1
|
Lindsay CA, Tan CY, Krishnan D, Uchenik D, Eugenio GDA, Salinas ED, de Blanco EJC, Kinghorn AD, Rakot Ondraibe HL. Steroids and Epicoccarines from Penicillium aurantiancobrunneum. PHYTOCHEMISTRY LETTERS 2024; 63:79-86. [PMID: 39280884 PMCID: PMC11391924 DOI: 10.1016/j.phytol.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Lichens are symbiotic organisms comprised of mycobionts and photobiont partners. They are known to produce bioactive secondary metabolites and most of these are biosynthesized by mycobionts. Investigations of cultures of isolated lichen-associated fungi have shown promise for the discovery of cytotoxic compounds. Thus, the lichen-associated fungus Penicillium aurantiacobrunneum was studied for its potential to produce novel compounds and the new sterols (20S*)-hydroxy-24(28)-dehydrocampesterol (1), 7α-methoxy-8β-hydroxypaxisterol (2), 14-nor-epicoccarine A (3) and 14-nor-epicoccarine B (4), as well as the known compound PF1140 (5), were isolated. The structures of these compounds were elucidated using methods including nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HRESIMS). Following cytotoxicity assays, compound 1 demonstrated activity against the pancreatic adenocarcinoma epithelial HPAC cell line at 17.76 ± 5.35 μM. Since the structures of compounds 3 and 4 were very similar to tetramic acid derivatives that were reported to be biosynthesized from a polyketide synthase- non-ribosomal peptide synthetase (PKS-NRPS) hybrid pathway, a plausible biosynthetic route for production in P. aurantiacobrunneum is proposed herein.
Collapse
Affiliation(s)
- Charmaine A Lindsay
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Choon Y Tan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Deepa Krishnan
- Instrumentation Facility, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Dmitriy Uchenik
- Instrumentation Facility, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gerardo D Anaya Eugenio
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Instrumentation Facility, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Eric D Salinas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Instrumentation Facility, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Esperanza J Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
2
|
Wang RZ, Su BJ, Chen YC, Xiao TM, Yan BY, Yu LY, Si SY, Wu DL, Chen MH. Three new isocoumarin analogues from an endolichenic fungus Aspergillus flavus CPCC 400810. Nat Prod Res 2024; 38:3021-3027. [PMID: 37154381 DOI: 10.1080/14786419.2023.2209820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Five isocoumarin derivatives including three new compounds, aspermarolides A-C (1-3), and two known analogues, 8-methoxyldiaporthin (4) and diaporthin (5) were obtained from the culture extract of Aspergillus flavus CPCC 400810. The structures of these compounds were elucidated by spectroscopic methods. The double bond geometry of 1 and 2 were assigned by the coupling constants. The absolute configuration of 3 was determined by electronic circular dichroism experiment. All compounds showed no cytotoxic activities against the two human cancer cells HepG2 and Hela.
Collapse
Affiliation(s)
- Ren-Zhong Wang
- Department of Traditional Chinese medicine and Natural Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bing-Jie Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Chuan Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Tong-Mei Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bi-Ying Yan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shu-Yi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - De-Ling Wu
- Department of Traditional Chinese medicine and Natural Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ming-Hua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
3
|
He M, Wang JM, Xu S, Ding YW, Hu CX, Sun H, Yu P, Yan RY. Three undescribed compounds from Diaporthe biguttusis T-24, an endophytic fungus isolated from Ligularia fischeri. Nat Prod Res 2024; 38:2786-2791. [PMID: 37493494 DOI: 10.1080/14786419.2023.2236279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
Diaporthpyran A (1), diaporthester E (2) and diaporthester F (3), three new compounds along with four known compounds (4-7) were isolated from the crude extract of Diaporthe biguttusis T-24, an endophytic fungus isolated from Ligularia fischeri. The planar structures of compounds 1-3 including the relative and absolute configurations were elucidated on the basis of HRMS, NMR, J-based coupling constant analysis, CD, and calculated ECD analysis. In addition, compounds 1 and 3 were evaluated for their cytotoxic activities against four human cancer cell lines.
Collapse
Affiliation(s)
- Min He
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jia-Ming Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuai Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yu-Wei Ding
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Chen-Xu Hu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hua Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ren-Yi Yan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
4
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Zhang W, Ran Q, Li H, Lou H. Endolichenic Fungi: A Promising Medicinal Microbial Resource to Discover Bioactive Natural Molecules-An Update. J Fungi (Basel) 2024; 10:99. [PMID: 38392771 PMCID: PMC10889713 DOI: 10.3390/jof10020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful and structurally novel secondary metabolites to resist external environmental stresses. The endofungi that live in and coevolve with lichens can also generate abundant secondary metabolites with novel structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with hosts, and they have been considered as strategically significant medicinal microresources for the discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great importance in the fundamental research field of natural product chemistry. In this work, we conducted a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic fungi regarding their origin, distribution, structural characteristics, and biological activity, as well as recent advances in their medicinal applications, by summarizing research achievements since 2015. Moreover, the current research status and future research trends regarding their chemical components are discussed and predicted. A systematic review covering the fundamental chemical research advances and pharmaceutical potential of the secondary metabolites from endolichenic fungi is urgently required to facilitate our better understanding, and this review could also serve as a critical reference to provide valuable insights for the future research and promotion of natural products from endolichenic fungi.
Collapse
Affiliation(s)
- Wenge Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Qian Ran
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Hehe Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
6
|
Chen Y, Xiao T, Guo S, Chang S, Xi X, Su B, Zhang T, Yu L, Zhao W, Wu J, Li Y, Si S, Chen M. Unexpected Noremestrin with a Sulfur-Bearing 15-Membered Macrocyclic Lactone from Emericella sp. 1454. Org Lett 2024; 26:1-5. [PMID: 37988124 DOI: 10.1021/acs.orglett.3c02958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Two previous unreported epipolythiodioxopiperazines of the emestrin family, namely, noremestrin A (1) and secoemestrin E (2), were successfully isolated from the fungal source Emericella sp. 1454. Employing comprehensive spectroscopic techniques, such as high-resolution electrospray ionization mass spectrometry, infrared, and nuclear magnetic resonance (NMR), along with NMR and electronic circular dichroism calculations, the chemical structures of compounds 1 and 2 were elucidated. Particularly noteworthy is the distinctive nature of noremestrin A, representing the inaugural instance of a noremestrin variant incorporating a sulfur-bearing 15-membered macrocyclic lactone moiety. Compounds 1 and 2 exhibited weak cytotoxic activities against the human chronic myelocytic leukemia cell lines MEG-01 and K562.
Collapse
Affiliation(s)
- Yuchuan Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Tongmei Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyue Guo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Shanshan Chang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaoming Xi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Bingjie Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jingshuai Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
7
|
Zhu XX, Liu WQ, Shi ZX, Zhu HY, Fan SQ, Zhang J, Liu WY, Xu LJ, Ren QJ, Feng F, Xu J. Meroterpenoids with divers' rings systems from Phyllosticta capitalensis and their anti-inflammatory activity. PHYTOCHEMISTRY 2024; 217:113918. [PMID: 37952710 DOI: 10.1016/j.phytochem.2023.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Four undescribed sesquiterpene-shikimates (1-4), eight undescribed monoterpene-shikimates (5-12), together with two known ones were isolated and identified from the 95% ethanol extract of the plant endophytic fungus Phyllosticta capitalensis cultured in rice medium. Capitalensis A (1) was identified as the first sesquiterpene-shikimate-conjugated spirocyclic meroterpenoid degradation product, while capitalensis B (2) is a sesquiterpene-shikimate-conjugated spirocyclic meroterpenoid with a unique D-ring formed by a C-2-O-C-9' connection. The structures of these previously undescribed compounds were elucidated by multiple techniques, including IR, HR-ESI-MS, and NMR analysis. Furthermore, their absolute configurations were established through the comprehensive approach that involved the calculations of ECD spectra, optical rotation values, and single-crystal X-ray analysis. Moreover, the anti-inflammatory activity of all isolated compounds was evaluated using a lipopolysaccharide (LPS)-induced inflammation model in BV2 microglial cells. Meanwhile, these compounds exhibited activity in inhibiting NO production. Four compounds, capitalensis C (3), capitalensis D (4), 15-hydroxyl tricycloalternarene 5b (13) and guignarenone A (14) showed strong inhibitory effects with IC50 values of 21.6 ± 1.33, 12.2 ± 1.08, 18.6 ± 1.27, and 15.8 ± 1.20 μM, respectively. In addition, the structure-activity relationship of the anti-inflammatory activity of the compounds was discussed.
Collapse
Affiliation(s)
- Xiao-Xia Zhu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wan-Qiu Liu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhao-Xia Shi
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Huang-Yao Zhu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Si-Qi Fan
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jie Zhang
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li-Jun Xu
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, PR China
| | - Qing-Jia Ren
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, PR China
| | - Feng Feng
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, PR China.
| | - Jian Xu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China; Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, PR China.
| |
Collapse
|
8
|
Asmaey MA. Unravelling the Secrets of α-Pyrones from Aspergillus Fungi: A Comprehensive Review of Their Natural Sources, Biosynthesis, and Biological Activities. Chem Biodivers 2023; 20:e202301185. [PMID: 37823671 DOI: 10.1002/cbdv.202301185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aspergillus, one of the most product-rich and genetically robust genera, contains a diverse range of species with potential economic and ecological implications. Chemically, Aspergillus is one of the essential sources of polyketides, alkaloids, diphenyl ethers, diketopiperazines, and other miscellaneous compounds, displaying a variety of pharmacological activities. The α-pyrones are unsaturated six-membered lactones. Although α-pyrone has a small structure, it is responsible for the structural diversity of several natural and synthetic compounds and multiple biological activities. In this review, we have summarized approximately 178 α-pyrone containing metabolites derivatives identified/reported from terrestrial, marine, endophytic, and filamentous Aspergillus species, including their sources, biological properties, and biosynthetic pathways until mid-2023, for the first time. This review is the first to compile and analyze the available data on α-pyrone metabolites from Aspergillus, which could facilitate further research and innovation in this field. Additionally, it offers a valuable source of scaffolds for future bioactive drug development, as some of these metabolites have shown potent antimicrobial, anti-inflammatory, and anticancer effects. Therefore, this review has significant implications for the advancement of natural product chemistry, pharmacology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Mostafa A Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
9
|
Jiao S, Huang H, Wang L, Wuken S, Liu C, Kang L, Liu J, Hu Z, Tu P, Huang L, Chai X. Alashanines A-C, Three Quinone-Terpenoid Alkaloids from Syringa pinnatifolia with Cytotoxic Potential by Activation of ERK. J Org Chem 2023. [PMID: 37178146 DOI: 10.1021/acs.joc.3c00369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Three quinone-terpenoid alkaloids, alashanines A-C (1-3), possessing an unprecedented 6/6/6 tricyclic conjugated backbone and quinone-quinoline-fused characteristic, were isolated from the peeled stems of Syringa pinnatifolia. Their structures were elucidated by analysis of extensive spectroscopic data and quantum chemical calculations. A hypothesis of biosynthesis pathways for 1-3 was proposed on the basis of the potential precursor iridoid and benzoquinone. Compound 1 exhibited antibacterial activities against Bacillus subtilis and cytotoxicity against HepG2 and MCF-7 human cancer cell lines. The results of the cytotoxic mechanism revealed that compound 1 induced apoptosis of HepG2 cells through activation of ERK.
Collapse
Affiliation(s)
- Shungang Jiao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Huiming Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Lifang Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Shana Wuken
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Changxin Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Lulu Kang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xingyun Chai
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
10
|
Jiang Y, Chen C, Zhu H, Li Q, Mao L, Liao H, Nan Y, Wang Z, Zhou H, Zhou Q, Zhang Y. An indole diketopiperazine alkaloid and a bisabolane sesquiterpenoid with unprecedented skeletons from Aspergillus fumigatus. Org Biomol Chem 2023; 21:2236-2242. [PMID: 36815264 DOI: 10.1039/d2ob02220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fumitryprostatin A (1), the first example of an indole diketopiperazine alkaloid with a tricyclic 5/6/5 skeleton characterized by a dipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ring system decorated with a prenylated indole moiety, and fuminoid A (2), a sesquiterpenoid with a bicyclo[3.2.1]octane ring featuring a novel carbon skeleton via the transformation of the methyl, were isolated from the fungus Aspergillus fumigatus along with six known diketopiperazine alkaloids. The structure with the absolute configuration of 1 was determined based on spectroscopic analyses and X-ray crystallographic analysis, while the configuration of 2 was assigned tentatively by 13C NMR data with DP4+ probability analyses and ECD calculations. A plausible biosynthetic pathway for 1 was proposed starting from L-Trp and L-Pro via normal indole diketopiperazine. Compound 1 exhibited moderate cytotoxic activity with an IC50 value of 14.6 μM, while compound 8 exhibited moderate immunosuppressive activity in vitro.
Collapse
Affiliation(s)
- Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyang Nan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hongjian Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Tammam MA, Gamal El-Din MI, Abood A, El-Demerdash A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Adv 2023; 13:8049-8089. [PMID: 36909763 PMCID: PMC9999372 DOI: 10.1039/d2ra08245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Microorganisms still remain the main hotspots in the global drug discovery avenue. In particular, fungi are highly prolific producers of vast structurally diverse specialized secondary metabolites, which have displayed a myriad of biomedical potentials. Intriguingly, isocoumarins is one distinctive class of fungal natural products polyketides, which demonstrated numerous remarkable biological and pharmacological activities. This review article provides a comprehensive state-of-the-art over the period 2000-2022 about the discovery, isolation, classifications, and therapeutic potentials of isocoumarins exclusively reported from fungi. Indeed, a comprehensive list of 351 structurally diverse isocoumarins were documented and classified according to their fungal sources [16 order/28 family/55 genera] where they have been originally discovered along with their reported pharmacological activities wherever applicable. Also, recent insights around their proposed and experimentally proven biosynthetic pathways are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Amira Abood
- Chemistry of Natural and Microbial Products Department, National Research Center Dokki Cairo Egypt
- School of Bioscience, University of Kent Canterbury UK
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Sciences, Mansoura University Mansoura 35516 Egypt
- Department of Biochemistry and Metabolism, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
12
|
Song J, Zhang B, Li M, Zhang J. The current scenario of naturally occurring indole alkaloids with anticancer potential. Fitoterapia 2023; 165:105430. [PMID: 36634875 DOI: 10.1016/j.fitote.2023.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Naturally occurring indole alkaloids are ubiquitously present in nature and possess extensive biological properties and structural diversity. Mechanistically, naturally occurring indole alkaloids have the potential to inhibit cancer cell proliferation, arrest cell cycle and induce apoptosis. Accordingly, naturally occurring indole alkaloids exhibit promising activity against both drug-sensitive and drug-resistant cancers including multidrug-resistant forms. Therefore, naturally occurring indole alkaloids constitute an important source of anticancer drug leads and candidates. The goal of this review is to highlight the current scenario of naturally occurring indole alkaloids with anticancer potential, covering articles published from 2018 to present. The names, sources, and antiproliferative activity are discussed to continuously open up a map for the remarkable exploration of more effective candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Ming Li
- Department of Oncology and Hematology, People's Hospital of Zhoucun District, Zibo 255300, China
| | - Jinbiao Zhang
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo 255300, China.
| |
Collapse
|
13
|
Exploration of the Main Antibiofilm Substance of Lactobacillus plantarum ATCC 14917 and Its Effect against Streptococcus mutans. Int J Mol Sci 2023; 24:ijms24031986. [PMID: 36768304 PMCID: PMC9916977 DOI: 10.3390/ijms24031986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Dental plaque, a complex biofilm system established by cariogenic bacteria such as Streptococcus mutans (S. mutans), is the initiator of dental caries. Studies have found that the cell-free supernatant (CFS) of Lactobacilli could inhibit S. mutans biofilm formation. However, the main antibiofilm substance of the Lactobacilli CFS that acts against S. mutans is unclear. The present study found that the CFS of Lactobacillus plantarum (L. plantarum) ATCC 14917 had the strongest antibiofilm effect among the five tested oral Lactobacilli. Further bioassay-guided isolation was performed to identify the main antibiofilm substance. The antibiofilm effect of the end product, named 1-1-4-3, was observed and the structure of it was elucidated by using Q-TOF MS, 2D NMR and HPLC. The results showed that several components in the CFS had an antibiofilm effect; however, the effect of 1-1-4-3 was the strongest, as it could reduce the generation of exopolysaccharides and make the biofilm looser and thinner. After structure elucidation and validation, 1-1-4-3 was identified as a mixture of lactic acid (LA) and valine. Additionally, LA was shown to be the main antibiofilm substance in 1-1-4-3. In summary, this study found that the antibiofilm effect of the L. plantarum CFS against S. mutans was attributable to the comprehensive effect of multiple components, among which LA played a dominant role.
Collapse
|
14
|
Chang S, Yan B, Chen Y, Zhao W, Gao R, Li Y, Yu L, Xie Y, Si S, Chen M. Cytotoxic hexadepsipeptides and anti-coronaviral 4-hydroxy-2-pyridones from an endophytic Fusarium sp. Front Chem 2023; 10:1106869. [PMID: 36712984 PMCID: PMC9877305 DOI: 10.3389/fchem.2022.1106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Three new hexadepsipeptides (1-3), along with beauvericin (4), beauvericin D (5), and four 4-hydroxy-2-pyridone derivatives (6-9) were isolated from the endophytic fungus Fusarium sp. CPCC 400857 that derived from the stem of tea plant. Their structures were determined by extensive 1D and 2D NMR, and HRESIMS analyses. The absolute configuration of hexadepsipeptides were elucidated by the advanced Marfey's method and chiral HPLC analysis. Compounds 4, and 7-9 displayed the cytotoxicity against human pancreatic cancer cell line, AsPC-1 with IC50 values ranging from 3.45 to 29.69 μM, and 7 and 8 also showed the antiviral activity against the coronavirus (HCoV-OC43) with IC50 values of 13.33 and 6.65 μM, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuyi Si
- *Correspondence: Shuyi Si, ; Minghua Chen,
| | | |
Collapse
|
15
|
Kalra R, Conlan XA, Goel M. Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnol Adv 2023; 62:108072. [PMID: 36464145 DOI: 10.1016/j.biotechadv.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Several research studies have shown that lichens are productive organisms for the synthesis of a broad range of secondary metabolites. Lichens are a self-sustainable stable microbial ecosystem comprising an exhabitant fungal partner (mycobiont) and at least one or more photosynthetic partners (photobiont). The successful symbiosis is responsible for their persistence throughout time and allows all the partners (holobionts) to thrive in many extreme habitats, where without the synergistic relationship they would be rare or non-existent. The ability to survive in harsh conditions can be directly correlated with the production of some unique metabolites. Despite the potential applications, these unique metabolites have been underutilised by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability and technical challenges involved in their artificial cultivation. However, recent development of biotechnological tools such as molecular phylogenetics, modern tissue culture techniques, metabolomics and molecular engineering are opening up a new opportunity to exploit these compounds within the lichen holobiome for industrial applications. This review also highlights the recent advances in culturing the symbionts and the computational and molecular genetics approaches of lichen gene regulation recognized for the enhanced production of target metabolites. The recent development of multi-omics novel biodiscovery strategies aided by synthetic biology in order to study the heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offers a promising means for a sustainable supply of specialized metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India.
| |
Collapse
|
16
|
Cheng X, Ma FP, Yan YM, Zhao WL, Shi J, Xiao W, Bi EG, Luo Q. Aspertaichunol A, an Immunomodulatory Polyketide with an Uncommon Scaffold from the Insect-Derived Endophytic Aspergillus taichungensis SMU01. Org Lett 2022; 24:7405-7409. [DOI: 10.1021/acs.orglett.2c02978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Cheng
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fo-Pei Ma
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wen-Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jin Shi
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - En-Guang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi Luo
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Li W, Gao Q, Hu Y, Shi Y, Yan X, Ding L, He S. Dibetanide, a new benzofuran derivative with the rare conjugated triene side chain from a sponge-associated fungus Aspergillus species. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Chang S, Cai M, Xiao T, Chen Y, Zhao W, Yu L, Shao R, Jiang W, Zhang T, Gan M, Si S, Chen M. Prenylemestrins A and B: Two Unexpected Epipolythiodioxopiperazines with a Thioethanothio Bridge from Emericella sp. Isolated by Genomic Analysis. Org Lett 2022; 24:5941-5945. [PMID: 35938920 DOI: 10.1021/acs.orglett.2c02187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prenylemestrins A and B (1 and 2, respectively), two unusual epipolythiodioxopiperazines featuring a thioethanothio bridge instead of a polysulfide bridge, were isolated from the fungus Emericella sp. CPCC 400858 guided by genomic analysis. Their structures were determined by extensive spectroscopic data, NMR and ECD calculations, and X-ray diffraction analysis. A plausible biosynthetic pathway for 1 and 2 was proposed on the basis of gene cluster analysis. Prenylemestrins A and B exhibited cytotoxicities against human chronic myelocytic leukemia cell lines K562 and MEG-01.
Collapse
Affiliation(s)
- Shanshan Chang
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Meilian Cai
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Tongmei Xiao
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuchuan Chen
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wuli Zhao
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Liyan Yu
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Rongguang Shao
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wei Jiang
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Tao Zhang
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Maoluo Gan
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyi Si
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Minghua Chen
- NHC Key Laboratory for Microbial Drug Bioengineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
19
|
He M, Yin WQ, Sun HF, Ding YW, Xu S, Sun H, Wang JM, Yu P, Qin HJ, Chen MH. Four new fatty acid derivatives from Diaporthe sp. T24, an endophytic fungus isolated from Ligularia fischer. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:603-616. [PMID: 34622714 DOI: 10.1080/10286020.2021.1962309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The endophytic fungus Diaporthe sp. is known to contain many secondary metabolites, but fatty acid derivatives have rarely been found. In this study, four new fatty acid derivatives (1-4), together with four known compounds (5-8), were isolated from Diaporthe sp., which was obtained from the stem of Ligularia fischeri. The absolute configurations of the new compounds 1-4 were deduced based on spectroscopic technique and J-based coupling constant analysis. Moreover, compound 1 exhibited cytotoxic activities against HCT-8 and MCF-7 cancer cells, and compounds 3 and 4 showed modest selectivity for HCT-8 cells by MTT assay.
Collapse
Affiliation(s)
- Min He
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Wan-Qiang Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Hai-Feng Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Yu-Wei Ding
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Shuai Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Hua Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Jia-Ming Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Hai-Juan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Ming-Hua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Pekin Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Kundal S, Rana G, Kar A, Jana U. The synthesis of indole-3-carbinols (I3C) and their application to access unsymmetrical bis(3-indolyl)methanes (BIMs) bearing a quaternary sp 3-carbon. Org Biomol Chem 2022; 20:5234-5238. [PMID: 35713472 DOI: 10.1039/d2ob00502f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, the novel synthesis of tert-indole-3-carbinols is reported through the DDQ-mediated oxidation of the allylic C-H bond/aromatization/hydroxylation at the indolyl carbon using water as the hydroxyl source. The reaction is highly efficient and high yielding and it works under mild reaction conditions. Furthermore, the synthetic value of such indole-based tert-carbinols is explored through their use as excellent electrophilic methylene surrogates to develop medicinally important unsymmetrical bis(3-indolyl)methanes containing an all carbon quaternary center.
Collapse
Affiliation(s)
- Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
21
|
Niu WX, Bao YY, Zhang N, Lu ZN, Ge MX, Li YM, Li Y, Chen MH, He HW. Dehydromevalonolactone ameliorates liver fibrosis and inflammation by repressing activation of NLRP3 inflammasome. Bioorg Chem 2022; 127:105971. [PMID: 35749855 DOI: 10.1016/j.bioorg.2022.105971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Liver fibrosis is an important process in chronic liver disease and is strongly related to poor prognosis. Dehydromevalonolactone (C8) is a natural product isolated from a fungus of Fusarium sp. CPCC 401218, and its pharmacological activity has never been reported before. In this study, the potential of C8 as an anti-hepatic fibrosis agent was investigated. In human hepatic stellate cell (HSC) line LX-2, C8 suppressed the increased expression of COL1A1 and α-SMA induced by TGFβ1, which indicated that C8 could repress the activation of HSCs. In bile duct ligated rats, C8 administration (100 mg/kg, i.p.) markedly attenuated liver injury, fibrosis, and inflammation, and suppressed the expression of the macrophage surface marker F4/80. In terms of mechanism, C8 treatment blocked the activation of the NLRP3 inflammasome, which was stimulated by LPS and nigericin in bone marrow-derived macrophages (BMDMs) and companied by the release of active IL-1β. In addition, the activation of LX-2 cells induced by IL-1β released from BMDMs was also inhibited after C8 administration, which indicated that C8 repressed HSCs activation by inhibiting the activation of NLRP3 inflammasome in macrophages. Furthermore, C8 exhibited the effects of anti-fibrosis and inhibiting the expression of NLRP3 inflammasome in non-alcoholic steatohepatitis (NASH) mice. Finally, C8 can be commendably absorbed in vivo and was safe for mice at the concentration of 1000 mg/kg (p.o.). In summary, our study reveals that C8 ameliorates HSCs activation and liver fibrosis in cholestasis rats and NASH mice by inhibiting NLRP3 inflammasome in macrophages, and C8 might be a safe and effective candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Wei-Xiao Niu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Yang Bao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Ning Lu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mao-Xu Ge
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-Ming Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming-Hua Chen
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hong-Wei He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
22
|
Yang JH, Oh SY, Kim W, Hur JS. Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum. MYCOBIOLOGY 2022; 50:55-65. [PMID: 35291596 PMCID: PMC8890557 DOI: 10.1080/12298093.2022.2040112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 05/31/2023]
Abstract
Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture- and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.
Collapse
Affiliation(s)
- Ji Ho Yang
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
23
|
Shang RY, Cui J, Li JX, Miao XX, Zhang L, Xie DD, Zhang L, Lin HW, Jiao WH. Nigerin and ochracenes J−L, new sesquiterpenoids from the marine sponge symbiotic fungus Aspergillus niger. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Xu K, Li R, Zhu R, Li X, Xu Y, He Q, Xie F, Qiao Y, Luan X, Lou H. Xylarins A-D, Two Pairs of Diastereoisomeric Isoindoline Alkaloids from the Endolichenic Fungus Xylaria sp. Org Lett 2021; 23:7751-7754. [PMID: 34605655 DOI: 10.1021/acs.orglett.1c02730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two pairs of diastereoisomeric isoindoline alkaloids, xylarins A-D (1-4), were isolated from the endolichenic fungus Xylaria sp. Xylarins A and B (1 and 2) possess a previously undescribed 5/6/5-5/6 polycyclic scaffold, featuring a combination of a novel dihydrobenzofurone unit and an isoindoline unit, while xylarins C and D (3 and 4) contain an additional N,N-dimethylaniline at the C-3' position. Their structures were elucidated by comprehensive spectroscopic analyses combined with single-crystal X-ray diffraction and electronic circular dichroism calculations. The plausible biosynthetic pathways and gene clusters for 1-4 were proposed. Compound 1 exhibited significant antithrombotic activity.
Collapse
Affiliation(s)
- Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China.,Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Ruijuan Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People's Republic of China
| | - Yuliang Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Qiaobian He
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Fei Xie
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yanan Qiao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| |
Collapse
|
25
|
New lignans from the fruits of Leonurus japonicus and their hepatoprotective activities. Bioorg Chem 2021; 115:105252. [PMID: 34390972 DOI: 10.1016/j.bioorg.2021.105252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Twelve tetrahydrofuran lignans (1-12), including six new compounds (1-6), were isolated from the 70% EtOH extract of the fruits of Leonurus japonicus. Spectroscopic analyses and ECD and OR calculations were used to determine their structures. Compounds 5 and 6 were unusual alkaloidal lignans with a butyrolactam unit. Based on the beneficial effects of the fruits of L. japonicus (Chongweizi in Chinese) on the liver in traditional Chinese medicine (TCM), the hepatocyte protective activities of the isolates were studied by MTT, Hoechst 33,342 staining, and western blotting. The MTT results revealed that compounds 1, 2, 7, and 8 significantly increased the survival rates of HL-7702 cells injured by acetaminophen, with EC50 values of 10.41 ± 0.90 μM, 19.86 ± 3.13 μM, 9.68 ± 1.93 μM, and 21.35 ± 3.58 μM, respectively. In the Hoechst 33,342 fluorescence staining, compounds 1 and 7 suppressed the apoptosis of the injured HL-7702 cells. Furthermore, the western blot analysis showed that compounds 1 and 7 increased the Bcl-2/Bax protein expression ratio and procaspase-3 protein expression, indicating that compounds 1 and 7 may exert hepatoprotective activity by regulating the mitochondrial apoptotic pathway.
Collapse
|
26
|
Guo HX, Huang CY, Yan ZY, Chen T, Hong K, Long YH. New furo[3,2-h]isochroman from the mangrove endophytic fungus Aspergillus sp. 085242. Chin J Nat Med 2021; 18:855-859. [PMID: 33308608 DOI: 10.1016/s1875-5364(20)60028-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/29/2022]
Abstract
Four new compounds, asperisocoumarin G (1), asperisocoumarin H (2), (±)-asperisocoumarin I [(±)-3], along with the known pergillin (4) and penicisochroman L (5) were isolated from a mangrove endophytic fungus Aspergillus sp. 085242 by further chemical investigation. The structures of the new compounds, including their absolute configurations, were established by analysis of HR-ESI-MS and NMR spectroscopic data, and ECD calculation. Asperisocoumarins G-I (1-3) were new isocoumarins belonging to the class of furo[3, 2-h]isocoumarins which are rarely found in natural sources. All of the isolated compounds were evaluated for their α-glucosidase inhibitory effects, and compounds 1 and 4 showed moderate α-glucosidase inhibitory activity, respectively. In an antimicrobial test, the racemate of 3 showed antibacterial activity against Salmonella.
Collapse
Affiliation(s)
- Hui-Xian Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Cui-Ying Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Zhang-Yuan Yan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yu-Hua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Johnson RA, Chan AN, Ward RD, McGlade CA, Hatfield BM, Peters JM, Li B. Inhibition of Isoleucyl-tRNA Synthetase by the Hybrid Antibiotic Thiomarinol. J Am Chem Soc 2021; 143:12003-12013. [PMID: 34342433 DOI: 10.1021/jacs.1c02622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hybrid antibiotics are an emerging antimicrobial strategy to overcome antibiotic resistance. The natural product thiomarinol A is a hybrid of two antibiotics: holothin, a dithiolopyrrolone (DTP), and marinolic acid, a close analogue of the drug mupirocin that is used to treat methicillin-resistant Staphylococcus aureus (MRSA). DTPs disrupt metal homeostasis by chelating metal ions in cells, whereas mupirocin targets the essential enzyme isoleucyl-tRNA synthetase (IleRS). Thiomarinol A is over 100-fold more potent than mupirocin against mupirocin-sensitive MRSA; however, its mode of action has been unknown. We show that thiomarinol A targets IleRS. A knockdown of the IleRS-encoding gene, ileS, exhibited sensitivity to a synthetic analogue of thiomarinol A in a chemical genomics screen. Thiomarinol A inhibits MRSA IleRS with a picomolar Ki and binds to IleRS with low femtomolar affinity, 1600 times more tightly than mupirocin. We find that thiomarinol A remains effective against high-level mupirocin-resistant MRSA and provide evidence to support a dual mode of action for thiomarinol A that may include both IleRS inhibition and metal chelation. We demonstrate that MRSA develops resistance to thiomarinol A to a substantially lesser degree than mupirocin and the potent activity of thiomarinol A requires hybridity between DTP and mupirocin. Our findings identify a mode of action of a natural hybrid antibiotic and demonstrate the potential of hybrid antibiotics to combat antibiotic resistance.
Collapse
Affiliation(s)
- Rachel A Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan D Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caylie A McGlade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
28
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
29
|
Zhang XQ, Lu ZH, Xia GR, Song WM, Guo ZY, Proksch P. (+)-/(−)-Prunomarin A and (+)-pestalactone B, three new isocoumarin derivatives from the endophytic fungus Phomopsis prunorum. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
30
|
Wethalawe AN, Alwis YV, Udukala DN, Paranagama PA. Antimicrobial Compounds Isolated from Endolichenic Fungi: A Review. Molecules 2021; 26:molecules26133901. [PMID: 34202392 PMCID: PMC8271976 DOI: 10.3390/molecules26133901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/25/2022] Open
Abstract
A lichen is a symbiotic relationship between a fungus and a photosynthetic organism, which is algae or cyanobacteria. Endolichenic fungi are a group of microfungi that resides asymptomatically within the thalli of lichens. Endolichenic fungi can be recognized as luxuriant metabolic artists that produce propitious bioactive secondary metabolites. More than any other time, there is a worldwide search for new antibiotics due to the alarming increase in microbial resistance against the currently available therapeutics. Even though a few antimicrobial compounds have been isolated from endolichenic fungi, most of them have moderate activities, implying the need for further structural optimizations. Recognizing this timely need and the significance of endolichenic fungi as a promising source of antimicrobial compounds, the activity, sources and the structures of 31 antibacterial compounds, 58 antifungal compounds, two antiviral compounds and one antiplasmodial (antimalarial) compound are summarized in this review. In addition, an overview of the common scaffolds and structural features leading to the corresponding antimicrobial properties is provided as an aid for future studies. The current challenges and major drawbacks of research related to endolichenic fungi and the remedies for them have been suggested.
Collapse
Affiliation(s)
- A. Nethma Wethalawe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Y. Vindula Alwis
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Dinusha N. Udukala
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Priyani A. Paranagama
- Department of Chemistry, University of Kelaniya, Kelaniya 11600, Sri Lanka
- Correspondence:
| |
Collapse
|
31
|
Zhu X, Liu Y, Hu Y, Lv X, Shi Z, Yu Y, Jiang X, Feng F, Xu J. Neuroprotective Activities of Constituents from Phyllosticta capitalensis, an Endophyte Fungus of Loropetalum chinense var. rubrum. Chem Biodivers 2021; 18:e2100314. [PMID: 34101351 DOI: 10.1002/cbdv.202100314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
One new dioxolanone derivative, guignardianone G (1) and twelve known compounds (2-13) were isolated from the 95 % ethanol extract of the plant endophytic fungus Phyllosticta capitalensis cultured in rice medium. Among these known compounds, isoaltenuene (3), brassicasterol (7), 5,6-epoxyergosterol (8), citreoanthrasteroid A (9), demethylincisterol A (10), and chaxine C (11) were reported from Phyllosticta sp. for the first time. The structure of 1 was elucidated by 1D- and 2D-NMR experiments and HR-ESI-MS data analysis, and its absolute configuration was established through the comprehensive use of the methods of modified Mosher methods, calculations of ECD spectra and optical rotation values. The neuroprotective activity of compounds (1-9, 11-13) were evaluated on PC12 cells damage induced by glutamate, and compounds 9 and 12 showed potential neuroprotective activities with half effective concentration (EC50 ) of 24.2 and 33.9 μM, respectively.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ying Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunwei Hu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xin Lv
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zhaoxia Shi
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuanyuan Yu
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.,Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, P. R. China
| | - Jian Xu
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
32
|
Zhang D, Gu G, Zhang B, Wang Y, Bai J, Fang Y, Zhang T, Dai S, Cen S, Yu L. New phenol and chromone derivatives from the endolichenic fungus Daldinia species and their antiviral activities. RSC Adv 2021; 11:22489-22494. [PMID: 35480826 PMCID: PMC9034232 DOI: 10.1039/d1ra03754d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Three new phenolic metabolites, daldispols A–C (1–3), two new chromone derivatives, (5R,7R)-5,7-dihydroxy-2-methyl-5,6,7,8-tetrahydro-4H-chromen-4-one (9) and (5R,7R)-5,7-dihydroxy-2-propyl-5,6,7,8-tetrahydro-4H-chromen-4-one (10), together with five known phenolic compounds (4–8) and two known chromone compounds (11 and 12) were isolated from the endolichenic fungus Daldinia sp. CPCC 400770. Their structures were elucidated on the basis of spectroscopic methods, electronic circular dichroism (ECD), and comparison with reported data. Compounds 1, 3, 4, 9, and 11 exhibited significant anti-influenza A virus (IAV) activities with IC50 values of 12.7, 6.4, 12.5, 16.1, and 9.0 μM, respectively, and compound 8 displayed significant anti-ZIKV activity with inhibitory ratio of 42.7% at 10 μM. The results demonstrated that the fungus Daldinia sp. CPCC 400770 might be a rich source for discovering anti-IAV secondary metabolites as potential novel leading compounds. Eight phenols including three new ones (1–3) and four chromones including two new ones (9 and 10) were isolated from endolichenic fungus Daldinia sp. CPCC 400770, and some of them showed significant antiviral activities.![]()
Collapse
Affiliation(s)
- Dewu Zhang
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Guowei Gu
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Bingyuan Zhang
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China .,School of Pharmacy, Yantai University Yantai 264005 P. R. China
| | - Yujia Wang
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Jinglin Bai
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Yuang Fang
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Tao Zhang
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Shengjun Dai
- School of Pharmacy, Yantai University Yantai 264005 P. R. China
| | - Shan Cen
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| | - Liyan Yu
- Division for Medicinal Microorganisms Related Strains CAMS Collection Center of Pathogenic Microorganisms, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 P. R. China
| |
Collapse
|
33
|
Zhai YJ, Li JN, Gao YQ, Gao LL, Wang DC, Han WB, Gao JM. Structurally Diverse Sesquiterpenoids with Anti-neuroinflammatory Activity from the Endolichenic Fungus Cryptomarasmius aucubae. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:325-332. [PMID: 33963522 PMCID: PMC8141073 DOI: 10.1007/s13659-021-00299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/27/2021] [Indexed: 05/04/2023]
Abstract
Two new sterpurane sesquiterpenoids named sterpurol D (1) and sterpurol E (2), and one skeletally new sesquiterpene, cryptomaraone (3), bearing a 5,6-fused bicyclic ring system, along with five known ones, sterpurol A (4), sterpurol B (5), paneolilludinic Acid (6), murolane-2α, 9β-diol-3-ene (7) and (-)-10,11-dihydroxyfarnesol (8) were isolated from an endolichenic fungus Cryptomarasmius aucubae. The structures of the new compounds were elucidated by analysis of NMR spectroscopic spectra and HRESIMS data. The absolute configurations of 1 and 2 were established by spectroscopic data analysis and comparison of specific optical rotation, as well as the biosynthetic consideration. Additionally, compounds 1, 2, 4-6, and 8 showed significant nitric oxide (NO) production inhibition in Lipopolysaccharide (LPS)-induced BV-2 microglial cells with the IC50 values ranging from 9.06 to 14.81 μM.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lin-Lin Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Da-Cheng Wang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
34
|
Zhen X, Mao MJ, Wang RZ, Chang SS, Xiao TM, Wu YX, Yu LY, Song YL, Chen MH, Si SY. Fusapyrone A, a γ-pyrone derived from a desert Fusarium sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:504-511. [PMID: 32762359 DOI: 10.1080/10286020.2020.1794857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, we isolated and characterized fusapyrone A (1), a new γ-pyrone derivative, along with six previously described compounds from the rice fermentation of Fusarium sp. CPCC 401218, a fungus collected from the desert. The structure of 1 was characterized using various spectroscopic analyses, such as MS, IR, 1D, and 2D NMR. The absolute configuration of 1 was determined through the use of 13C NMR chemical shifts, electronic circular dichroism (ECD) and optical rotation (OR) calculations. Compound 1 was found to have weak antiproliferative activity for Hela cells, with an IC50 of 50.6 μM.[Formula: see text].
Collapse
Affiliation(s)
- Xin Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Jia Mao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Ren-Zhong Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Chang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tong-Mei Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ye-Xiang Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Li Song
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Ming-Hua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica of Xinjiang Uygur Autonomous Region, Key Laboratory for Uighur Medicine, Urumqi 830004, China
| | - Shu-Yi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Zhang D, Tao X, Gu G, Wang Y, Zhao W, Zhao W, Ren Y, Dai S, Yu L. Microbial Transformation of neo-Clerodane Diterpenoid, Scutebarbatine F, by Streptomyces sp. CPCC 205437. Front Microbiol 2021; 12:662321. [PMID: 33936019 PMCID: PMC8079804 DOI: 10.3389/fmicb.2021.662321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/12/2021] [Indexed: 11/14/2022] Open
Abstract
Biotransformation of the neo-clerodane diterpene, scutebarbatine F (1), by Streptomyces sp. CPCC 205437 was investigated for the first time, which led to the isolation of nine new metabolites, scutebarbatine F1–F9 (2–10). Their structures were determined by extensive high-resolution electrospray ionization mass spectrometry (HRESIMS) and NMR data analyses. The reactions that occurred included hydroxylation, acetylation, and deacetylation. Compounds 2–4 and 8–10 possess 18-OAc fragment, which were the first examples of 13-spiro neo-clerodanes with 18-OAc group. Compounds 7–10 were the first report of 13-spiro neo-clerodanes with 2-OH. Compounds 1–10 were biologically evaluated for the cytotoxic, antiviral, and antibacterial activities. Compounds 5, 7, and 9 exhibited cytotoxic activities against H460 cancer cell line with inhibitory ratios of 46.0, 42.2, and 51.1%, respectively, at 0.3 μM. Compound 5 displayed a significant anti-influenza A virus activity with inhibitory ratio of 54.8% at 20 μM, close to the positive control, ribavirin.
Collapse
Affiliation(s)
- Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenxia Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Ren
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shengjun Dai
- School of Pharmacy, Yantai University, Yantai, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Kar A, Chakraborty B, Kundal S, Rana G, Jana U. DDQ/FeCl 3-mediated tandem oxidative carbon-carbon bond formation for the Synthesis of indole-fluorene hybrid molecules. Org Biomol Chem 2021; 19:906-910. [PMID: 33411869 DOI: 10.1039/d0ob00413h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of diverse and complex hybrid structures of indole bearing fluorene were obtained in the presence of DDQ with high regioselectivity under mild conditions from biaryl tethered 3-(methylene)indoline in good to excellent yields. The strategy involves tandem allylic Csp3-H oxidation and subsequent intramolecular carbon-carbon bond formation. The yield of the product was dramatically improved in the presence of additives such as FeCl3 and molecular sieves (4 Å). A possible mechanism is proposed for this tandem process.
Collapse
Affiliation(s)
- Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Baitan Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
37
|
Qiu P, Cai RL, Li L, She ZG. Three new isocoumarin derivatives from the mangrove endophytic fungus Penicillium sp. YYSJ-3. Chin J Nat Med 2021; 18:256-260. [PMID: 32402401 DOI: 10.1016/s1875-5364(20)30031-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 10/24/2022]
Abstract
Three new isocoumarin derivatives, (S)-6,8-dihydroxy-5-(methoxymethyl)-3,7-dimethylisochroman-1-one (1), (S)-6,8-dihydroxy-3,5,7-trimethyl-isochroman-1-one (2) and (R)-2-chloro-3-(8-hydroxy-6-methoxy-1-oxo-1H-isochromen-3-yl) propyl acetate (3), along with four known compounds (4-7) were isolated from a mangrove endophytic fungus Penicillium sp. YYSJ-3. Their structures were established on the basis of the extensive spectroscopic data and HR-ESI-MS analysis. The absolute configurations of 1-3 were further determined by X-ray diffraction analysis and optical rotations. Compounds 3, 6 and 7 showed promising inhibitory activity against α-glucosidase, which were stronger than that of the positive control 1-deoxynojirimycin (IC50 141.2 μmol·L-1).
Collapse
Affiliation(s)
- Pei Qiu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Run-Lin Cai
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lin Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Gang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China.
| |
Collapse
|
38
|
Fu J, Wang YN, Ma SG, Li L, Wang XJ, Li Y, Liu YB, Qu J, Yu SS. Xanthanoltrimer A–C: three xanthanolide sesquiterpene trimers from the fruits of Xanthium italicum Moretti isolated by HPLC-MS-SPE-NMR. Org Chem Front 2021. [DOI: 10.1039/d0qo01541e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Xanthanoltrimer A–C, first three xanthanolide sesquiterpene trimers from the fruits of Xanthium italicum Moretti, were isolated by HPLC-MS-SPE-NMR. Xanthanoltrimer A–C had an unprecedented 5/7/6/5/7/6/5/7 polycyclic scaffold.
Collapse
Affiliation(s)
- Jiang Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Xiao-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| |
Collapse
|
39
|
Shabir G, Saeed A, El-Seedi HR. Natural isocoumarins: Structural styles and biological activities, the revelations carry on …. PHYTOCHEMISTRY 2021; 181:112568. [PMID: 33166749 DOI: 10.1016/j.phytochem.2020.112568] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Isocoumarins and dihydroisocoumarins are lactonic phytochemicals plentiful in microbes and higher plants. These are an amazing small scaffolds consecrated with all types of pharmacological applications. Our previous review covered the period 2000-2016, documenting the then known natural products of this class; the current article is a critical account of discovery of known as well as undescribed structural types and pharmacological activities reported in the course of 2016-2020. The classification revealed in our previous review based on the biogenetic origin is further buttressed by discovery of new members of each class and some new structural types hitherto unknown have also been identified. Similarly, the biological activities and SAR conclusions identified were found to be valid as well, nonetheless with new accompaniments. The most recent available literature on the structural diversity and biological activity of these natural products has been included. The information documented in this article are collected from scientific journals, books, electronic search engines and scientific databases.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Hesham R El-Seedi
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Al-Rayan Colleges, Medina, 42541, Saudi Arabia
| |
Collapse
|
40
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2019. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1101-1120. [PMID: 33207951 DOI: 10.1080/10286020.2020.1844675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The new natural products reported in 2019 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2019 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Hao X, Yu J, Wang Y, Connolly JA, Liu Y, Zhang Y, Yu L, Cen S, Goss RJM, Gan M. Zelkovamycins B–E, Cyclic Octapeptides Containing Rare Amino Acid Residues from an Endophytic Kitasatospora sp. Org Lett 2020; 22:9346-9350. [DOI: 10.1021/acs.orglett.0c03565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiaqing Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- School of Pharmacy, Jining Medical College, Jining, Shandong 276800, P. R. China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jack A. Connolly
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Yufeng Liu
- School of Pharmacy, Jining Medical College, Jining, Shandong 276800, P. R. China
| | - Yuqin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Rebecca J. M. Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
42
|
Zhou X, Yang C, Meng Q, Liu L, Fu S. A new alkanol from the endolichenic fungus
Daldinia childiae. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuan Zhou
- School of Pharmacy Zunyi Medical University Zunyi China
| | - Cailing Yang
- School of Pharmacy Zunyi Medical University Zunyi China
| | - Qingfeng Meng
- Department of Public Health Zunyi Medical University Zunyi China
| | - Le Liu
- School of Pharmacy Zunyi Medical University Zunyi China
| | - Shaobin Fu
- School of Pharmacy Zunyi Medical University Zunyi China
| |
Collapse
|
43
|
New antifungal tetrahydrofuran derivatives from a marine sponge-associated fungus Aspergillus sp. LS78. Fitoterapia 2020; 146:104677. [DOI: 10.1016/j.fitote.2020.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
|
44
|
Luan XY, Xie F, Xu K, Gao Y, Lu JH, Lou HX. (±)-Ulodione A, a pair of unprecedented cyclopentanones from Ulospora bilgramii. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Noor AO, Almasri DM, Bagalagel AA, Abdallah HM, Mohamed SGA, Mohamed GA, Ibrahim SRM. Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities. Molecules 2020; 25:molecules25020395. [PMID: 31963586 PMCID: PMC7024277 DOI: 10.3390/molecules25020395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, the metabolites separated from endophytes have attracted significant attention, as many of them have a unique structure and appealing pharmacological and biological potentials. Isocoumarins represent one of the most interesting classes of metabolites, which are coumarins isomers with a reversed lactone moiety. They are produced by plants, microbes, marine organisms, bacteria, insects, liverworts, and fungi and possessed a wide array of bioactivities. This review gives an overview of isocoumarins derivatives from endophytic fungi and their source, isolation, structural characterization, biosynthesis, and bioactivities, concentrating on the period from 2000 to 2019. Overall, 307 metabolites and more than 120 references are conferred. This is the first review on these multi-facetted metabolites from endophytic fungi.
Collapse
Affiliation(s)
- Ahmad Omar Noor
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Diena Mohammedallam Almasri
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Alaa Abdullah Bagalagel
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Hossam Mohamed Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Gamal Abdallah Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (G.A.M.)
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sabrin Ragab Mohamed Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581183034
| |
Collapse
|
46
|
Huang L, Ding L, Li X, Wang N, Cui W, Wang X, Naman CB, Lazaro JEH, Yan X, He S. New Dihydroisocoumarin Root Growth Inhibitors From the Sponge-Derived Fungus Aspergillus sp. NBUF87. Front Microbiol 2019; 10:2846. [PMID: 31921029 PMCID: PMC6914834 DOI: 10.3389/fmicb.2019.02846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Six new dihydroisocoumarins, aspergimarins A-F (1-6), were discovered together with five known analogs (7-11) from a monoculture of the sponge-derived fungus Aspergillus sp. NBUF87. The structures of these compounds were elucidated through comprehensive spectroscopic methods, and absolute configurations were assigned after X-ray crystallography, use of the modified Mosher's method, and comparison of electronic circular dichroism (ECD) data with literature values for previously reported analogs. Compounds 1-11 were evaluated in a variety of bioassays, and at 100 μM, both 1 and 5 showed significant inhibitory effects on the lateral root growth of Arabidopsis thaliana Columbia-0 (Col-0). Moreover, at 100 μM, 5 also possessed notable inhibition against the primary root growth of Col-0. Meanwhile, 1-11 were all found to be inactive in vitro against acetylcholinesterase (AChE) (IC50 > 100 μM), four different types of human-derived cancer cell lines (IC50 > 50 μM), as well as methicillin-resistant Staphylococcus aureus and Escherichia coli (MIC > 50 μg/mL), and Plasmodium falciparum W2 (EC50 > 100 μg/mL), in phenotypic tests.
Collapse
Affiliation(s)
- Liming Huang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiao Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - C. Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - J. Enrico H. Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon, Philippines
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
47
|
He W, Xu Y, Fu P, Zuo M, Liu W, Jiang Y, Wang L, Zhu W. Cytotoxic Indolyl Diketopiperazines from the Aspergillus sp. GZWMJZ-258, Endophytic with the Medicinal and Edible Plant Garcinia multiflora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10660-10666. [PMID: 31479263 DOI: 10.1021/acs.jafc.9b04254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two new indolyl diketopiperazines, gartryprostatins A and B (1 and 2), with an unusual 2,3-furan-fused pyrano[2,3-g]pyrrolo[1″,2″:4',5']pyrazino[1',2':1,5]pyrrolo[2,3-b]indole nucleus, along with a new naturally occurring compound (gartryprostatin C, 3) were isolated from the solid culture of Aspergillus sp. GZWMJZ-258, an endophyte from Garcinia multiflora (Guttiferae). The structures of compounds 1-3 were determined by nuclear magnetic resonance, mass spectrometry, Marfey's analysis of amino acids, and chemical calculation. Compounds 1-3 displayed selective inhibition on human FLT3-ITD mutant AML cell line, MV4-11, with IC50 values of 7.2, 10.0, and 0.22 μM, respectively.
Collapse
Affiliation(s)
- Wenwen He
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province , Chinese Academy of Sciences , Guiyang , Guizhou 550014 , China
- School of Pharmaceutical Sciences , Guizhou Medical University , Guiyang , Guizhou 550025 , China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province , Chinese Academy of Sciences , Guiyang , Guizhou 550014 , China
- School of Pharmaceutical Sciences , Guizhou Medical University , Guiyang , Guizhou 550025 , China
| | - Peng Fu
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao , Shandong 266003 , China
| | - Mingxing Zuo
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province , Chinese Academy of Sciences , Guiyang , Guizhou 550014 , China
- School of Pharmaceutical Sciences , Guizhou Medical University , Guiyang , Guizhou 550025 , China
| | - Wen Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province , Chinese Academy of Sciences , Guiyang , Guizhou 550014 , China
| | - Yangming Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province , Chinese Academy of Sciences , Guiyang , Guizhou 550014 , China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province , Chinese Academy of Sciences , Guiyang , Guizhou 550014 , China
- School of Pharmaceutical Sciences , Guizhou Medical University , Guiyang , Guizhou 550025 , China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , Guiyang , Guizhou 550014 , China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao , Shandong 266003 , China
| |
Collapse
|
48
|
The Purification, Characterization, and Biological Activity of New Polyketides from Mangrove-Derived Endophytic Fungus Epicoccum nigrum SCNU-F0002. Mar Drugs 2019; 17:md17070414. [PMID: 31336899 PMCID: PMC6669579 DOI: 10.3390/md17070414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Six new polyketides, including one coumarin (1), two isocoumarins (2 and 3), dihydroradicinin (4), and two benzofuranone derivatives (7 and 8), together with seven known analogues (5–6 and 9–13) were isolated from the culture of the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002. The structures were elucidated on the interpretation of spectroscopic data. The absolute configuration of Compounds 2 and 3 were determined by comparison of their ECD spectra with the data of their analogue dihydroisocoumarins described in the literature. The absolute configuration of 4 was determined by single-crystal X-ray diffraction. All the compounds were screened for their antioxidant, antibacterial, anti-phytopathogenic fungi and cytotoxic activities. Using a DPPH radical-scavenging assay, Compounds 10–13 showed potent antioxidant activity with IC50 values of 13.6, 12.1, 18.1, and 11.7 μg/mL, respectively. In addition, Compounds 6 and 7 showed antibacterial effects against Bacillus subtilis (ATCC 6538), Escherichia coli (ATCC 8739), and Staphylococcus aureus (ATCC 6538), with MIC values in the range of 25–50 μg/mL.
Collapse
|
49
|
Xu J, Hu YW, Qu W, Chen MH, Zhou LS, Bi QR, Luo JG, Liu WY, Feng F, Zhang J. Cytotoxic and neuroprotective activities of constituents from Alternaria alternate, a fungal endophyte of Psidium littorale. Bioorg Chem 2019; 90:103046. [PMID: 31212182 DOI: 10.1016/j.bioorg.2019.103046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
Chemical investigation of the EtOAc extract of the plant-associated fungus Alternaria alternate in rice culture led to the isolation of a novel liphatic polyketone, alternin A (1), a new indole alkaloid (8), and a new sesquiterpene (11), together with 12 known compounds. Their structures were elucidated by the interpretation of extensive spectroscopic data, and the absolute configurations of 1-3 were established using calculations of ECD spectra, NMR data, and optical rotation values. Compound 1 possesses an unprecedented C25 liphatic polyketone skeleton. Compounds 5 and 10 exhibited potential cytotoxic activities against MCF-7 and HepG cells, and compounds 2, 7, and 9 exhibited potential neuroprotective activities in glutamate induced-PC12 injured cells.
Collapse
Affiliation(s)
- Jian Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yun-Wei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ming-Hua Chen
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Liang-Sheng Zhou
- College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Qi-Rui Bi
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Yuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China.
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
50
|
Wang F, Zhao W, Zhang C, Chang S, Shao R, Xing J, Chen M, Zhang Y, Si S. Cytotoxic metabolites from the endophytic fungus Chaetomium globosum 7951. RSC Adv 2019; 9:16035-16039. [PMID: 35521380 PMCID: PMC9064350 DOI: 10.1039/c9ra02647a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/12/2019] [Indexed: 12/03/2022] Open
Abstract
The following compounds were isolated from acetate extracts of Chaetomium globosum 7951 solid cultures: demethylchaetocochin C (1) and chaetoperazine A (3), two new epipolythiodioxopiperazine (ETP) alkaloids, a novel pyridine benzamide, 4-formyl-N-(3′-hydroxypyridin-2′-yl) benzamide (6), and three known ETP derivatives (2, 4, and 5). The structures of these compounds were determined using extensive spectroscopic data analysis. Compounds 1–3, and 6, inhibited the growth of MCF-7, MDA-MB-231, H460 and HCT-8 cells with an IC50 of 4.5 to 65.0 μM. Demethylchaetocochin C and chaetoperazine A, two new epipolythiodioxopiperazine alkaloids, and three known analogs were isolated from Chaetomium globosum 7951. Demethylchaetocochin C significantly inhibits human lung cancer cell growth.![]()
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- Institute of Medicinal Biotechnology
| | - Wuli Zhao
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Conghui Zhang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Shanshan Chang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Jianguo Xing
- Key Laboratory for Uighur Medicine
- Institute of Materia Medica of Xinjiang Uygur Autonomous Region
- Urumqi 830004
- China
| | - Minghua Chen
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shuyi Si
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| |
Collapse
|