1
|
Lu J, Yuan K, Zheng J, Zhang H, Chen S, Ma J, Liu X, Tu B, Zhang G, Guo R. Photoinduced Electron Donor Acceptor Complex-Enabled α-C(sp 3)-H Alkenylation of Amines. Angew Chem Int Ed Engl 2024; 63:e202409310. [PMID: 39001611 DOI: 10.1002/anie.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 10/25/2024]
Abstract
Allylic amines are prevalent and vital structural components present in many bioactive compounds and natural products. Additionally, they serve as valuable intermediates and building blocks, with wide-ranging applications in organic synthesis. However, direct α-C(sp3)-H alkenylation of feedstock amines, particularly for the preparation of α-alkenylated cyclic amines, has posed a longstanding challenge. Herein, we present a general, mild, operationally simple, and transition-metal-free α-alkenylation of various readily available amines with alkenylborate esters in excellent E/Z - and diastereoselectivities. This method features good compatibility with water and oxygen, broad substrate scope, and excellent functional group tolerance, thereby enabling the late-stage modification of various complex molecules. Mechanistic studies suggest that the formation of a photoactive electron donor-acceptor complex between 2-iodobenzamide and the tetraalkoxyborate anion, which subsequently undergoes photoinduced single electron transfer and intramolecular 1,5-hydrogen atom transfer to generate the crucial α-amino radicals, is the key to success of this chemistry.
Collapse
Affiliation(s)
- Jianzhong Lu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Kaiyao Yuan
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Jialian Zheng
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - He Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Shuting Chen
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Ji Ma
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Xinyu Liu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Binbin Tu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Rui Guo
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| |
Collapse
|
2
|
Song Y, Sun TY, Xia XF, Wang D. An electron donor-acceptor complex-initiated C-H trifluoromethylation and perfluoroalkylation of enamides and quinoxalinones. Org Biomol Chem 2024; 22:8317-8322. [PMID: 39311636 DOI: 10.1039/d4ob01228c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Facilitated by an electron donor-acceptor (EDA) complex, an efficient β-trifluoromethylation and perfluoroalkylation of enamides with Togni reagent or perfluoroalkyl iodides is presented under transition-metal-free, photocatalyst-free and mild reaction conditions. Notably, using this photocatalyst-free strategy, direct trifluoromethylation and perfluoroalkylation of quinoxalin-2(1H)-one derivatives was also achieved via a photoactive electron donor-acceptor complex.
Collapse
Affiliation(s)
- Yaqi Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Tian-Yu Sun
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Song S, Luo C, Wang G, Guo J, Chen Z, Li J. Photo-induced difluoroalkylation/cyclization of alkyne ketones: a novel strategy to access difluoroalkyl thiofavones. Chem Commun (Camb) 2024; 60:11323-11326. [PMID: 39297505 DOI: 10.1039/d4cc03843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A photo-induced electron donor-acceptor (EDA) complex enabled tandem reaction of alkyne ketones via a radical difluoroalkylation/cyclization cascade sequence is reported. The EDA complex plays a key role, and the C-Br bond homolysis process may also be involved for this transformation. Varieties of difluoroalkyl-substituted thiofavones can be smoothly assembled in moderate to good yields under photocatalyst-, metal- and oxidant-free conditions, thus offering potential applications for pharmaceutical research.
Collapse
Affiliation(s)
- Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Can Luo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Guan Wang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Jingjing Guo
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Zhi Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
4
|
Meng F, Cui Y, Xu W, Yang WC. Visible-Light-Induced Domino Perfluoroalkylation/Cyclization to Access Perfluoroalkylated Quinazolinones by an EDA Complex. Org Lett 2024; 26:6884-6888. [PMID: 39087724 DOI: 10.1021/acs.orglett.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The electron donor-acceptor (EDA) complexes have been extensively studied, which formed an electronically excited state, obviating the need for an exogenous photocatalyst. Herein, we report a mild and efficient strategy for photoinduced radical domino perfluoroalkylation/cyclization using N,N,N',N'-tetramethylethane-1,2-diamine (TMEDA) as an electron donor. This protocol could be well expanded to access various polycyclic quinazolinones containing perfluoroalkyl groups, exhibiting photocatalyst-free, good functional group tolerance, and environmentally friendly features.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yangyang Cui
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen Xu
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen-Chao Yang
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhang SP, Guo DW, Yang ML, Xia YT, Yang WC. EDA Complex-Enabled Annulation to Access CF 2-Containing Tetralones and Quinazolinones Using Persulfates as Electron Donors. J Org Chem 2024; 89:10614-10623. [PMID: 39051432 DOI: 10.1021/acs.joc.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A photocatalyst-free and EDA complex-enabled radical cascade cyclization reaction of inactive alkenes with bromodifluoroacetamides was reported for the divergent synthesis of fluorine-containing tetralones and quinazolinones. In this transformation, persulfates as electron donors and difluoro bromamide as electron acceptors generate the EDA complex. This is a promising photochemical method with advantages such as mild reaction conditions, simple operation, being metal-free, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shu-Peng Zhang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Da-Wei Guo
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Mei-Ling Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yun-Tao Xia
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
6
|
Conde RS, Torres Barroso L, Pérez Edighill SG, Yerien DE, Lantaño B, Baroncini M, Barata-Vallejo S, Postigo A. Photocatalytic Perfluoroalkylation of Disulfides and Diselenides. Syntheses of Perfluoroalkyl Thio- and Seleno-ethers. J Org Chem 2024; 89:10867-10877. [PMID: 39034469 DOI: 10.1021/acs.joc.4c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The synthesis of alkyl(aryl)-fluoroalkyl sulfanyl [R(Ar)-S-RF] and aryl-fluoroalkyl selenolyl (Ar-Se-RF) ethers through visible-light photocatalysis has been successfully carried out. This process involves disulfides, and diselenides [R(Ar)-X-X-R(Ar), where X = S or Se], and fluoroalkyl iodides (RF-I) in the presence of a base as an additive under photocatalysis. The photocatalyst Eosin Y and green light-emitting diodes are utilized for irradiation of R(Ar)-S-RF and Ar-Se-RF syntheses. Our method integrates low-energy visible-light photocatalysis, commercially available perfluoroalkylating reagents (RF-I), and easily obtainable disulfides and diselenides as starting materials. Mechanistic studies and a detailed synthetic procedure for (Ar)-S-RF on a large scale are presented.
Collapse
Affiliation(s)
- Romina S Conde
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Loydel Torres Barroso
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Sheila G Pérez Edighill
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Damian E Yerien
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 44, 40127 Bologna, Italy
- CLAN-Center for Light-Activated Nanostructures - Istituto ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy
| | - Sebastian Barata-Vallejo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
- CLAN-Center for Light-Activated Nanostructures - Istituto ISOF-CNR, via Gobetti 101, 40129 Bologna, Italy
- Istituto per la Sintesis Organica e la Fotorreattivita, ISOF, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| |
Collapse
|
7
|
Shen J, Li H, Li Y, Zhu Z, Luo K, Wu L. Visible-Light-Promoted Radical Cascade Sulfone Alkylation/Cyclization of 2-Isocyanoaryl Thioethers Enabled by Electron Donor-Acceptor Complex Formation. J Org Chem 2024; 89:10223-10233. [PMID: 38939958 DOI: 10.1021/acs.joc.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A photo-induced cascade sulfone alkylation/cyclization of 2-isocyanoaryl thioethers is explored. This visible-light-triggered reaction not only occurs under extremely mild reaction conditions but also does not require the presence of a photosensitizer. The photocatalytic process is triggered by the photochemical activity of in situ-generated electron donor-acceptor complexes, arising from the association of 2-isocyanoaryl thioethers and α-iodosulfones. The radical pathway was confirmed by UV-vis spectroscopy, radical trapping, Job's plot, and on/off irradiation experiments.
Collapse
Affiliation(s)
- Jiamei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Romero IE, Barata-Vallejo S, Bonesi SM, Postigo A. Perfluoroalkylation of Triarylamines by EDA Complexes and Ulterior Sensitized [6π]-Electrocyclization to Perfluoroalkylated Endo-Carbazoles. Mechanistic and Photophysical Studies. Chemistry 2024; 30:e202400905. [PMID: 38536766 DOI: 10.1002/chem.202400905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 04/18/2024]
Abstract
Blue LEDs-irradiation of a mixture of N,N,N',N'-tetramethylethylenediamine (TMEDA) and perfluoroalkyl iodides (RF-I) - Electron Donor Acceptor (EDA)-complex - in the presence of triphenylamines (TPAs) in an aqueous solvent mixture afforded mono-perfluoroalkylated triphenylamines (RF-TPA) in good yields. These RF-TPA were further subjected to acetone-sensitized [6π]-electrocyclization at 315 nm-irradiation affording exclusively perfluoroalkylated endo-carbazole derivatives (RF-CBz) in quantitative yields. Mechanistic studies and photophysical properties of products are studied.
Collapse
Affiliation(s)
- Ivan E Romero
- Departamento de Ciencias Químicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, Buenos Aires, CP 1113, Argentina
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono. (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Sebastian Barata-Vallejo
- Departamento de Ciencias Químicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, Buenos Aires, CP 1113, Argentina
- Istituto per la Sintesi Organica e la Fotoreattività ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Sergio M Bonesi
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono. (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, Buenos Aires, CP 1113, Argentina
| |
Collapse
|
9
|
Liu L, Wang Q, Li Y, Liu M, Liu B, Li Q, Feng K. Photodriven Radical Perfluoroalkylation-Thiolation of Unactivated Alkenes Enabled by Electron Donor-Acceptor Complex. Org Lett 2024; 26:2271-2275. [PMID: 38457924 DOI: 10.1021/acs.orglett.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A clean and direct three-component radical 1,2-difunctionalization of various alkenes with perfluoroalkyl iodides and thiosulfonates enabled by the electron donor-acceptor complex has been developed under light illumination at room temperature. The approach offers a convenient and environmentally friendly route for the simultaneous incorporation of Csp3-Rf and Csp3-S bonds, affording valuable polyfunctionalized alkane derivatives containing fluorine and sulfur in satisfactory yields. Consequently, this methodology holds significant value and practicality in the field of organic synthesis.
Collapse
Affiliation(s)
- Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| |
Collapse
|
10
|
Wu X, Liu L, Xiang C, Yu JT, Pan C. Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3 H)-ones for the construction of quinoxalino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:2556-2559. [PMID: 38345179 DOI: 10.1039/d4cc00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A new kind of building unit, 3-(2-isocyanophenyl)quinazolin-4(3H)-ones, was designed and synthesized for the construction of novel quinoxalino[2,1-b]quinazolinones. The radical cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones with ethers afforded ether-substituted tetracyclic quinoxalino[2,1-b]quinazolinones under photocatalytic and metal-free conditions. In the process, the isocyano accepts a carbon radical to give an imidoyl radical, which adds to the electron-deficient CN bond in quinazolin-4(3H)-one.
Collapse
Affiliation(s)
- Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
11
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
12
|
Wang WF, Liu T, Cheng YL, Song QH. Visible-light-promoted difluoroamidated oxindole synthesis via electron donor-acceptor complexes. Org Biomol Chem 2024; 22:805-810. [PMID: 38170477 DOI: 10.1039/d3ob01885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yan-Liang Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
13
|
Jiao Y, Shi X, Ju L, Yu S. Photoredox-Catalyzed Synthesis of C-Benzoselenazolyl/Benzothiazolyl Glycosides from 2-Isocyanoaryl Selenoethers/Thioethers and Glycosyl Bromides. Org Lett 2024; 26:390-395. [PMID: 38165656 DOI: 10.1021/acs.orglett.3c04059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Molecules containing heteroatoms, such as Se and S, play an indispensable role in the discovery and design of pharmaceuticals, whereas Se has been less studied. Here, we described a photoredox strategy to synthesize C-benzoselenazolyl (Bs) glycosides from 2-isocyanoaryl selenoethers and glycosyl bromides. This reaction was carried out under mild conditions with high efficiency. C-Benzothiazolyl (Bt) glycosides could also be synthesized from 2-isocyanoaryl thioethers using this strategy. This method can access novel seleno/thiosugars, which will benefit Se/S-containing drug discovery.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Ju
- Sunichem Company, Limited, Dandong 118003, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Mora Flores EW, Suarez D, Uhrig ML, Postigo A. Photocatalyzed Perfluoroalkylation of Endoglycals. J Org Chem 2023. [PMID: 38050850 DOI: 10.1021/acs.joc.3c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The visible light-induced perfluoroalkyl (RF) radical reactions on peracetylglycals derived from hexoses and pentoses (galactal, glucal, arabinal, and xylal derivatives) were investigated. Various photocatalysts and perfluoroalkyl iodides (RF-I) were employed as sources of RF radicals with LEDs as the irradiation source. Particularly noteworthy was the use of an Iridium photocatalyst, Ir[dF(CF3)ppy]2(dtbpy))PF6, which yielded two distinct product types when applied to glucal. On the one hand, the 2-RF-substituted glucal was formed, a trend observed even when utilizing organic dyes as photocatalysts. On the other hand, the unexpected addition product, namely the 1-RF-2-iodo-α-manno-configured C-glycosyl derivative, was also obtained, as a result of a highly regioselective addition reaction of the RF moiety into the anomeric carbon, followed by attachment of the iodine atom on C-2 in axial disposition. This result contrasted with other radical reactions carried out on 2-unsubstituted glycals, where the incipient radical adds to C-2, generating a stabilized 1-glycosyl radical. The photocatalyzed radical perfluoroalkylations of peracetyl glycals derived from galactose, arabinose, and xylose all afforded the 2-RF-substituted glycals in good yields as a result of the expected vinylic substitution reaction. Mechanistic studies revealed that the 1-RF-2-iodo-α-manno-configured C-glycosyl derivatives arise from a radical chain reaction, whereas the 2-RF-substituted glycals proceed from inefficient chain processes.
Collapse
Affiliation(s)
- Erwin W Mora Flores
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Daniel Suarez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - María Laura Uhrig
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| |
Collapse
|
15
|
Yang K, Luo Y, Hu Q, Song M, Liu J, Li Z, Li B, Sun X. Selective C(sp 3)-S Bond Cleavage of Thioethers to Build Up Unsymmetrical Disulfides. J Org Chem 2023; 88:13699-13711. [PMID: 37747962 DOI: 10.1021/acs.joc.3c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mengjie Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
16
|
Liu Y, Li S, Chen X, Jiang H. Visible-Light-Mediated Synthesis of α-Aryl Ester Derivatives via an EDA Complex. J Org Chem 2023; 88:12474-12480. [PMID: 37585492 DOI: 10.1021/acs.joc.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
We report an efficient radical-based and photocatalyst-free method for the C(sp2)-C(sp3) cross-coupling reaction to synthesize α-aryl ester derivatives. The process starts from a β-keto ester and an electron-deficient halogenated aryl halide under alkaline conditions to form an electron donor-acceptor complex and is driven by visible light. From the synthetic point of view, this newly established method represents a simple way to access arylpropionic acids from commercially available and cheap starting materials.
Collapse
Affiliation(s)
- Yutong Liu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqiao Li
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| | - Xueqin Chen
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
17
|
Sun H, Jiang G. 1,2-Alkynyl Functionalization of Unactivated Alkenes via Diverse Radical-Triggered Functional Group Migration. J Org Chem 2023; 88:11661-11674. [PMID: 37552549 DOI: 10.1021/acs.joc.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We have developed a transition-metal-free radical approach for 1,2-alkynyl functionalization of unactivated alkenes through the combination of 3-exo-dig cyclization with alkynyl migration triggered by in situ-generated diverse radical precursors. This strategy provides a robust toolkit to access a variety of synthetically important α-functionalized alkynyl ketones, simultaneously installing densely functionalized carbonyl, alkynyl, and other various functional groups into the alkenes. The broad substrate scope, which includes distinctly electron-donating or electron-withdrawing alkynyl migrating groups, excellent functional group compatibility, and remarkable selectivity make this protocol practical and attractive.
Collapse
Affiliation(s)
- Huangbin Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guofang Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Piedra HF, Valdés C, Plaza M. Shining light on halogen-bonding complexes: a catalyst-free activation mode of carbon-halogen bonds for the generation of carbon-centered radicals. Chem Sci 2023; 14:5545-5568. [PMID: 37265729 PMCID: PMC10231334 DOI: 10.1039/d3sc01724a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The discovery of new activation modes for the creation of carbon-centered radicals is a task of great interest in organic chemistry. Classical activation modes for the generation of highly reactive radical carbon-centered intermediates typically relied on thermal activation of radical initiators or irradiation with unsafe energetic UV light of adequate reaction precursors. In recent years, photoredox chemistry has emerged as a leading strategy towards the catalytic generation of C-centered radicals, which enabled their participation in novel synthetic organic transformations which is otherwise very challenging or even impossible to take place. As an alternative to these activation modes for the generation of C-centered radicals, the pursuit of greener, visible-light initiated reactions that do not necessitate a photoredox/metal catalyst has recently caught the attention of chemists. In this review, we covered recent transformations, which rely on photoactivation with low-energy light of a class of EDA complexes, known as halogen-bonding adducts, for the creation of C-centered radicals.
Collapse
Affiliation(s)
- Helena F Piedra
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
19
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
20
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
21
|
Tang L, Lv G, Fu Y, Chang XP, Cheng R, Wang L, Zhou Q. Bifunctional 1,8-Diazabicyclo[5.4.0]undec-7-ene for Visible Light-Induced Heck-Type Perfluoroalkylation of Alkenes. J Org Chem 2022; 87:14763-14777. [DOI: 10.1021/acs.joc.2c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
- China Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, Henan 464000, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ya Fu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingling Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
22
|
Gao C, Blum SA. Silyl Radical Cascade Cyclization of 2-Isocyanothioanisole toward 2-Silylbenzothiazoles through Radical Initiator-Inhibitor Symbiosis. J Org Chem 2022; 87:13124-13137. [PMID: 36098507 DOI: 10.1021/acs.joc.2c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A demethylative silyl radical cascade cyclization of 2-isocyanothioanisoles toward 2-silylated benzothiazole building blocks has been developed. The development of a "radical initiator-inhibitor symbiosis" system solves the challenge of otherwise dominant methyl radical-triggered side reactions brought about by kinetically unfavored generation of reactive silyl radical species. The products accessed in this protocol are amendable to various downstream functionalization reactions, including the quick construction of a topoisomerase II inhibitor via a Hiyama cross-coupling reaction and of an antiviral agent via a fluoride-/hydroxide-free nucleophilic substitution to acyl chloride.
Collapse
Affiliation(s)
- Chao Gao
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
23
|
Liu H, Fan X, Hu J, Ma T, Wang F, Yang J, Li D. Visible-Light-Enabled Ph 3P/LiI-Promoted Tandem Radical Trifluoromethylation/Cyclization/Iodination of 1,6-Enynes with Togni's Reagent. J Org Chem 2022; 87:12877-12889. [PMID: 36074642 DOI: 10.1021/acs.joc.2c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the visible-light-induced Ph3P/LiI-promoted intermolecular cascade trifluoromethyl radical addition/5-exo-dig cyclization/iodination of 1,6-enynes with Togni's reagent using LiI as the iodine source without the need of the transition metal, oxidant, and base. This reaction promises to be a useful method for the preparation of trifluoromethyl-substituted and vinyl C-I bond-containing pyrrolidines and benzofuran products with good regioselectivity and functional-group tolerance under ambient conditions.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Xu Fan
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinkai Hu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Tongtong Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Feng Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Dianjun Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
24
|
Xue D, Ge Q, Zhi X, Song S, Shao L. Metal-free radical cascade cyclization of 2-isocyanoaryl thioethers with alcohols: Synthesis of 2-hydroxyalkyl benzothiazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Gao F, Zhang S, Lv Q, Yu B. Recent advances in graphene oxide catalyzed organic transformations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Dong J, Hu J, Liu X, Sun S, Bao L, Jia M, Xu X. Ionic Reactivity of 2-Isocyanoaryl Thioethers: Access to 2-Halo and 2-Aminobenzothia/Selenazoles. J Org Chem 2022; 87:2845-2852. [PMID: 35133836 DOI: 10.1021/acs.joc.1c02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ionic cascade insertion/cyclization reaction of thia-/selena-functionalized arylisocyanides has been successfully developed for the efficient and practical synthesis of 2-halobenzothiazole/benzoselenazole derivatives. This synthetic protocol, incorporating a halogen atom when forming the five-membered ring of benzothia/selenazoles, is different from the existing ones, where halogenation of the preformed benzothia/selenazole precursors happens. Additionally, a facile access to 2-aminobenzothiazoles is also achieved by the one-pot cascade reaction of 2-isocyanoaryl thioethers, iodine, and amines.
Collapse
Affiliation(s)
- Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Junlin Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoli Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Shaoguang Sun
- Medical College of Panzhihua University, Panzhihua, Sichuan 617000, China
| | - Lan Bao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
27
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
28
|
Zhou Q, Sun CG, Liu X, Li X, Shao Z, Tan K, Shen Y. Electron donor–acceptor complex-catalyzed photoredox reactions mediated by DIPEA and inorganic carbonates. Org Chem Front 2022. [DOI: 10.1039/d2qo00868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DIPEA–NHPI ester–inorganic carbonate catalytic EDA complex is reported as an efficient and sustainable radical generation platform for developing photocatalytic reactions.
Collapse
Affiliation(s)
- Qingli Zhou
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chenggang Guo Sun
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaofan Li
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziyan Shao
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Tan
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuehai Shen
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
29
|
Yin Y, Li C, Sun K, Liu Y, Wang X. Radical Aminoselenation of Styrenes: Facile Access to β-Amido-selenides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Luo SS, Shen H, Li SJ, Cao T, Luo YP, Zhang S, Zhou T, Liu XW. Visible-light photoredox catalysis-enabled borocyclopropanation of alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method for the synthesis of cyclopropyl boronates via visible-light photoredox-catalyzed borocyclopropanation of alkenes has been established. This protocol is characterized by its wide substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Si-Si Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hua Shen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shi-Jia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tian Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi-Peng Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Xiang-Wei Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
31
|
Fang CZ, Zhang BB, Li B, Wang ZX, Chen XY. Water facilitated photolysis of perfluoroalkyl iodides via halogen bonding. Org Chem Front 2022. [DOI: 10.1039/d2qo00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for the efficient water facilitated photolysis of perfluoroalkyl iodide has been established for the synthesis of various perfluoroalkylated products.
Collapse
Affiliation(s)
- Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Tong CL, Xu XH, Qing FL. Regioselective oxidative C–H heptafluoroisopropylation of heteroarenes with heptafluoroisopropyl silver. Org Chem Front 2022. [DOI: 10.1039/d2qo00787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective C–H heptafluoroisopropylation of heteroarenes with heptafluoroisopropyl silver provided convenient access to a wide range of CF(CF3)2-containing heteroarenes.
Collapse
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
33
|
Wang W, Zhang M, Yang W, Yang X. Research Progress in Radical Cascade Reaction Using Nitrogen Heterocycle in Indoles as Radical Acceptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Yuan S, Ye X, Cai J, Song Z, Tan Y, Peng Y, Ding Q. DMF-Assisted Radical Cyclization of o-Isocyanodiaryl Ethers via 1,5-Aryl Migration: Construction of 2-Arylbenzoxazoles. J Org Chem 2021; 87:1485-1492. [PMID: 34967643 DOI: 10.1021/acs.joc.1c02806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel DMF-assisted radical cyclization of o-isocyanodiaryl ethers via 1,5-aryl migration has been developed for the synthesis of a series of 2-arylbenzoxazoles by the FeCl3/TBHP/Et3N catalytic system in DMF. However, N,N-dimethylbenzo[d]thiazole-2-carboxamide and N,N-dimethylbenzo[d]selenazole-2-carboxamide were obtained from the corresponding substrate 2-isocyanophenyl p-methoxyphenyl thioether and 2-isocyanodiphenyl selenoether under the same conditions. A possible mechanism may involve aryl 1,5-migration and DMF-assisted radical cyclization of o-isocyanodiaryl ethers.
Collapse
Affiliation(s)
- Sitian Yuan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Xiaoling Ye
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jingyu Cai
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuxing Tan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
35
|
Wang X, Ye W, Kong T, Wang C, Ni C, Hu J. Divergent S- and C-Difluoromethylation of 2-Substituted Benzothiazoles. Org Lett 2021; 23:8554-8558. [PMID: 34669403 DOI: 10.1021/acs.orglett.1c03267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two unprecedented and complementary synthetic strategies for S- and C-difluoromethylation of 2-substituted benzothiazoles have been developed by taking advantage of the remarkably different reactivity of CF2H- and 2-PySO2CF2- nucleophiles. A variety of structurally diverse difluoromethyl 2-isocyanophenyl sulfides and 2-difluoromethylated benzothiazoles were synthesized with these two new synthetic protocols.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wenchao Ye
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Taige Kong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chenlu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Wang Y, Tu K, Cheng J, He E, Wang J, Zhang L, Cheng Z. Facile photochemical synthesis of main-chain-type semifluorinated alternating copolymers catalyzed by conventional amines or halide salts. Chem Commun (Camb) 2021; 57:11354-11357. [PMID: 34643625 DOI: 10.1039/d1cc04967d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this work, we report a much simpler and low-cost method to prepare main-chain-type semifluorinated alternating copolymers by the formation of a halogen bond (XB) complex between α,ω-diiodoperfluoroalkanes and amines/halide salts. It is interesting that the terminal iodine functional group of the polymer chains is easily lost in the amine-promoted system, while the loss can be significantly reduced by adding a small amount of water. Importantly, the system promoted by halide salts can ensure complete retention of the iodine functional group. Overall, the establishment of this method provides a new strategy for designing smart fluoropolymer materials in a green and environmentally friendly facile manner under irradiation with visible light at room temperature.
Collapse
Affiliation(s)
- Yuxue Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Kai Tu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jiannan Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Enjie He
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jinying Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
37
|
Liu XJ, Zhou SY, Xiao Y, Sun Q, Lu X, Li Y, Li JH. Photocatalytic Decarboxylative [3 + 2] and [4 + 2] Annulation of Enynals and γ,σ-Unsaturated N-(Acyloxy)phthalimides by NaI/PPh 3 Catalysis. Org Lett 2021; 23:7839-7844. [PMID: 34581593 DOI: 10.1021/acs.orglett.1c02858] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practical and eco-friendly strategy for the radical-mediated decarboxylative [3 + 2] and [4 + 2] annulation of enynals and γ,σ-unsaturated N-(acyloxy)phthalimides through the photoactivation of an electron donor-acceptor (EDA) complex has been developed. A wide range of primary, secondary, and tertiary alkyl N-hydroxyphthalimide (NHP) esters can be used as suitable substrates for the synthesis of fused ketones without any transition-metal catalysts or oxidants. This protocol features a broad substrate scope, excellent selectivity, and clean reaction conditions.
Collapse
Affiliation(s)
- Xiao-Jie Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sheng-Yun Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
38
|
Tiekink ER. Supramolecular aggregation patterns featuring Se⋯N secondary-bonding interactions in mono-nuclear selenium compounds: A comparison with their congeners. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Matsuo K, Kondo T, Yamaguchi E, Itoh A. Photoinduced Atom Transfer Radical Addition Reaction of Olefins with α-Bromo Carbonyls. Chem Pharm Bull (Tokyo) 2021; 69:796-801. [PMID: 34334524 DOI: 10.1248/cpb.c21-00360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The irradiation of halogen-bonded complexes with light leads to the homolysis of carbon-halogen bonds and the formation of the corresponding carbon radical species. However, the only methodology reported for these halogen-bonding complexes is using CBr4 as the halogen-bond donor and its applicability is of great interest. In this study, the atom transfer radical addition (ATRA) reaction of olefins using bromomalonates as halogen-bonding donors was developed. Using 4-phenylpyridine as the halogen-bonding acceptor, the desired reaction proceeded well under external irradiation of 380 nm light to furnish the corresponding ATRA reaction product. The ATRA reaction was effective in generating the corresponding products for a variety of olefins. Furthermore, the ATRA reaction was applicable to bulky ketones, substrates, and malonate esters. The intermediates of the reaction were identified and a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Kazuki Matsuo
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University
| | - Takemasa Kondo
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
40
|
Qu Z, Chen X, Zhong S, Deng GJ, Huang H. NaI/PPh 3-Mediated Photochemical Reduction and Amination of Nitroarenes. Org Lett 2021; 23:5349-5353. [PMID: 34180677 DOI: 10.1021/acs.orglett.1c01654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
Collapse
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
41
|
Visible-light induced photochemistry of Electron Donor-Acceptor Complexes in Perfluoroalkylation Reactions: Investigation of halogen bonding interactions through UV–Visible absorption and Raman spectroscopies combined with DFT calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Chen Z, Zheng S, Wang Z, Liao Z, Yuan W. Electron Donor‐Acceptor Complex Enabled Photocyanation of Tertiary Amines with a Stable and User‐Friendly Cyanobenziodoxolone Reagent. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zimin Chen
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Songlin Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Zijie Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Zixuan Liao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| | - Weiming Yuan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P.R. China
| |
Collapse
|
43
|
Varga B, Tóth BL, Béke F, Csenki JT, Kotschy A, Novák Z. Synthesis and Photochemical Application of Hydrofluoroolefin (HFO) Based Fluoroalkyl Building Block. Org Lett 2021; 23:4925-4929. [PMID: 34097412 DOI: 10.1021/acs.orglett.1c01709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel fluoroalkyl iodide was synthesized on multigram scale from refrigerant gas HFO-1234yf as cheap industrial starting material in a simple, solvent-free, and easily scalable process. We demonstrated its applicability in a metal-free photocatalytic ATRA reaction to synthesize valuable fluoroalkylated vinyl iodides and proved the straightforward transformability of the products in cross-coupling chemistry to obtain conjugated systems.
Collapse
Affiliation(s)
- Bálint Varga
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Balázs L Tóth
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Ferenc Béke
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - János T Csenki
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - András Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7.H-1031 Budapest, Hungary
| | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of ́ Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
44
|
Vil' VA, Merkulova VM, Ilovaisky AI, Paveliev SA, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of Fluorinated Ketones from Enol Acetates and Sodium Perfluoroalkyl Sulfinates. Org Lett 2021; 23:5107-5112. [PMID: 34124913 DOI: 10.1021/acs.orglett.1c01643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical synthesis of fluorinated ketones from enol acetates and RfSO2Na in an undivided cell under constant current conditions was developed. The electrosynthesis proceeded via perfluoroalkyl radical generation from sodium perfluoroalkyl sulfinate followed by addition to the enol acetate and transformation of the resulting C radical to a fluorinated ketone. The method is applicable to a wide range of enol acetates and results in the desired products in yields of 20 to 85%.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
45
|
Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Yang Z, Liu Y, Cao K, Zhang X, Jiang H, Li J. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes. Beilstein J Org Chem 2021; 17:771-799. [PMID: 33889219 PMCID: PMC8042489 DOI: 10.3762/bjoc.17.67] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
The reversible, weak ground-state aggregate formed by dipole-dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor-acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
Collapse
Affiliation(s)
- Zhonglie Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kun Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610100, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
47
|
Wang H, Wu Q, Zhang JD, Li HY, Li HX. Photocatalyst- and Transition-Metal-Free Visible-Light-Promoted Intramolecular C(sp 2)-S Formation. Org Lett 2021; 23:2078-2083. [PMID: 33635082 DOI: 10.1021/acs.orglett.1c00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A photocatalyst- and transition-metal-free visible-light-induced cyclization of ortho-halothiobenzanilides has been developed. Upon irradiation with visible light, substrates undergo dehalogenative cyclization to 2-aryl benzothiazoles with high efficiency and selectivity. This photocyclization exhibits a high tolerance to various functional groups, is applicable for the synthesis of 2-alkyl benzothiazoles, and is easy to set up for gram-scale reaction.
Collapse
Affiliation(s)
- Hao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian-Dong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Zheng L, Cai L, Tao K, Xie Z, Lai Y, Guo W. Progress in Photoinduced Radical Reactions using Electron Donor‐Acceptor Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Yin‐Long Lai
- College of Chemistry and Civil Engineering Shaoguan University Shaoguan 512005 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
49
|
Worp BA, Kosobokov MD, Dilman AD. Visible‐Light‐Promoted Reversible Sulfide/Iodide Exchange in Fluoroalkyl Sulfides Enabled by Electron Donor‐Acceptor Complex Formation. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Boris A. Worp
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
- Lomonosov Moscow State University Department of Chemistry 119991 Moscow Leninskie Gory 1–3 Russian Federation
| | - Mikhail D. Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
50
|
Li Y, Zhang X, Liang D, Li Y, Gao S, Li X, Dong Y, Wang B, Ma Y. Tunable Redox‐Neutral Photocatalysis: Visible Light‐Induced Arylperfluoroalkylation of Alkenes Regulated by Protons. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuan Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Yanni Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Xiangguang Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science Shandong Normal University Jinan, Shandong Province 250014 P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Yinhai Ma
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| |
Collapse
|