimental setup that enables real-time Raman spectroscopy monitoring of RAM processes, we demonstrate 0th-order reaction kinetics for several selected CuAAC reactions, supporting surface-based catalysis. The herein presented RAM-based direct mechanocatalysis methodology is simple, enables the effective one-pot, two-step synthesis of triazoles via a combination of benzyl azide formation and CuAAC reactions on a wide scope of reagents, provides control over reaction stoichiometry that is herein shown to be superior to that seen in solution or by using more conventional CuCl catalyst, and is applied for simple gram-scale synthesis of the anticonvulsant drug Rufinamide.
Collapse
Affiliation(s)
- Cameron B Lennox
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Lori Gonnet
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Stefan G Koenig
- Small Molecule Pharmaceutical Sciences, Genentech Inc. One DNA Way South San Francisco CA 94080 USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc. One DNA Way South San Francisco CA 94080 USA
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| |
Collapse
|
4
|
Amer MM, Hommelsheim R, Schumacher C, Kong D, Bolm C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss 2023; 241:79-90. [PMID: 36128995 DOI: 10.1039/d2fd00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An electro-mechanochemical protocol for the synthesis of vinylic sulfoximines has been developed. Utilising mechanochemically strained BaTiO3 nanoparticles, the catalytic active system is generated in situ by the reduction of copper(II) chloride. Various combinations of electron-donating and -withdrawing groups are tolerated, and the approach leads to products with difunctionalised double bonds in good to excellent yields. Attempts to add a sulfoximidoyl chloride to an alkyne proved difficult. Additions of a sulfonyl iodide to allenes and alkynes proceeded smoothly in the presence of silica gel without the need for activation by a piezoelectric material.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany. .,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
5
|
Boldyreva E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday Discuss 2023; 241:9-62. [PMID: 36519434 DOI: 10.1039/d2fd00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper presents a view on the achievements, challenges and prospects of mechanochemistry. The extensive reference list can serve as a good entry point to a plethora of mechanochemical literature.
Collapse
Affiliation(s)
- Elena Boldyreva
- Boreskov Institute of Catalysis SB RAS & Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
6
|
Synthesis of a Pyrrolo[1,2- a]quinazoline-1,5-dione Derivative by Mechanochemical Double Cyclocondensation Cascade. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175671. [PMID: 36080434 PMCID: PMC9478961 DOI: 10.3390/molecules27175671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022]
Abstract
N-heterocyclic compounds, such as quinazolinone derivatives, have significant biological activities. Nowadays, as the demand for environmentally benign, sustainable processes increases, the application of compounds from renewable sources, easily separable heterogeneous catalysts and efficient, alternative activation methods is of great importance. In this study, we have developed a convenient, green procedure for the preparation of 3a-methyl-2,3,3a,4-tetrahydropyrrolo[1,2-a]quinazoline-1,5-dione through a double cyclocondensation cascade using anthranilamide and ethyl levulinate. Screening of various heterogeneous Brønsted acid catalysts showed that Amberlyst® 15 is a convenient choice. By applying mechanochemical activation in the preparation of this N-heterotricyclic compound for the first time, it was possible to shorten the necessary time to three hours compared to the 24 h needed under conventional conditions to obtain a high yield of the target product.
Collapse
|
7
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Kraus FJL, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki-Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022; 61:e202205003. [PMID: 35638133 PMCID: PMC9543434 DOI: 10.1002/anie.202205003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The molecular Suzuki cross-coupling reaction was conducted mechanochemically, without solvents, ligands, or catalyst powders. Utilizing one catalytically active palladium milling ball, products could be formed in quantitative yield in as little as 30 min. In contrast to previous reports, the adjustment of milling parameters led to the complete elimination of abrasion from the catalyst ball, thus enabling the first reported systematic catalyst analysis. XPS, in situ XRD, and reference experiments provided evidence that the milling ball surface was the location of the catalysis, allowing a mechanism to be proposed. The versatility of the approach was demonstrated by extending the substrate scope to deactivated and even sterically hindered aryl iodides and bromides.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Claudio Beaković
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maike Mayer
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maximilian Wohlgemuth
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | | | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY)Notkestraße 8522607HamburgGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
8
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Leon Kraus FJ, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki‐Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wilm Pickhardt
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Claudio Beaković
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Maike Mayer
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | | | | | - Martin Etter
- DESY Accelerator Centre: Deutsches Elektronen-Synchrotron DESY GERMANY
| | - Sven Grätz
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Lars Borchardt
- Ruhr-Universitat Bochum Inorganic Chemistry Universitätsstraße 150 44801 Bochum GERMANY
| |
Collapse
|
9
|
Min S, Park B, Nedsaengtip J, Hyeok Hong S. Mechanochemical Direct Fluorination of Unactivated C(
sp
3
)−H Bonds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sehye Min
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Beomsoon Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jantakan Nedsaengtip
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
10
|
Kolcsár VJ, Szőllősi G. Ru-catalyzed mechanochemical asymmetric transfer hydrogenations in aqueous media using chitosan as chirality source. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Pfennig VS, Villella RC, Nikodemus J, Bolm C. Mechanochemical Grignard Reactions with Gaseous CO 2 and Sodium Methyl Carbonate. Angew Chem Int Ed Engl 2022; 61:e202116514. [PMID: 34942056 PMCID: PMC9306648 DOI: 10.1002/anie.202116514] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/10/2022]
Abstract
A one-pot, three-step protocol for the preparation of Grignard reagents from organobromides in a ball mill and their subsequent reactions with gaseous carbon dioxide (CO2 ) or sodium methyl carbonate providing aryl and alkyl carboxylic acids in up to 82 % yield is reported. Noteworthy are the short reaction times and the significantly reduced solvent amounts [2.0 equiv. for liquid assisted grinding (LAG) conditions]. Unexpectedly, aryl bromides with methoxy substituents lead to symmetric ketones as major products.
Collapse
Affiliation(s)
- Victoria S. Pfennig
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Romina C. Villella
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julia Nikodemus
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
12
|
Hwang S, Grätz S, Borchardt L. A guide to direct mechanocatalysis. Chem Commun (Camb) 2022; 58:1661-1671. [PMID: 35023515 PMCID: PMC8812528 DOI: 10.1039/d1cc05697b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Direct mechanocatalysis (DM) describes solvent-free catalytic reactions that are initiated by mechanical forces in mechanochemical reactors such as ball mills. The distinctive feature of DM is that the milling materials, e.g. the milling balls themselves are the catalyst of the reaction. In this article we follow the historical evolution of this novel concept and give a guide to this emerging, powerful synthesis tool. Within this perspective we seek to highlight the impact of the relevant milling parameters, the nature of the catalyst and potential additives, the scope of reactions that are currently accessible by this method, and the thus far raised hypotheses on the underlying mechanisms of direct mechanochemical transformations.
Collapse
Affiliation(s)
- Suhmi Hwang
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Sven Grätz
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Lars Borchardt
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
13
|
Pfennig VS, Villella RC, Nikodemus J, Bolm C. Mechanochemical Grignard Reactions with Gaseous CO
2
and Sodium Methyl Carbonate**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria S. Pfennig
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Romina C. Villella
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julia Nikodemus
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
14
|
Antil N, Kumar A, Akhtar N, Begum W, Chauhan M, Newar R, Rawat MS, Manna K. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst. Inorg Chem 2021; 61:1031-1040. [PMID: 34967211 DOI: 10.1021/acs.inorgchem.1c03098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal-organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation-hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co-H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base-metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Collapse
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manhar Singh Rawat
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Kolcsár VJ, Szőllősi G. Mechanochemical, Water‐Assisted Asymmetric Transfer Hydrogenation of Ketones Using Ruthenium Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202101501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - György Szőllősi
- Stereochemistry Research Group Eötvös Loránd Research Network University of Szeged 6720 Szeged, Eötvös utca 6 Hungary
| |
Collapse
|
16
|
Schumacher C, Molitor C, Smid S, Truong KN, Rissanen K, Bolm C. Mechanochemical Syntheses of N-Containing Heterocycles with TosMIC. J Org Chem 2021; 86:14213-14222. [PMID: 34405999 DOI: 10.1021/acs.joc.1c01529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mechanochemical van Leusen pyrrole synthesis with a base leads to 3,4-disubstitued pyrroles in moderate to excellent yields. The developed protocol is compatible with a range of electron-withdrawing groups and can also be applied to the synthesis of oxazoles. Attempts to mechanochemically convert the resulting pyrroles into porphyrins proved to be difficult.
Collapse
Affiliation(s)
- Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Claude Molitor
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Sabrina Smid
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Khai-Nghi Truong
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, Survontie 9 B, FI-40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, Survontie 9 B, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
17
|
Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front Chem 2021; 9:685789. [PMID: 34164379 PMCID: PMC8216082 DOI: 10.3389/fchem.2021.685789] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemical community.
Collapse
Affiliation(s)
| | - Elena V. Boldyreva
- Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Ana M. Belenguer
- Yusef Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Vladimir V. Boldyrev
- Novosibirsk State University, Novosibirsk, Russia
- Voevodski Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| |
Collapse
|
18
|
Lapshin OV, Boldyreva EV, Boldyrev VV. Role of Mixing and Milling in Mechanochemical Synthesis (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Sawama Y. Hydrogen Generation from Water, Alcohols etc. and Its Application to Organic Reactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Fiss BG, Richard AJ, Friščić T, Moores A. Mechanochemistry for sustainable and efficient dehydrogenation/hydrogenation. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydrogenation and dehydrogenation reactions are one of the pillars of the chemical industry, with applications from bulk chemicals to pharmaceuticals manufacturing. The ability to selectively add hydrogen across double and (or) triple bonds is key in the chemist’s toolbox and the enabling component in the development of sustainable processes. Traditional solution-based approaches to these reactions are tainted by significant consumption of energy and production of solvent waste. This review highlights the development and applications of recently emerged solvent-free approaches to conduct the hydrogenation of organic molecules using mechanochemistry, i.e., chemical transformations induced or sustained by mechanical force. In particular, we will show mechanochemical techniques such as ball-milling enabled catalytic or stoichiometric metal-mediated hydrogenation and dehydrogenation reactions that are simple, fast, and conducted under significantly milder conditions compared with traditional solution routes. Importantly, we highlight the current challenges and opportunities in this field, while also identifying exciting cases in which mechanochemical hydrogenation strategies lead to new, unique targets and reactivity.
Collapse
Affiliation(s)
- Blaine G. Fiss
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Austin J. Richard
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| |
Collapse
|
21
|
Tedjini R, Viveiros R, Casimiro T, Bonifácio VDB. One-pot three-step mechanically assisted synthesis and catalytic performance of tripodal metallic complexes. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All-green matters. Synthesis of the ligand and metal–ligand complexes and a model catalytic oxidation reaction can be sequentially processed under solventless conditions using a planetary ball mill, via fast, high yielding and selective processes.
Collapse
Affiliation(s)
- Rima Tedjini
- Laboratory of Applied Organic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32, Alia Bab-Ezzouar, 16111 Algiers, Algeria
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology
- FCT NOVA, NOVA University of Lisbon, Caparica, 2829-516 Caparica, Portugal
| | - Raquel Viveiros
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology
- FCT NOVA, NOVA University of Lisbon, Caparica, 2829-516 Caparica, Portugal
| | - Teresa Casimiro
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology
- FCT NOVA, NOVA University of Lisbon, Caparica, 2829-516 Caparica, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
22
|
Itoh M, Sawama Y, Niikawa M, Ban K, Kawajiri T, Sajiki H. Improvement Parameters of Hydrogen Generation from Water under Stainless-Steel-Mediated Ball Milling Conditions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miki Itoh
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Miki Niikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuho Ban
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takahiro Kawajiri
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
23
|
Pickhardt W, Grätz S, Borchardt L. Direct Mechanocatalysis: Using Milling Balls as Catalysts. Chemistry 2020; 26:12903-12911. [PMID: 32314837 PMCID: PMC7589287 DOI: 10.1002/chem.202001177] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Direct mechanocatalysis describes catalytic reactions under the involvement of mechanical energy with the distinct feature of milling equipment itself being the catalyst. This novel type of catalysis features no solubility challenges of the catalysts nor the substrate and on top offering most facile way of separation.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry IRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
24
|
Jones AC, Nicholson WI, Smallman HR, Browne DL. A Robust Pd-Catalyzed C–S Cross-Coupling Process Enabled by Ball-Milling. Org Lett 2020; 22:7433-7438. [DOI: 10.1021/acs.orglett.0c02418] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew C. Jones
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - William I. Nicholson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Harry R. Smallman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- School of Pharmacy, UCL, 29-39 Brunswick Square, London WC1X 1AX, U.K
| | - Duncan L. Browne
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- School of Pharmacy, UCL, 29-39 Brunswick Square, London WC1X 1AX, U.K
| |
Collapse
|
25
|
Sawama Y, Niikawa M, Ban K, Park K, Aibara SY, Itoh M, Sajiki H. Quantitative Mechanochemical Methanation of CO 2 with H 2O in a Stainless Steel Ball Mill. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Miki Niikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuho Ban
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Shin-yo Aibara
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Miki Itoh
- Procurement Quality Management Center, Canon Inc., 3-16-1 Shimonoge, Takatsu-ku, Kawasaki, Kanagawa 146-8501, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
26
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
27
|
Vogt CG, Grätz S, Lukin S, Halasz I, Etter M, Evans JD, Borchardt L. Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization. Angew Chem Int Ed Engl 2019; 58:18942-18947. [PMID: 31593331 PMCID: PMC6972522 DOI: 10.1002/anie.201911356] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Indexed: 11/10/2022]
Abstract
The milling ball is the catalyst. We introduce a palladium-catalyzed reaction inside a ball mill, which makes catalyst powders, ligands, and solvents obsolete. We present a facile and highly sustainable synthesis concept for palladium-catalyzed C-C coupling reactions, exemplarily showcased for the Suzuki polymerization of 4-bromo or 4-iodophenylboronic acid giving poly(para-phenylene). Surprisingly, we observe one of the highest degrees of polymerization (199) reported so far.
Collapse
Affiliation(s)
- Christian G. Vogt
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| | - Sven Grätz
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Stipe Lukin
- Laboratory for Green SynthesisRuđer Bošković InstituteBijenicka 54HR-10000ZagrebCroatia
| | - Ivan Halasz
- Laboratory for Green SynthesisRuđer Bošković InstituteBijenicka 54HR-10000ZagrebCroatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY)22607HamburgGermany
| | - Jack D. Evans
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| | - Lars Borchardt
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
28
|
Vogt CG, Grätz S, Lukin S, Halasz I, Etter M, Evans JD, Borchardt L. Direkte Mechanokatalyse: Palladium als Mahlmaterial und Katalysator in der mechanochemischen Suzuki‐Polymerisation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christian G. Vogt
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
| | - Sven Grätz
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
- Anorganische Chemie IRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Stipe Lukin
- Labor für Grüne SyntheseRuđer Bošković Institut Bijenicka 54 HR-10000 Zagreb Kroatien
| | - Ivan Halasz
- Labor für Grüne SyntheseRuđer Bošković Institut Bijenicka 54 HR-10000 Zagreb Kroatien
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) 22607 Hamburg Deutschland
| | - Jack D. Evans
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
| | - Lars Borchardt
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
- Anorganische Chemie IRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
29
|
Sawama Y, Niikawa M, Sajiki H. Stainless Steel Ball Milling for Hydrogen Generation and its Application for Reduction. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.1070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
30
|
Sawama Y, Ban K, Akutsu-Suyama K, Nakata H, Mori M, Yamada T, Kawajiri T, Yasukawa N, Park K, Monguchi Y, Takagi Y, Yoshimura M, Sajiki H. Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS OMEGA 2019; 4:11522-11531. [PMID: 31460258 PMCID: PMC6682079 DOI: 10.1021/acsomega.9b01130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Catalytic arene reduction was effectively realized by heating in 2-propanol/water in the presence of Pt on carbon (Pt/C) and metallic Fe. 2-Propanol acted as a hydrogen source, obviating the need for flammable (and hence, dangerous and hard-to-handle) hydrogen gas, while metallic Fe acted as an essential co-catalyst to promote reduction. The chemical states of Pt and Fe in the reaction mixture were determined by X-ray absorption near-edge structure analysis, and the obtained results were used to suggest a plausible reaction mechanism, implying that catalytic reduction involved Pt- and Fe-mediated single-electron transfer and the dehydrogenation of 2-propanol.
Collapse
Affiliation(s)
- Yoshinari Sawama
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuho Ban
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuhiro Akutsu-Suyama
- Neutron
Science and Technology Center, Comprehensive
Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai-Mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Hiroki Nakata
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Misato Mori
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuyoshi Yamada
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Takahiro Kawajiri
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoki Yasukawa
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yasunari Monguchi
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yukio Takagi
- Catalyst
Development Center, N. E. Chemcat Corporation, 678 Ipponmatsu, Numazu, Shizuoka 410-0314, Japan
| | - Masatoshi Yoshimura
- Catalyst
Development Center, N. E. Chemcat Corporation, 678 Ipponmatsu, Numazu, Shizuoka 410-0314, Japan
| | - Hironao Sajiki
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
31
|
Bolm C, Hernández JG. Mechanochemistry of Gaseous Reactants. Angew Chem Int Ed Engl 2019; 58:3285-3299. [DOI: 10.1002/anie.201810902] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
32
|
Affiliation(s)
- Carsten Bolm
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - José G. Hernández
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
33
|
Michalchuk AAL, Tumanov IA, Boldyreva EV. Ball size or ball mass – what matters in organic mechanochemical synthesis? CrystEngComm 2019. [DOI: 10.1039/c8ce02109k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of milling ball mass, size and material are isolated for a model mechanochemical co-crystallisation.
Collapse
Affiliation(s)
- Adam A. L. Michalchuk
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- EaStCHEM School of Chemistry
- University of Edinburgh
| | - Ivan A. Tumanov
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- Boreskov Institute of Catalysis
- Siberian Branch of the Russian Academy of Sciences
| | - Elena V. Boldyreva
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- Boreskov Institute of Catalysis
- Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
34
|
Portada T, Margetić D, Štrukil V. Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives. Molecules 2018; 23:molecules23123163. [PMID: 30513686 PMCID: PMC6321105 DOI: 10.3390/molecules23123163] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click-type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro-precursors on milligram and gram scale in excellent isolated yields.
Collapse
Affiliation(s)
- Tomislav Portada
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vjekoslav Štrukil
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Cao Q, Howard JL, Wheatley E, Browne DL. Mechanochemical Activation of Zinc and Application to Negishi Cross-Coupling. Angew Chem Int Ed Engl 2018; 57:11339-11343. [PMID: 30015403 PMCID: PMC6220771 DOI: 10.1002/anie.201806480] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/26/2022]
Abstract
A form independent activation of zinc, concomitant generation of organozinc species and engagement in a Negishi cross-coupling reaction via mechanochemical methods is reported. The reported method exhibits a broad substrate scope for both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings and is tolerant to many important functional groups. The method may offer broad reaching opportunities for the in situ generation organometallic compounds from base metals and their concomitant engagement in synthetic reactions via mechanochemical methods.
Collapse
Affiliation(s)
- Qun Cao
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3EQUK
| | - Joseph L. Howard
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3EQUK
| | - Emilie Wheatley
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3EQUK
| | - Duncan L. Browne
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3EQUK
| |
Collapse
|
36
|
Cao Q, Howard JL, Wheatley E, Browne DL. Mechanochemical Activation of Zinc and Application to Negishi Cross-Coupling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806480] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qun Cao
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3EQ UK
| | - Joseph L. Howard
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3EQ UK
| | - Emilie Wheatley
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3EQ UK
| | - Duncan L. Browne
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3EQ UK
| |
Collapse
|
37
|
Schumacher C, Crawford DE, RaguŽ B, Glaum R, James SL, Bolm C, Hernández JG. Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson's catalyst. Chem Commun (Camb) 2018; 54:8355-8358. [PMID: 29993055 DOI: 10.1039/c8cc04487b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mechanochemistry enabled the selective synthesis of the recherché orange polymorph of Wilkinson's catalyst [RhCl(PPh3)3]. The mechanochemically prepared Rh-complex catalysed the solvent-free dehydrogenation of Me2NH·BH3 in a ball mill. The in situ-generated hydrogen (H2) could be utilised for Rh-catalysed hydrogenation reactions by ball milling.
Collapse
Affiliation(s)
- Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Martina K, Baricco F, Tagliapietra S, Moran MJ, Cravotto G, Cintas P. Highly efficient nitrobenzene and alkyl/aryl azide reduction in stainless steel jars without catalyst addition. NEW J CHEM 2018. [DOI: 10.1039/c8nj04240c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochemically promoted reduction of nitro and azido derivatives may be successfully performed in stainless steel jars without catalyst addition.
Collapse
Affiliation(s)
- Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin
- 10125 Turin
- Italy
| | - Francesca Baricco
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin
- 10125 Turin
- Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin
- 10125 Turin
- Italy
| | - Maria Jesus Moran
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin
- 10125 Turin
- Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin
- 10125 Turin
- Italy
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- 06006 Badajoz
- Spain
| |
Collapse
|