1
|
Yook G, Nam J, Jo Y, Yoon H, Yang D. Metabolic engineering approaches for the biosynthesis of antibiotics. Microb Cell Fact 2025; 24:35. [PMID: 39891166 PMCID: PMC11786382 DOI: 10.1186/s12934-024-02628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) bacteria, making these infections increasingly difficult to treat in hospitals. MAIN TEXT The discovery and development of new antibiotic has slowed, largely due to reduced profitability, as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this challenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient production of antibiotics, their derivatives, and analogs, along with representative examples. CONCLUSION These metabolic engineering and synthetic biology strategies offer promising potential to revitalize the discovery and development of new antibiotics, providing renewed hope in humanity's fight against MDR pathogenic bacteria.
Collapse
Affiliation(s)
- Geunsoo Yook
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwoo Nam
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonseo Jo
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunji Yoon
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Fei P, Yangjun L, Yuee Z, Ping L, Chengzhi L, Linlin C, Hong J, Yunyang L, Wenzhou Z, Youxia H. The complete genome sequence of Streptomyces sp. FIM 95-F1, a marine actinomycete that produces the antifungal antibiotic scopafungin. Mar Genomics 2024; 78:101146. [PMID: 39515969 DOI: 10.1016/j.margen.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024]
Abstract
Streptomyces FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of Streptomyces sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that Streptomyces sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.
Collapse
Affiliation(s)
- Peng Fei
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China.
| | - Lin Yangjun
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Zhuang Yuee
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Lin Ping
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Liu Chengzhi
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Chen Linlin
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Jiang Hong
- Fujian key laboratory of Screening for Novel Microbial Products, Fujian Instutite of Microbiology, Fuzhou 350007, People's Republic of China
| | - Lian Yunyang
- Fujian key laboratory of Screening for Novel Microbial Products, Fujian Instutite of Microbiology, Fuzhou 350007, People's Republic of China
| | - Zhang Wenzhou
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China.
| | - Huang Youxia
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Zhang F, Li C, Li J, Xu X, Zhu T, Che Q, Li D, Zhang G. Heterologous Expression of Type II PKS Gene Cluster Leads to Diversified Angucyclines in Streptomyces albus J1074. Mar Drugs 2024; 22:480. [PMID: 39590760 PMCID: PMC11595736 DOI: 10.3390/md22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host Streptomyces albus J1074. The structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4, and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiayi Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| |
Collapse
|
4
|
Asano Y, Saito S, Ujie Y, Iwata C, Yaguchi T, Arai MA. Activation of Secondary Metabolism and Protease Activity Mechanisms in the Black Koji Mold Aspergillus luchuensis through Coculture with Animal Cells. ACS OMEGA 2024; 9:43129-43137. [PMID: 39464474 PMCID: PMC11500138 DOI: 10.1021/acsomega.4c07124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
The activation of secondary metabolism plays a pivotal role in the discovery of novel natural products. We recently developed a coculture method involving actinomycetes and mouse macrophage-like cells to stimulate the production of bioactive compounds. A black koji mold, Aspergillus luchuensis IFM 61405, markedly enhanced the production of (3S,8R)-8-hydroxy-3-carboxy-2-methylenenonanoic acid (1a), (3S,8S)-8-hydroxy-3-carboxy-2-methylenenonanoic acid (1b), and (3S)-9-hydroxy-3-carboxy-2-methylenenonanoic acid (2) when coincubated with J774.1 mouse macrophage cells. The production of 1 and 2 increased by at least 3.5-fold and 2.7-fold, respectively, compared to monoculture after 7 days. A mechanistic investigation revealed that a protease from strain IFM 61405 plays a key role in enhancing the production of 1 and 2. This enhancement was not replicated in A. niger IFM 59706, a nonkoji mold, despite the presence of biosynthetic genes for 1 and 2 in A. niger IFM 59706. Furthermore, the addition of protease inhibitors suppressed the production of 1 and 2, suggesting that proteins secreted from animal cells, likely degraded by proteases secreted by strain IFM 61405, serve as precursors for 1 and 2. The results show that the strategy of coculturing koji mold with animal cells has the potential to enhance the production of natural products.
Collapse
Affiliation(s)
- Yuri Asano
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shun Saito
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yukiko Ujie
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Chisato Iwata
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takashi Yaguchi
- Medical
Mycology Research Center, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba 260-8673, Japan
| | - Midori A. Arai
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
5
|
Okamura Y, Suemitsu M, Ishikawa T, Takahashi H. Nonribosomal Peptide Synthetase Specific Genome Amplification Using Rolling Circle Amplification for Targeted Gene Sequencing. Int J Mol Sci 2024; 25:5089. [PMID: 38791129 PMCID: PMC11121399 DOI: 10.3390/ijms25105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria.
Collapse
Affiliation(s)
- Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.I.); (H.T.)
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan;
| | - Masahiro Suemitsu
- Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan;
| | - Takato Ishikawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.I.); (H.T.)
| | - Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan; (T.I.); (H.T.)
| |
Collapse
|
6
|
Saito S, Arai MA. Methodology for awakening the potential secondary metabolic capacity in actinomycetes. Beilstein J Org Chem 2024; 20:753-766. [PMID: 38633912 PMCID: PMC11022428 DOI: 10.3762/bjoc.20.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Secondary metabolites produced by actinomycete strains undoubtedly have great potential for use in applied research areas such as drug discovery. However, it is becoming difficult to obtain novel compounds because of repeated isolation around the world. Therefore, a new strategy for discovering novel secondary metabolites is needed. Many researchers believe that actinomycetes have as yet unanalyzed secondary metabolic activities, and the associated undiscovered secondary metabolite biosynthesis genes are called "silent" genes. This review outlines several approaches to further activate the metabolic potential of actinomycetes.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Midori A Arai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Liu W, Zhai S, Zhang L, Chen Y, Liu Z, Ma W, Zhang T, Zhang W, Ma L, Zhang C, Zhang W. Expanding the Chemical Diversity of Grisechelins via Heterologous Expression. JOURNAL OF NATURAL PRODUCTS 2024; 87:371-380. [PMID: 38301035 DOI: 10.1021/acs.jnatprod.3c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous expression of this BGC led to the production of eight new thiazole-containing compounds, grisechelins E, F, and I-N (1, 2, 5-10), and two quinoline derivatives, grisechelins G and H (3 and 4). The structures of 1-10, including their absolute configurations, were elucidated by HRESIMS, NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Grisechelin F (2) is a unique derivative, distinguished by the presence of a salicylic acid moiety. The biosynthetic pathway for 2 was proposed based on bioinformatics analysis and in vivo gene knockout experiments. Grisechelin E (1) displayed moderate antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MIC of 8 μg mL-1).
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- Department of Clinical Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 96 Dongchuan Road, Guangzhou 510080, People's Republic of China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | - Zhiyong Liu
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, People's Republic of China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangzhou National Laboratory, Guangzhou 510005, People's Republic of China
| | - Wanli Ma
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, People's Republic of China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Tianyu Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Guangzhou National Laboratory, Guangzhou 510005, People's Republic of China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Guo ZK, Wang YC, Tan YZ, Abulaizi A, Xiong ZJ, Zhang SQ, Yang Y, Yang LY, Shi J. Nagimycins A and B, Antibacterial Ansamycin-Related Macrolactams from Streptomyces sp. NA07423. Org Lett 2023; 25:4203-4207. [PMID: 37232514 DOI: 10.1021/acs.orglett.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical investigation of Streptomyces sp. NA07423 led to the discovery of two unreported macrolactams, nagimycins A (1) and B (2). Their structures were elucidated by NMR, HRESIMS, X-ray crystallography, and comparison of experimental and theoretical ECD spectra. The nagimycins have a unique butenolide moiety rarely found in ansamycin antibiotics. Genome analysis revealed the putative biosynthetic gene cluster for nagimycins, and a likely biosynthetic pathway was proposed. Notably, compounds 1 and 2 exhibited potent antibacterial activity against two pathogenic Xanthomonas bacteria.
Collapse
Affiliation(s)
- Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Zi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ailiman Abulaizi
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shi Qing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - La Ying Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Kadjo AE, Eustáquio AS. Bacterial natural product discovery by heterologous expression. J Ind Microbiol Biotechnol 2023; 50:kuad044. [PMID: 38052428 PMCID: PMC10727000 DOI: 10.1093/jimb/kuad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Natural products have found important applications in the pharmaceutical and agricultural sectors. In bacteria, the genes that encode the biosynthesis of natural products are often colocalized in the genome, forming biosynthetic gene clusters. It has been predicted that only 3% of natural products encoded in bacterial genomes have been discovered thus far, in part because gene clusters may be poorly expressed under laboratory conditions. Heterologous expression can help convert bioinformatics predictions into products. However, challenges remain, such as gene cluster prioritization, cloning of the complete gene cluster, high level expression, product identification, and isolation of products in practical yields. Here we reviewed the literature from the past 5 years (January 2018 to June 2023) to identify studies that discovered natural products by heterologous expression. From the 50 studies identified, we present analyses of the rationale for gene cluster prioritization, cloning methods, biosynthetic class, source taxa, and host choice. Combined, the 50 studies led to the discovery of 63 new families of natural products, supporting heterologous expression as a promising way to access novel chemistry. However, the success rate of natural product detection varied from 11% to 32% based on four large-scale studies that were part of the reviewed literature. The low success rate makes it apparent that much remains to be improved. The potential reasons for failure and points to be considered to improve the chances of success are discussed. ONE-SENTENCE SUMMARY At least 63 new families of bacterial natural products were discovered using heterologous expression in the last 5 years, supporting heterologous expression as a promising way to access novel chemistry; however, the success rate is low (11-32%) making it apparent that much remains to be improved-we discuss the potential reasons for failure and points to be considered to improve the chances of success. BioRender was used to generate the graphical abstract figure.
Collapse
Affiliation(s)
- Adjo E Kadjo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
12
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
13
|
De BC, Zhang W, Zhang G, Liu Z, Tan B, Zhang Q, Zhang L, Zhang H, Zhu Y, Zhang C. Host-dependent heterologous expression of berninamycin gene cluster leads to linear thiopeptide antibiotics. Org Biomol Chem 2021; 19:8940-8946. [PMID: 34617948 DOI: 10.1039/d1ob01759d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Berninamycins are a class of thiopeptide antibiotics with potent activity against Gram-positive bacteria. Heterologous expression of the berninamycin (ber) biosynthetic gene cluster from marine-derived Streptomyces sp. SCSIO 11878 in different terrestrial model Streptomyces hosts led to the production of berninamycins A (1) and B (2) in Streptomyces lividans SBT18 and Streptomyces coelicolor M1154, while two new linearized berninamycins J (3) and K (4) were obtained in Streptomyces albus J1074. Their structures were elucidated by detailed interpretation of NMR data and Marfey's method. Bioactivity assays showed that the linear thiopeptides 3 and 4 were less potent than 1 and 2 in antibacterial activity. This work indicates that undefined host-dependent enzymes might be responsible for generating the linear thiopeptides 3 and 4 in S. albus J1074.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| |
Collapse
|
14
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
15
|
Liu SH, Wei YY, Xing YN, Chen Y, Wang W, Wang KB, Liang Y, Jiao RH, Zhang B, Ge HM. A BBE-like Oxidase, AsmF, Dictates the Formation of Naphthalenic Hydroxyl Groups in Ansaseomycin Biosynthesis. Org Lett 2021; 23:3724-3728. [PMID: 33877854 DOI: 10.1021/acs.orglett.1c01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ansaseomycins are ansamycin-type natural products produced through expression of the asm gene cluster in a heterologous host. A rare berberine bridge enzyme (BBE) like oxidase, AsmF, is encoded in the asm gene cluster. Deletion of asmF led to the accumulation of a series of structurally diverse compounds, all of which lacked the 23-hydroxyl group in naphthalenic motif. Our work demonstrated that AsmF dictated the formation of the naphthalenic hydroxyl group in ansaseomycin biosynthesis.
Collapse
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuan Yuan Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yin Nan Xing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kai Biao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Inducing new bioactive metabolites production from coculture of Pestalotiopsis sp. and Penicillium bialowiezense. Bioorg Chem 2021; 110:104826. [PMID: 33780746 DOI: 10.1016/j.bioorg.2021.104826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Coculturing two or more fungi is a useful strategy to awaken the silent genes to produce structurally diverse and bioactive natural products. Through the coculture of Pestalotiopsis sp. and Penicillium bialowiezense, six new isoprenylated chromane derivatives, including two pairs of enantiomeric ones (1a/1b-2a/2b) and two optical pure ones (3-4), two new isoprenylated phenol glucoside derivatives (6-7), as well as eight known structural analogues (5 and 8-14), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray crystallography, and ECD calculation. The Δ10,11 double bond of pestaloficin D (5) was revised to E-configurated based on the extensive spectroscopic analyses. Compounds 1a/1b and 2a/2b were the first examples of enantiomeric isoprenylated chromane derivatives, which were successfully separated by chiral HPLC. Additionally, all the isolated compounds were evaluated for the in vitro β-glucuronidase (GUS) and butyrylcholinesterase (BChE) inhibitory activities. Compounds 1a and 1b showed significant β-glucuronidase inhibitory potency with IC50 values of 7.6 and 10.3 μM, respectively. Compound 14 exhibited moderate BChE inhibitory activity with an IC50 value of 21.3 μM. In addition, the structure-enzyme inhibitory activity relationship of compounds 1-14 is discussed.
Collapse
|
17
|
Kang HS, Kim ES. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts. Curr Opin Biotechnol 2021; 69:118-127. [PMID: 33445072 DOI: 10.1016/j.copbio.2020.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The heterologous expression of natural product biosynthetic gene clusters (BGCs) has traditionally been used as a genetic platform to link various natural product chemotypes to their corresponding genotypes. In recent years, heterologous expression has played an increasing role in natural products research with the advances in sequencing technologies and bioinformatics tools that allow for the rapid and systematic identification of known and cryptic BGCs from a large number of microbial genome sequences. The advances in synthetic biology have also facilitated the process of heterologous expression by providing tools for rapid cloning and engineering of BGCs to improve production yield or to activate silent BGCs. This paper summarizes the recent progress in the cloning and engineering of natural product BGCs and highlights recent examples of the heterologous expression of both known and cryptic BGCs in Streptomyces hosts, which will continue to play a pivotal role in genomics-driven natural product research.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
18
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
19
|
Zou Y, Yang S, Sanders JN, Li W, Yu P, Wang H, Tang Z, Liu W, Houk KN. Computational Investigation of the Mechanism of Diels-Alderase PyrI4. J Am Chem Soc 2020; 142:20232-20239. [PMID: 33190496 DOI: 10.1021/jacs.0c10813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied the mechanisms of activation and stereoselectivity of a monofunctional Diels-Alderase (PyrI4)-catalyzed intramolecular Diels-Alder reaction that leads to formation of the key spiro-tetramate moiety in the biosynthesis of the pyrroindomycin family of natural products. Key activation effects of PyrI4 include acid catalysis and an induced-fit mechanism that cooperate with the unique "lid" feature of PyrI4 to stabilize the Diels-Alder transition state. PyrI4 enhances the intrinsic Diels-Alder stereoselectivity of the substrate and leads to stereospecific formation of the product.
Collapse
Affiliation(s)
- Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Song Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Hongbo Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
20
|
Zhao L, Vo TD, Kaiser M, Bode HB. Phototemtide A, a Cyclic Lipopeptide Heterologously Expressed from Photorhabdus temperata Meg1, Shows Selective Antiprotozoal Activity. Chembiochem 2020; 21:1288-1292. [PMID: 31814269 PMCID: PMC7317862 DOI: 10.1002/cbic.201900665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 12/20/2022]
Abstract
A new cyclic lipopeptide, phototemtide A (1), was isolated from Escherichia coli expressing the biosynthetic gene cluster pttABC from Photorhabdus temperata Meg1. The structure of 1 was elucidated by HR-ESI-MS and NMR experiments. The absolute configurations of amino acids and 3-hydroxyoctanoic acid in 1 were determined by using the advanced Marfey's method and comparison after total synthesis of 1, respectively. Additionally, three new minor derivatives, phototemtides B-D (2-4), were identified by detailed HPLC-MS analysis. Phototemtide A (1) showed weak antiprotozoal activity against Plasmodium falciparum, with an IC50 value of 9.8 μm. The biosynthesis of phototemtides A-D (1-4) was also proposed.
Collapse
Affiliation(s)
- Lei Zhao
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt am Main, Germany.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, QianHuHouCun 1, 210014, Nanjing, China
| | - Tien Duy Vo
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt am Main, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Tan B, Chen S, Zhang Q, Chen Y, Zhu Y, Khan I, Zhang W, Zhang C. Heterologous Expression Leads to Discovery of Diversified Lobophorin Analogues and a Flexible Glycosyltransferase. Org Lett 2020; 22:1062-1066. [PMID: 31971807 DOI: 10.1021/acs.orglett.9b04597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqiang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Imran Khan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
22
|
Yang Z, He J, Wei X, Ju J, Ma J. Exploration and genome mining of natural products from marine Streptomyces. Appl Microbiol Biotechnol 2019; 104:67-76. [PMID: 31773207 DOI: 10.1007/s00253-019-10227-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022]
Abstract
Marine Streptomyces sp. are an important source of bioactive compounds owing to their unique habitats and metabolic pathways. Whole-genome sequencing and bioinformatics analyses have shown that the potential of synthesizing secondary metabolites from marine-derived Streptomyces has been substantially underestimated. Genome mining is an integrated strategy used to discover natural products based on gene cluster sequences and biosynthetic pathways. Its emergence has greatly enhanced the discovery of natural compounds from marine Streptomyces, thereby yielding a large number of bioactive molecules with novel structures and potent activities. In this review, we briefly summarize the current applications of genome mining in marine Streptomyces, such as bioinformatics-based optimization of culture conditions, ribosome engineering, control of regulatory networks, heterologous expression of biosynthetic gene cluster, and combinatorial biosynthesis of natural compounds. Furthermore, we discuss the factors hindering the utilization of marine-derived natural products and conclude with the prospects for this technique.
Collapse
Affiliation(s)
- Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiao He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
23
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2019. [DOI: 10.1039/c9np90031d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as peyssonnoside A from a Peyssonnelia species.
Collapse
|