1
|
Lata R, Gond SK. Antibacterial and antioxidant potentials, detection of host origin compounds, and metabolic profiling of endophytic Bacillus spp. isolated from Rauvolfia serpentina (L.) Benth. ex Kurz. Sci Rep 2025; 15:2094. [PMID: 39814849 PMCID: PMC11736096 DOI: 10.1038/s41598-024-84893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts. Nine bacterial isolates were obtained from R. serpentina leaves. These isolates exhibited positive results in various biochemical tests including indole production, methyl red, Voges-Proskauer, citrate utilization, catalase and oxidase production, nitrate reduction, oxidative fermentation, and citrate reduction tests. Endophytic isolates RSLB3 and RSLB18 exhibited most potential antibacterial activity against tested human pathogenic bacteria and were identified as Bacillus sp. The extract of RSLB3 and RSLB18 also showed significant antioxidant activity compared to leaf extract. The total phenol content was similar in both these isolates while flavonoids content and DPPH scavenging activity was higher in isolate RSLB3. RPHPLC analysis confirmed the presence of reserpine in bacterial metabolites when compared to a standard reference. UHPLC-HRMS profiling unveiled a diverse range of host-derived compounds and reaction intermediates with known and unknown bioactive properties in leaf extract, RSLB3, and RSLB18. To our knowledge, this is the first study to achieve a comprehensive profiling.
Collapse
Affiliation(s)
- Rusi Lata
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Hayakawa I, Isogai T, Takanishi J, Asai S, Ando C, Tsutsumi T, Watanabe K, Sakakura A, Tsunematsu Y. Synthesis and biological evaluation of coprinoferrin, an acylated tripeptide hydroxamate siderophore. Org Biomol Chem 2024; 22:831-837. [PMID: 38175167 DOI: 10.1039/d3ob01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Coprinoferrin (CPF), originally isolated from a genetically engineered strain (ΔlaeA) of the mushroom fungus Coprinopsis cinerea, is an acylated tripeptide hydroxamate consisting of tandem aligned N5-hexanoyl-N5-hydroxy-L-ornithine with modifications of N-acetyl and C-carboxamide. These unique chemical properties make CPF an iron(III) binder (siderophore), which helps in iron acquisition from the environment and promotes hyphal growth as well as fruiting body formation in C. cinerea. However, CPF's detailed mode of action remains enigmatic. In this study, we have accomplished the synthesis of CPF from N-Boc-L-glutamic acid 5-benzyl ester. The physicochemical characteristics, spectroscopic features, and biological activity observed in the synthetic CPF closely match those of natural CPF. This alignment provides unequivocal confirmation of the proposed chemical structure, facilitating a deeper understanding of its physiological role in nature, particularly in fruiting body formation.
Collapse
Affiliation(s)
- Ichiro Hayakawa
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Tomoki Isogai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Jun Takanishi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shihori Asai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Chika Ando
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| | - Tomohiro Tsutsumi
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Akira Sakakura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuta Tsunematsu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
3
|
Diaz A, G S, Balaji S, Ramakrishnan J, Thamotharan S, Ramakrishnan V. Comprehensive screening of marine metabolites against class B1 metallo-β-lactamases of Klebsiella pneumoniae using two-pronged in silico approach. J Biomol Struct Dyn 2023; 41:10930-10943. [PMID: 36541935 DOI: 10.1080/07391102.2022.2159532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The emergence of antibiotic resistance is one of the major global threats in healthcare. Metallo-β-Lactamases (MBL) are a class of enzymes in bacteria that cleave β-lactam antibiotics and confer resistance. MBLs are further divided into subclasses B1, B2 and B3. Of these, subclasses B1-MBLs (including NDM-1, VIM-2 and IMP-1) constitute the clinically prevalent lactamases conferring resistance. To date, no effective drugs are available clinically against MBLs. In this work, we aim to identify potent inhibitors for the B1 subclass of MBL from available marine metabolites in Comprehensive Marine Natural Product database through integrated in silico approaches. We have used two methods, namely, the high-throughput strategy and the pharmacophore-based strategy to identify potential inhibitors from marine metabolites. High-throughput virtual screening identified N-methyl mycosporine-Ser, which had the highest binding affinity to NDM-1. The pharmacophore-based approach based on co-crystallized ligands identified makaluvic acid and didymellamide with higher binding affinity across B1-MBLs. Taking into account of the advantage of a pharmacophore model-based approach with higher binding affinity, we conclude that both makaluvic acid and didymellamide show potential broad-spectrum effects by binding to all three B1-MBL receptors. The study also indicates the need to take multiple in silico approaches to screen and identify novel inhibitors. Together, our study reveals promising inhibitors that can be identified from marine systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aathithya Diaz
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shripushkar G
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shruti Balaji
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Subbiah Thamotharan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Vigneshwar Ramakrishnan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Evenson GE, Powell WC, Hinds AB, Walczak MA. Catalytic Amide Activation with Thermally Stable Molybdenum(VI) Dioxide Complexes. J Org Chem 2023; 88:6192-6202. [PMID: 37027833 PMCID: PMC10422866 DOI: 10.1021/acs.joc.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Oxazolines and thiazolines are important constituents of bioactive natural products and pharmaceuticals. Here, we report the development of an effective and practical method of oxazoline and thiazoline formation, which can facilitate the synthesis of natural products, chiral ligands, and pharmaceutical intermediates. This method capitalized on a Mo(VI) dioxide catalyst stabilized by substituted picolinic acid ligands, which is tolerant to many functional groups that would otherwise be sensitive to highly electrophilic alternative reagents.
Collapse
Affiliation(s)
- Garrett E Evenson
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Wyatt C Powell
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Aaron B Hinds
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- University of Colorado, Department of Chemistry, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Kamińska K, Mular A, Olshvang E, Nolte NM, Kozłowski H, Wojaczyńska E, Gumienna-Kontecka E. The diversity and utility of arylthiazoline and aryloxazoline siderophores: challenges of total synthesis. RSC Adv 2022; 12:25284-25322. [PMID: 36199325 PMCID: PMC9450019 DOI: 10.1039/d2ra03841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Siderophores are unique ferric ion chelators produced and secreted by some organisms like bacteria, fungi and plants under iron deficiency conditions. These molecules possess immense affinity and specificity for Fe3+ and other metal ions, which attracts great interest due to the numerous possibilities of application, including antibiotics delivery to resistant bacteria strains. Total synthesis of siderophores is a must since the compounds are present in natural sources at extremely small concentrations. These molecules are extremely diverse in terms of molecular structure and physical and chemical properties. This review is focused on achievements and developments in the total synthesis strategies of naturally occurring siderophores bearing arylthiazoline and aryloxazoline units. A review presents advances in total synthesis of thiazoline and oxazoline-bearing siderophores, unique ferric ion chelators found in some bacteria, fungi and plants.![]()
Collapse
Affiliation(s)
- Karolina Kamińska
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Mular
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Evgenia Olshvang
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Nils Metzler Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
6
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
7
|
Abstract
The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites.
Collapse
|
8
|
Oh J, Kang D, Hong S, Kim SH, Choi JH, Seo J. Formation of a tris(catecholato) iron(III) complex with a nature-inspired cyclic peptoid ligand. Dalton Trans 2021; 50:3459-3463. [PMID: 33599663 DOI: 10.1039/d1dt00091h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Siderophore-mimicking macrocyclic peptoids were synthesized. Peptoid 3 with intramolecular hydrogen bonds showed an optimally arranged primary coordination sphere leading to a stable catecholate-iron complex. The tris(catecholato) structure of 3-Fe(iii) was determined with UV-vis, fluorescence, and EPR spectroscopies and DFT calculations. The iron binding affinity was comparable to that of deferoxamine, with enhanced stability upon air exposure.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Dahyun Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150 Bukahyun-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Sun H Kim
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150 Bukahyun-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
10
|
Kim S, Lee H, Song WY, Kim HJ. Total Syntheses of Fimsbactin A and B and Their Stereoisomers to Probe the Stereoselectivity of the Fimsbactin Uptake Machinery in Acinetobacter baumannii. Org Lett 2020; 22:2806-2810. [PMID: 32212712 DOI: 10.1021/acs.orglett.0c00790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stereoselective synthesis of fimsbactin A, a siderophore of the human pathogen Acinetobacter baumannii, was established. Based on this synthetic route, various fimsbactin stereoisomeric analogues were generated and tested for their iron delivery activity for A. baumannii. This investigation revealed that the fimsbactin uptake machinery in this bacterium was indeed highly stereoselective in substrate recognition.
Collapse
Affiliation(s)
- Soojeung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Haeun Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Woon Young Song
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.,Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, Acosta-Guzmán P. Recent Progress in the Synthesis of Naturally Occurring Siderophores. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis; Bio and Organocatalysis; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Yovanny Quevedo-Acosta
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
- Institute of Chemistry; Bio and Organocatalysis Chemistry Department; State University of Campinas; Rua Monteiro Lobato 270 13083-862 Campinas Brazil
| | - Camilo Mahecha-Mahecha
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Paola Acosta-Guzmán
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| |
Collapse
|
12
|
Song WY, Kim HJ. Current biochemical understanding regarding the metabolism of acinetobactin, the major siderophore of the human pathogen Acinetobacter baumannii, and outlook for discovery of novel anti-infectious agents based thereon. Nat Prod Rep 2019; 37:477-487. [PMID: 31661538 DOI: 10.1039/c9np00046a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: 1994 to 2019Owing to the rapid increase in nosocomial infections by antibiotic-resistant Acinetobacter baumannii and the paucity of effective treatment options for such infections, interest in the virulence factors involved in its successful dissemination and propagation in the human host have escalated in recent years. Acinetobacin, a siderophore of A. baumannii, is responsible for iron acquisition under nutritional depravation and has been shown to be one of the key virulence factors for this bacterium. In this Highlight, recent findings regarding various chemical and biological aspects of acinetobactin metabolism closely related to the fitness of A. baumannii at the infection sites have been described. In addition, several notable efforts for identifying novel anti-infectious agents based thereon have been discussed.
Collapse
Affiliation(s)
- Woon Young Song
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | |
Collapse
|