1
|
Li S, Hu C, Leo Liu L, Wu L. Selective Hydroboration of C-C Single Bonds without Transition-Metal Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412368. [PMID: 39090033 DOI: 10.1002/anie.202412368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Selective hydroboration of C-C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C-C single bonds. This methodology is transition-metal and ligand-free and surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate versatility, or yields. In addition, our system tolerates various functional groups such as Ar-X (X=halides), heterocyclic rings, ketones, esters, amides, nitro, nitriles, and C=C double bonds, which are typically susceptible to hydroboration in the presence of transition metals. As a result, a diverse range of γ-boronated amines with varied structures and functions has been readily obtained. Experimental mechanistic studies, density functional theory (DFT), and intrinsic bond orbital (IBO) calculations unveiled a hydroborane-promoted C-C bond cleavage and hydride-shift reaction pathway. The carbonyl group of the amide suppresses dehydrogenation between the free N-H and hydroborane. The lone pair on the nitrogen of the amide facilitates the cleavage of C-C bonds in cyclopropanes.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Doi M, Miura H, Shishido T. Borylation of Stable C(sp 3)-O Bonds of Alkyl Esters over Supported Au Catalysts. Org Lett 2024; 26:2902-2907. [PMID: 38572805 DOI: 10.1021/acs.orglett.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We report herein that supported gold catalysts efficiently promote the borylation of stable C(sp3)-O bonds of alkyl esters. The use of a disilane as an electron source and gold nanoparticles as a single-electron transfer catalyst is the key to generating alkyl radicals via the homolysis of stable C(sp3)-O bonds, thereby enabling cross-coupling between bis(pinacolato)diboron and linear and cyclic alkyl esters to afford the diverse alkyl boronates.
Collapse
Affiliation(s)
- Masafumi Doi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Zhou W, Luo ZW, Xiao H, Yi J, Dai JJ. Photo-Triggered, Copper(II) Chloride-Catalyzed Radical Hydroalkylation and Hydrosilylation of Vinylboronic Esters To Access Alkylboronic Esters. J Org Chem 2023; 88:14708-14718. [PMID: 37791810 DOI: 10.1021/acs.joc.3c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Alkyl boronic acids and their derivatives constitute vital building blocks in organic synthesis and are important motifs identified in medicinal chemistry. Herein, we present a phototriggered, CuCl2-catalyzed radical hydroalkylation and hydrosilylation of vinylboronic esters to alkylboronic esters. This approach exhibits mild reaction conditions, utilization of easily accessible reagents, and scalability up to a gram scale. Further synthetic transformations of the hydrosilylation products and mechanistic studies are also demonstrated.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhi-Wen Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Yi
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jian-Jun Dai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Ren Z, Ding C, Ding R, Wang J, Li Z, Tan R, Wang X, Wang Z, Zhang Z. Enhancing Ultrasound-Assisted Iodine-Mediated Reversible-Deactivation Radical Polymerization by Piezoelectric Nanoparticles. ACS Macro Lett 2023; 12:1159-1165. [PMID: 37523272 DOI: 10.1021/acsmacrolett.3c00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The development of mechanochemical tools for regulating the polymerization process has received an increasing amount of attention in recent years. Herein, we report the example of the mechanically controlled iodine-mediated reversible-deactivation radical polymerization (mechano-RDRP) using piezoelectric tetragonal BaTiO3 nanoparticles (T-BTO) as mechanoredox catalyst and alkyl iodide as the initiator. We demonstrated a more efficient mechanochemical initiation and reversible deactivation process than sonochemical activation via a mechanoredox-mediated alkyl iodide cleavage reaction. The mechanochemical activation of the C-I bond was verified by density functional theory (DFT) calculations. Theoretical calculations together with experimental results confirmed the more efficient initiation and polymerization than the traditional sonochemical approach. The influence of BaTiO3, initiator, and solvent was further examined to reveal the mechanism of the mechano-RDRP. The results showed good controllability over molecular weight and capacity for a one-pot chain extension. This work expands the scope of mechanically controlled polymerization and shows good potential in the construction of adaptive materials.
Collapse
Affiliation(s)
- Ziye Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chengqiang Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ran Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junce Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengheng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Sun B, Li W, Liu Q, Zhang G, Mo F. Transition metal-free visible light photoredox-catalyzed remote C(sp 3)-H borylation enabled by 1,5-hydrogen atom transfer. Commun Chem 2023; 6:156. [PMID: 37488210 PMCID: PMC10366130 DOI: 10.1038/s42004-023-00960-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The borylation of unreactive carbon-hydrogen bonds is a valuable method for transforming feedstock chemicals into versatile building blocks. Here, we describe a transition metal-free method for the photoredox-catalyzed borylation of unactivated C(sp3)-H bond, initiated by 1,5-hydrogen atom transfer (HAT). The remote borylation was directed by 1,5-HAT of the amidyl radical, which was generated by photocatalytic reduction of hydroxamic acid derivatives. The method accommodates substrates with primary, secondary and tertiary C(sp3)-H bonds, yielding moderate to good product yields (up to 92%) with tolerance for various functional groups. Mechanistic studies, including radical clock experiments and DFT calculations, provided detailed insight into the 1,5-HAT borylation process.
Collapse
Affiliation(s)
- Beiqi Sun
- School of Materials Science and Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Wenke Li
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Qianyi Liu
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Gaoge Zhang
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
6
|
Abstract
Direct borylation of benzylic alcohols has been achieved via an iodine-catalyzed process. This transition-metal-free borylation transformation is compatible with various functional groups and provides a practical and convenient method to access important and useful benzylic boronate esters from widely available benzylic alcohols. Preliminary mechanistic investigations indicated that benzylic iodide and radicals are involved as the key intermediates in this borylation reaction.
Collapse
Affiliation(s)
- Chunyu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Exploiting the sp 2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat Chem 2022; 14:1068-1077. [PMID: 35864151 PMCID: PMC9420824 DOI: 10.1038/s41557-022-00979-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/19/2022] [Indexed: 01/03/2023]
Abstract
Strained bicyclic substructures are increasingly relevant in medicinal chemistry discovery research because of their role as bioisosteres. Over the last decade, the successful use of bicyclo[1.1.1]pentane (BCP) as a para-disubstituted benzene replacement has made it a highly valuable pharmacophore. However, various challenges, including limited and lengthy access to useful BCP building blocks, are hampering early discovery research. Here we report a single-step transition-metal-free multi-component approach to synthetically versatile BCP boronates. Radicals derived from commonly available carboxylic acids and organohalides perform additions onto [1.1.1]propellane to afford BCP radicals, which then engage in polarity-matched borylation. A wide array of alkyl-, aryl- and alkenyl-functionalized BCP boronates were easily prepared. Late-stage functionalization performed on natural products and approved drugs proceeded with good efficiency to generate the corresponding BCP conjugates. Various photoredox transformations forging C-C and C-N bonds were demonstrated by taking advantage of BCP trifluoroborate salts derived from the BCP boronates.
Collapse
|
8
|
Raut RK, Waghamare AB, Patel N, Majumdar M. Role of N, N′‐diboryl‐4, 4′‐bipyridinylidene in the Transition metal‐free Borylation of Aryl Halides and Direct C‐H arylation of Unactivated Benzene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravindra K. Raut
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | | | - Niranjan Patel
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | - Moumita Majumdar
- Indian Institute of Science Education and Research, Pune Chemistry Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
9
|
Huang M, Hu J, Shi S, Friedrich A, Krebs J, Westcott SA, Radius U, Marder TB. Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry 2022; 28:e202200480. [PMID: 35179269 PMCID: PMC9314653 DOI: 10.1002/chem.202200480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Shasha Shi
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Li S, Lian C, Yue G, Zhang J, Qiu D, Mo F. Transition Metal Free Stannylation of Alkyl Halides: The Rapid Synthesis of Alkyltrimethylstannanes. J Org Chem 2022; 87:4291-4297. [PMID: 35258313 DOI: 10.1021/acs.joc.1c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition metal free stannylation reaction of alkyl bromides and iodides with hexamethyldistannane has been developed. This protocol is operationally convenient and features a rapid reaction and good functional group tolerance. A wide range of functionalized primary and secondary alkyl and benzyl trimethyl stannanes are prepared in moderate to excellent yields. The success of the gram-scale procedure and tandem Stille coupling reaction has allowed this protocol to demonstrate potential for application in organic synthesis. Both experimental and theoretical studies reveal the mechanistic details of this stannylation reaction.
Collapse
Affiliation(s)
- Songyi Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Chang Lian
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Guanglu Yue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jianning Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Park S, Koo J, Kim W, Lee HG. A tandem process for the synthesis of β-aminoboronic acids from aziridines with haloamine intermediates. Chem Commun (Camb) 2022; 58:3767-3770. [PMID: 35234243 DOI: 10.1039/d2cc00808d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented synthetic strategy is devised to generate β-aminoboronic acids from aziridines via a sequential process involving 1,2-iodoamine formation and radical borylation under light irradiation. A variety of aziridines including multiply substituted aziridines have been successfully employed as synthetic precursors, expanding their synthetic utility compared to previous methods. Mechanistic studies suggest that the boron source plays a unique role in the borylation step, and in the formation of haloamine intermediates.
Collapse
Affiliation(s)
- Subin Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea.
| | - Jangwoo Koo
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea.
| | - Weonjeong Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea.
| | - Hong Geun Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea.
| |
Collapse
|
12
|
Electrochemically promoted decarboxylative borylation of alkyl N-hydroxyphthalimide esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
14
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
16
|
Abstract
A simple electrochemically mediated method for the conversion of alkyl carboxylic acids to their borylated congeners is presented. This protocol features an undivided cell setup with inexpensive carbon-based electrodes and exhibits a broad substrate scope and scalability in both flow and batch reactors. The use of this method in challenging contexts is exemplified with a modular formal synthesis of jawsamycin, a natural product harboring five cyclopropane rings.
Collapse
|
17
|
Sun B, Zheng S, Mo F. Transition metal- and light-free radical borylation of alkyl bromides and iodides using silane. Chem Commun (Camb) 2021; 57:5674-5677. [PMID: 33978007 DOI: 10.1039/d1cc02134f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report operationally simple and neutral conditions for borylation of alkyl bromides and iodides to alkyl boronic esters under transition metal- and light-free conditions. A series of substrates with a wide range of functional groups were effectively transformed into the borylation products in moderate to good yields. Mechanistic studies, including radical clock experiments and DFT calculations, gave detailed insight into the radical borylation process.
Collapse
Affiliation(s)
- Beiqi Sun
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Sihan Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Wang X, Cui P, Xia C, Wu L. Catalytic Boration of Alkyl Halides with Borane without Hydrodehalogenation Enabled by Titanium Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penglei Cui
- College of Science Hebei Agricultural University Baoding 071001 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
19
|
Wang C, Zhou L, Yang K, Zhang F, Song Q. Photoinduced
NaI‐Promoted
Radical Borylation of Alkyl Halides and Pseudohalides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chenglan Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou Zhejiang 310000 China
| | - Lu Zhou
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Feng Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Qiuling Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou Zhejiang 310000 China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
- Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University 668 Jimei Boulevard Xiamen Fujian 361021 China
| |
Collapse
|
20
|
Wulkesch C, Czekelius C. Straightforward Synthesis of Fluorinated Enals via Photocatalytic α-Perfluoroalkenylation of Aldehydes. J Org Chem 2021; 86:7425-7438. [PMID: 34008975 DOI: 10.1021/acs.joc.1c00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(Per)fluorinated substances represent an important compound class with regard to drug design and material chemistry. We found a mild, operationally simple, and inexpensive photocatalytic perfluoroalkenylation reaction giving tetrasubstituted, highly electron-deficient enals straight from aldehydes. This one-step reaction tolerates various functional groups and can be applied to a wide range of substrates giving the products in yields of 52-84%.
Collapse
Affiliation(s)
- Christian Wulkesch
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Constantin Czekelius
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Abstract
Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
22
|
Wang X, Cui P, Xia C, Wu L. Catalytic Boration of Alkyl Halides with Borane without Hydrodehalogenation Enabled by Titanium Catalyst. Angew Chem Int Ed Engl 2021; 60:12298-12303. [DOI: 10.1002/anie.202100569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penglei Cui
- College of Science Hebei Agricultural University Baoding 071001 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
23
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021; 90:451-487. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
24
|
Jiao ZF, Tian YM, Guo XN, Radius U, Braunschweig H, Marder TB, Guo XY. Visible-light-driven graphene supported Cu/Pd alloy nanoparticle-catalyzed borylation of alkyl bromides and chlorides in air. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Suzuki K, Nishimoto Y, Yasuda M. (o-Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors. Chemistry 2021; 27:3968-3973. [PMID: 33205553 DOI: 10.1002/chem.202004692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
(o-Phenylenediamino)borylstannanes were newly synthesized to achieve radical boryl substitutions of a variety of alkyl radical precursors. Dehalogenative, deaminative, decharcogenative, and decarboxylative borylations proceeded in the presence of a radical initiator to give the corresponding organic boron compounds. Radical clock experiments and computational studies have provided insights into the mechanism of the homolytic substitution (SH 2) of the borylstannanes with alkyl radical intermediates. DFT calculation disclosed that the phenylenediamino structure lowered the LUMO level including the vacant p-orbital on the boron atom to enhance the reactivity to alkyl radicals in SH 2. Moreover, C(sp3 )-H borylation of THF was accomplished using the triplet state of xanthone.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
26
|
Cheng LJ, Zhao S, Mankad NP. One-Step Synthesis of Acylboron Compounds via Copper-Catalyzed Carbonylative Borylation of Alkyl Halides*. Angew Chem Int Ed Engl 2021; 60:2094-2098. [PMID: 33090619 DOI: 10.1002/anie.202012373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/11/2023]
Abstract
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Siling Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
27
|
|
28
|
Franco M, Sainz R, Lamsabhi AM, Díaz C, Tortosa M, Cid MB. Evaluation of the role of graphene-based Cu(i) catalysts in borylation reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00104c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A methodical experimental and theoretical analysis of different carbon-based Cu(i) materials in the context of the development of an efficient, general, scalable, and sustainable borylation reaction of aliphatic and aromatic halides has been performed.
Collapse
Affiliation(s)
- Mario Franco
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Raquel Sainz
- Institute of Catalysis and Petrochemistry
- CSIC
- 28049 Madrid
- Spain
| | - Al Mokhtar Lamsabhi
- Department of Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Cristina Díaz
- Departamento de Química Física
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Mariola Tortosa
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - M. Belén Cid
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
29
|
Cheng L, Zhao S, Mankad NP. One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li‐Jie Cheng
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Siling Zhao
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
30
|
Lim T, Ryoo JY, Han MS. Transition-Metal-Free Borylation of Aryl Bromide Using a Simple Diboron Source. J Org Chem 2020; 85:10966-10972. [PMID: 32806093 DOI: 10.1021/acs.joc.0c01065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, we developed a simple transition-metal-free borylation reaction of aryl bromides. Bis-boronic acid (BBA), was used, and the borylation reaction was performed using a simple procedure at a mild temperature. Under mild conditions, aryl bromides were converted to arylboronic acids directly without any deprotection steps and purified by conversion to trifluoroborate salts. The functional group tolerance was considerably high. The mechanism study suggested that this borylation reaction proceeds via a radical pathway.
Collapse
Affiliation(s)
- Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
31
|
Song S, Meng Y, Li Q, Wei W. Recent Progress in the Construction of C−N Bonds
via
Metal‐Free Radical C(
sp
3
)−H Functionalization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000055] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Si‐Zhe Song
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 People's Republic of China
| | - Ya‐Nan Meng
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 People's Republic of China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 People's Republic of China
| | - Wen‐Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 People's Republic of China
| |
Collapse
|
32
|
Verma PK, Prasad KS, Varghese D, Geetharani K. Cobalt(I)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides. Org Lett 2020; 22:1431-1436. [DOI: 10.1021/acs.orglett.0c00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Sujit Prasad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Dominic Varghese
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Zhang L, Wu Z, Jiao L. Photoinduced Radical Borylation of Alkyl Bromides Catalyzed by 4‐Phenylpyridine. Angew Chem Int Ed Engl 2020; 59:2095-2099. [DOI: 10.1002/anie.201912564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhong‐Qian Wu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
34
|
Das KK, Paul S, Panda S. Transition metal-free synthesis of alkyl pinacol boronates. Org Biomol Chem 2020; 18:8939-8974. [DOI: 10.1039/d0ob01721c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review systematically outlined the research in the area of transition metal free synthesis of alkyl pinacol boronates, which are versatile and important scaffolds to construct diverse organic compounds.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Swagata Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Santanu Panda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
35
|
Wu J, Bär RM, Guo L, Noble A, Aggarwal VK. Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angew Chem Int Ed Engl 2019; 58:18830-18834. [PMID: 31613033 DOI: 10.1002/anie.201910051] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/14/2019] [Indexed: 01/14/2023]
Abstract
A photochemical method for converting aliphatic alcohols into boronic esters is described. Preactivation of the alcohol as a 2-iodophenyl-thionocarbonate enables a novel Barton-McCombie-type radical deoxygenation that proceeds efficiently with visible light irradiation and without the requirement for a photocatalyst, a radical initiator, or tin or silicon hydrides. The resultant alkyl radical is intercepted by bis(catecholato)diboron, furnishing boronic esters from a diverse range of structurally complex alcohols.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Robin M Bär
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Lin Guo
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
36
|
Zhang L, Wu Z, Jiao L. Photoinduced Radical Borylation of Alkyl Bromides Catalyzed by 4‐Phenylpyridine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhong‐Qian Wu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
37
|
Wu J, Bär RM, Guo L, Noble A, Aggarwal VK. Photoinduced Deoxygenative Borylations of Aliphatic Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingjing Wu
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Robin M. Bär
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Lin Guo
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of ChemistryUniversity of Bristol, Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
38
|
Cao Y, Tu Y, Zhou P, Zhang J, Deng Y, Kong B, Zhang X, Guo S, Zhu R, Ma D, Yang Y, Mo F. Zn +-O - Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14173-14179. [PMID: 31411486 DOI: 10.1021/acs.langmuir.9b01955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ZnO semiconductor oxides are versatile functional materials that are used in photoelectronics, catalysis, sensing, etc. The Zn+-O- surface electronic states of semiconductor oxides were formed on the ZnO surface by Zn 4s and O 2p orbital coupling with the diboron compound's B 2p orbitals. The formation of spin-coupled surface states was based on the spin-orbit interaction on the interface, which has not been reported before. This shows that the semiconductor oxide's spin surface states can be modulated by regulating surface orbital energy. The Zn+-O- surface electronic states were confirmed by electron spin resonance results, which may help in expanding the fundamental research on spintronics modulation and quantum transport.
Collapse
Affiliation(s)
- Yang Cao
- Department of Energy and Resources Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Yongguang Tu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China
| | - Peng Zhou
- Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Jianning Zhang
- Department of Energy and Resources Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Yuchen Deng
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China
| | - Xu Zhang
- Department of Physics and Astronomy , California State University , Northridge , California 91330 , United States
| | - Shaojun Guo
- Department of Energy and Resources Engineering, College of Engineering , Peking University , Beijing 100871 , China
- Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China
| | - Ding Ma
- Department of Energy and Resources Engineering, College of Engineering , Peking University , Beijing 100871 , China
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yang Yang
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering , Peking University , Beijing 100871 , China
- Jiangsu Donghai Silicon Industry S&T Innovation Center , Donghai County, Jiangsu 222300 , China
| |
Collapse
|
39
|
Cao Y, Zhou P, Tu Y, Liu Z, Dong BW, Azad A, Ma D, Wang D, Zhang X, Yang Y, Jiang SD, Zhu R, Guo S, Mo F, Ma W. Modification of TiO 2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti 3+ Complex. iScience 2019; 20:195-204. [PMID: 31581068 PMCID: PMC6833477 DOI: 10.1016/j.isci.2019.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
As one of the most promising semiconductor oxide materials, titanium dioxide (TiO2) absorbs UV light but not visible light. To address this limitation, the introduction of Ti3+ defects represents a common strategy to render TiO2 visible-light responsive. Unfortunately, current hurdles in Ti3+ generation technologies impeded the widespread application of Ti3+ modified materials. Herein, we demonstrate a simple and mechanistically distinct approach to generating abundant surface-Ti3+ sites without leaving behind oxygen vacancy and sacrificing one-off electron donors. In particular, upon adsorption of organodiboron reagents onto TiO2 nanoparticles, spontaneous electron injection from the diboron-bound O2− site to adjacent Ti4+ site leads to an extremely stable blue surface Ti3+‒O−· complex. Notably, this defect generation protocol is also applicable to other semiconductor oxides including ZnO, SnO2, Nb2O5, and In2O3. Furthermore, the as-prepared photoelectronic device using this strategy affords 103-fold higher visible light response and the fabricated perovskite solar cell shows an enhanced performance. Organodiborons are used to reshape the surface electronic state of semiconductor oxides Diboron adsorption leads to spontaneous charge transfer and reduced surface metal ions Photodetector based on diboron material affords 103 fold higher visible light response
Collapse
Affiliation(s)
- Yang Cao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Peng Zhou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongguang Tu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zheng Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo-Wei Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aryan Azad
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Dongge Ma
- School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Dong Wang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA
| | - Yang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shang-Da Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shaojun Guo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China; Jiangsu Donghai Silicon Industry S&T Innovation Center, Donghai County, Jiangsu 222300, China.
| | - Wanhong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Friese FW, Studer A. New avenues for C-B bond formation via radical intermediates. Chem Sci 2019; 10:8503-8518. [PMID: 32015798 PMCID: PMC6977546 DOI: 10.1039/c9sc03765a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
This perspective gives an overview on recent findings in the emerging area of C-radical borylation using diborons as radical trapping reagents. Aryl, vinyl and alkyl boronic esters can be accessed via such an approach under mild conditions. These processes are complementary to established transition metal catalysed cross coupling reactions. Radical borylations can be conducted in the absence of a transition metal but some processes require transition metals as catalysts. It will be shown that various readily available C-radical precursors can be used to run these borylations. For a better understanding of the chemistry, mechanistic discussions are also presented and an outlook on this topic will be provided at the end of the article.
Collapse
Affiliation(s)
- Florian W Friese
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstrasse 40 , 48149 Münster , Germany .
| | - Armido Studer
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstrasse 40 , 48149 Münster , Germany .
| |
Collapse
|