1
|
Lenhard MS, Winter J, Sandvoß A, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Simple and versatile electrochemical synthesis of highly substituted 2,1-benzisoxazoles. Org Biomol Chem 2024. [PMID: 39660434 PMCID: PMC11632592 DOI: 10.1039/d4ob01875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A sustainable, general and scalable electrochemical protocol for direct access to 3-(acylamidoalkyl)-2,1-benzisoxazoles by cathodic reduction of widely accessible nitro arenes is established. The method is characterised by a simple undivided set-up under constant current conditions, inexpensive and reusable carbon-based electrodes, and environmentally benign reaction conditions. The versatility of the developed protocol is demonstrated on 39 highly diverse examples with up to 81% yield. A 50-fold scale-up electrolysis highlights its relevance for preparative applications.
Collapse
Affiliation(s)
- Marola S Lenhard
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Alexander Sandvoß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | | | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
3
|
Sherborne GJ, Diène C, Kemmitt P, Smith AD. Access to a Diverse Array of Bridged Benzo[1,5]oxazocine and Benzo[1,4]diazepine Structures. Org Lett 2023. [PMID: 37996078 DOI: 10.1021/acs.orglett.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The preparation of bridged benzo[1,5]oxazocines and benzo[1,4]diazepines is demonstrated from simple aniline and aldehyde starting materials. A one-pot condensation/6π electrocyclization is followed by an intramolecular trapping of the 2,3-dihydroquinoline intermediate by nitrogen or oxygen nucleophiles to give bridged seven- and eight-membered products. Using 3-hydroxypyridinecarboxaldehydes results in a stable zwitterionic structure that can undergo a diastereoselective reduction under hydrogenative conditions. A similar cyclization/hydrogenation pathway with excellent diastereoselectivity is also demonstrated from 2-pyridyl-substituted 1,2,3,4-tetrahydroquinolines.
Collapse
Affiliation(s)
- Grant J Sherborne
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Coura Diène
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Paul Kemmitt
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Andrew D Smith
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
4
|
Lan W, Yu X, Li M, Lei R, Qin Z, Fu B. A concise approach to 2-pyrrolin-5-one scaffold construction from α-halohydroxamates and β-keto compounds. Org Biomol Chem 2023; 21:7535-7540. [PMID: 37674436 DOI: 10.1039/d3ob01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A concise approach to the construction of the 2-pyrrolin-5-one scaffold was developed via a one-pot reaction with formal [3 + 2] annulation/elimination between β-keto nitrile/β-keto ester and unsubstituted α-halohydroxamates. This reaction features mild conditions, easy handling, broad substrate scope and good yields. Remarkably, the products could be readily converted into potentially bioactive alkylidenepyrrolinones, pyrroles, pyran-fused pyrrole heterocycles and other useful compounds, exhibiting versatile synthetic potential.
Collapse
Affiliation(s)
- Wenjie Lan
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Xuan Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Mengzhu Li
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Rongchao Lei
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Zhaohai Qin
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Bin Fu
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Karjee P, Mandal S, Debnath B, Namdev N, Punniyamurthy T. Expedient (3+3)-annulation of in situ generated azaoxyallyl cations with diaziridines. Chem Commun (Camb) 2023. [PMID: 37317582 DOI: 10.1039/d3cc02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient annulation of in situ formed azaoxyallyl cations using a base has been accomplished with diaziridines to provide 1,2,4-triazines at room temperature. The substrate scope, scale up, functional group tolerance and transition-metal free reaction conditions are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Nirali Namdev
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
6
|
Wang W, Pi C, Cui X, Wu Y. TBAI-Catalysed Formal [4+4]-Cycloaddition: Easy Access to Oxa-Bridged Eight-Membered Heterocycles. Chemistry 2023; 29:e202300301. [PMID: 36757635 DOI: 10.1002/chem.202300301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
TBAI-catalysed [4+4]-cyclization reaction of anthranils with hydrazones to deliver oxa-bridged eight-membered heterocycles in accepted yields was developed. Preliminary mechanistic studies indicated that the reaction involved the in situ generation of vinyldiazenes from readily available hydrazones followed by an aza-Michael addition of the anthranil substrates onto the vinyldiazenes and subsequent annulation. This transformation involved the formation of two new C-N bonds and C-O bond in one pot, overcoming the synthetic limitations of anthranils in organic chemistry. This strategy benefits from high efficiency and atomic economy with mild reaction conditions.
Collapse
Affiliation(s)
- Wenxiang Wang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
7
|
Teli S, Teli P, Soni S, Sahiba N, Agarwal S. Synthetic aspects of 1,4- and 1,5-benzodiazepines using o-phenylenediamine: a study of past quinquennial. RSC Adv 2023; 13:3694-3714. [PMID: 36756601 PMCID: PMC9890949 DOI: 10.1039/d2ra06045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Benzodiazepines, seven-membered heterocyclic compounds having two nitrogen atoms at different positions, are ruling scaffolds in the area of pharmaceutical industry. They act as cardinal moieties in organic synthesis as well as in medicinal chemistry. Among the different benzodiazepines, 1,4- and 1,5-benzodiazepines play a far-reaching role in the field of biological activities such as anticonvulsion, anti-anxiety, sedation, and hypnotics. In the past few decades, researchers have conducted a lot of work on these moieties and developed broad, valuable, and significant approaches for their synthesis. In this review article, we recapitulate the systematic synthetic strategies of 1,4- and 1,5-benzodiazepines using o-phenylenediamine as a precursor over the past five years (2018-2022). This article will be helpful for scientists and researchers to examine and explore novel and efficient methods for the synthesis of these biologically active moieties.
Collapse
Affiliation(s)
- Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| |
Collapse
|
8
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
9
|
Liu S, Wang AJ, Li M, Zhang J, Yin GD, Shu WM, Yu WC. Rh(III)-Catalyzed Tandem Reaction Access to (Quinazolin-2-yl)methanone Derivatives from 2,1-Benzisoxazoles and α-Azido Ketones. J Org Chem 2022; 87:11253-11260. [PMID: 35938613 DOI: 10.1021/acs.joc.2c01214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Rh(III)-catalyzed tandem reaction for the synthesis of (quinazolin-2-yl)methanone derivatives has been explored from 2,1-benzisoxazoles and α-azido ketones. The transformation involves Rh(III)-catalyzed denitrogenation of α-azido ketones, aza-[4 + 2] cycloaddition, ring opening, and dehydration aromatization processes. Notably, the aza-[4 + 2] cycloaddition of an imine rhodium complex intermediate with 2,1-benzisoxazoles is the key to this reaction.
Collapse
Affiliation(s)
- Shan Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - An-Jing Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Min Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jing Zhang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Guo-Dong Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China
| | - Wen-Ming Shu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.,Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China
| | - Wei-Chu Yu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| |
Collapse
|
10
|
Liang B, Wen T, Chen G, Cai Z, Xu J, Chen X, Zhu Z. Copper‐Catalyzed Acylhalogenation of 3‐Methylanthranils with Acid Halides: Synthesis of N‐(2‐(2‐Haloyl)phenyl)amides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wan H, Xia S, Liu X, Jian Y, An Y, Wang Y. Synthesis of spirocyclic oxazole derivatives from 2-arylidene cycloalkanones and α-halohydroxamates. Org Biomol Chem 2022; 20:4293-4297. [PMID: 35575057 DOI: 10.1039/d2ob00701k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we disclose a facile route to spirocyclic oxazole derivatives via [3 + 2] cycloaddition reactions between 2-arylidene cycloalkanones and azaoxyallyl cations that formed in situ from α-halohydroxamates in the presence of base. This methodology was shown to lead to an efficient formation of a series of functionalized spirocyclic oxazole derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Huiyang Wan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Xinghua Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| |
Collapse
|
12
|
A Metal‐free Access to Hindered N‐Alkyl Sulfoximines via in Situ Generated Aza‐Oxyallyl Cations from Functionalized Alkyl Bromide. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Xie L, Hu L, Wu P, Zhao Y, Li G, Cui J, Gao Z, Wu L, Nie S. [8 + 3]‐cycloaddition reactions of heptafulvenes or azaheptafulvenes with a‐halohydroxamates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Xie
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 252000 Liao cheng CHINA
| | - Lina Hu
- Liao Cheng University: Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Ping Wu
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Yunxu Zhao
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Guiling Li
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Jichun Cui
- Liaocheng University College of Chemistry and Chemical Engineering No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Zhenzhen Gao
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| | - Ligang Wu
- Liaocheng University College of Chemistry and Chemical engineering No. 1, Hunan Road 252000 Liaocheng CHINA
| | - Shaozhen Nie
- Liaocheng University School of Pharmaceutical Sciences No. 1 Hunan Road, Liaocheng City, Shandong Province, China 25200 Liao Cheng CHINA
| |
Collapse
|
14
|
Shao R, Zhao H, Ding S, Li L, Chen C, Wang J, Shang Y. Silver-promoted dearomative [3+4] cycloaddition of anthranils with α-isocyanoacetates: access to benzodiazepines. Chem Commun (Camb) 2022; 58:4771-4774. [PMID: 35343523 DOI: 10.1039/d2cc00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of silver-promoted [3+4] cycloaddition of α-isocyanoacetates with anthranils as aromatic Michael accepters, offering access to benzo[d][1,3]diazepinones, has been developed. Mechanistic studies revealed that an "oxygen migration" rearrangement process was involved in this dearomative cycloaddition reaction. Additionally, benzo[d][1,3]diazepinones were obtained efficiently as well under catalytic conditions. Broad functional groups were well tolerated under mild reaction conditions.
Collapse
Affiliation(s)
- Rui Shao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| |
Collapse
|
15
|
Lei X, Feng J, Guo Q, Xu C, Shi J. Base-Promoted Formal [3 + 2] Cycloaddition of α-Halohydroxamates with Carbon Disulfide to Synthesize Polysubstituted Rhodanines. Org Lett 2022; 24:2837-2841. [PMID: 35394789 DOI: 10.1021/acs.orglett.2c00736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A concise and practical strategy via potassium-carbonate-mediated [3 + 2]-cycloaddition reaction of α-halohydroxamates with the common solvent carbon disulfide for the synthesis of functionalized rhodanine derivatives in good to excellent yields is developed. The present methodology features a wide substrate scope as well as good functional group tolerance. The potential synthetic utility of this protocol is demonstrated by synthesis of a series of natural product derivatives containing rhodamine skeletons.
Collapse
Affiliation(s)
- Xiaoqiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Juan Feng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
16
|
Taily IM, Saha D, Banerjee P. Aza-Oxyallyl Cation Driven 3-Amido Oxetane Rearrangement to 2-Oxazolines: Access to Oxazoline Amide Ethers. J Org Chem 2022; 87:2155-2166. [PMID: 35129349 DOI: 10.1021/acs.joc.1c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a highly facile and unprecedented activation of 3-amido oxetanes to synthesize 2-oxazoline amide ethers using a transient electrophilic aza-oxyallyl cation as an activating as well as an alkylating agent under mild reaction conditions. The aza-oxyallyl cation driven intramolecular rearrangement of 3-amido oxetanes to 2-oxazolines is the hallmark of this transformation and is a new addition to the reactivity profile of aza-oxyallyl cations.
Collapse
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
17
|
Lan W, Lei R, Luo J, Qin Z, Fu B, Xie L. A Facile Approach to Benzosultam‐fused 4‐Imidazolidinone Derivatives from N‐Sulfonyl Ketimine and α‐Halogenated Hydroxamates. ChemistrySelect 2022. [DOI: 10.1002/slct.202103670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjie Lan
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Rong‐chao Lei
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Jiayu Luo
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Zhaohai Qin
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Bin Fu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Lei Xie
- School of Pharmacy Liaocheng University Shandong 252000 P. R. China
| |
Collapse
|
18
|
Hou M, Li J, Rao F, Chen Z, Wei Y. Diastereoselective Synthesis of Tetrahydrobenzo[b]azocines by Lu(OTf)3 Catalyzed [4 + 4] Cycloaddition of Donor–Acceptor Cyclobutanes with Anthranils. Chem Commun (Camb) 2022; 58:5865-5868. [DOI: 10.1039/d2cc00829g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of N-heterocyclic eight-membered rings remains a challenging due to unfavorable transannular strain. Herein, we report a Lu(OTf)3 catalyzed formal [4 +4] cycloaddition reaction of cyclobutane 1,1-diesters with anthranils...
Collapse
|
19
|
Gao Y, Yang S, She M, Nie J, Huo Y, Chen Q, Li X, Hu XQ. Practical Synthesis of 3-Aryl Anthranils via an Electrophilic Aromatic Substitution Strategy. Chem Sci 2022; 13:2105-2114. [PMID: 35308846 PMCID: PMC8849043 DOI: 10.1039/d1sc06565c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
We report a practical route for the synthesis of valuable 3-aryl anthranils from readily available anthranils and simple arenes by using the classical electrophilic aromatic substitution (EAS) strategy. This transformation goes through an electrophilic substitution and rearomatisation sequence by employing Tf2O as an effective activator. A wide range of arenes were compatible in this transformation, delivering various structurally diversified 3-aryl anthranils in good yields and high regioselectivity. In addition, a variety of readily available feedstocks such as olefins, alkenyl triflates, silyl enolethers, carbonyl compounds, thiophenols and thiols could also participate in the reaction to achieve the C3 alkenylation, alkylation and thioetherification of anthranils. Of note, the synthesized 3-aryl anthranils proved to be a highly robust platform to access a series of biologically active compounds, drug derivatives and organic optoelectronic materials. A practical route for the synthesis of valuable 3-aryl anthranils from readily available anthranils and simple arenes has been achieved through an electrophilic substitution and rearomatization sequence by employing Tf2O as an effective activator.![]()
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Simin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Minwei She
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
20
|
Huang L, Yao Z, Huang G, Ao Y, Zhu B, Li S, Cui X. One‐Pot Synthesis of Fused Indolin‐3‐Ones via a [3+3] Cycloaddition Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lang Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Zhenyu Yao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Guanghua Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Yaqi Ao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Bin Zhu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Sanshu Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| |
Collapse
|
21
|
Lee CY, Kim S. Metal‐free Nucleophilic α‐Azidation of α‐Halohydroxamates with Azidotrimethylsilane. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chang Yoon Lee
- Department of Chemistry Kyonggi University 154-42 Gwanggyosan-ro, Yeongtong-gu Suwon 16227 (Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University 154-42 Gwanggyosan-ro, Yeongtong-gu Suwon 16227 (Republic of Korea
| |
Collapse
|
22
|
Garia A, Grover J, Jain N. Metal‐Free Synthesis of Anthranils by PhIO Mediated Heterocyclization of
ortho
‐Carbonyl Anilines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alankrita Garia
- Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Jatin Grover
- Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Nidhi Jain
- Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| |
Collapse
|
23
|
Lee CY, Kwon YI, Jang HS, Lee S, Chun YL, Jung J, Kim S. Organocatalytic Enantioselective [4+3]‐Cycloadditions of Azaoxyallyl Cations with 2‐Aminophenyl Enones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chang Yoon Lee
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Yong Il Kwon
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Hyun Sun Jang
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Sumin Lee
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Yoo Lim Chun
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| |
Collapse
|
24
|
Zhang M, Meng Y, Wu Y, Song C. TfOH-Promoted Decyanative Cyclization toward the Synthesis of 2,1-Benzisoxazoles. J Org Chem 2021; 86:7326-7332. [PMID: 34014082 DOI: 10.1021/acs.joc.1c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel solvent-free, TfOH-promoted decyanative cyclization approach for the synthesis of 2,1-benzisoxazoles has been developed. The reactions are complete instantly at room temperature and result in the formation of the desired 2,1-benzisoxazoles in a 34-97% isolated yield.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yangang Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
26
|
Lam H, Lautens M, Abel-Snape X, Köllen MF. Recent Advances in Transition-Metal-Free (4+3)-Annulations. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract(4+3)-Annulations are incredibly versatile reactions which combine a 4-atom synthon and a 3-atom synthon to form both 7-membered carbocycles as well as heterocycles. We have previously reviewed transition-metal-catalyzed (4+3)-annulations. In this review, we will cover examples involving bases, NHCs, phosphines, Lewis and Brønsted acids as well as some rare examples of boronic acid catalysis and photocatalysis. In analogy to our previous review, we exclude annulations involving cyclic dienes like furan, pyrrole, cyclohexadiene or cyclopentadiene, as Chiu, Harmata, Fernándes and others have recently published reviews encompassing such substrates. We will however discuss the recent additions (2010–2020) to the literature on (4+3)-annulations involving other types of 4-atom-synthons.1 Introduction2 Bases3 Annulations Using N-Heterocyclic Carbenes3.1 N-Heterocyclic Carbenes (NHCs)3.2 N-Heterocyclic Carbenes and Base Dual-Activation4 Phosphines5 Acids5.1 Lewis Acids5.2 Brønsted Acids6 Boronic Acid Catalysis and Photocatalysis7 Conclusion
Collapse
Affiliation(s)
- Heather Lam
- Davenport Research Laboratories, Department of Chemistry, University of Toronto
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto
| | - Xavier Abel-Snape
- Davenport Research Laboratories, Department of Chemistry, University of Toronto
| | - Martin F. Köllen
- Ludwig-Maximilians-Universität München, Department Chemie und Biochemie
| |
Collapse
|
27
|
Wang CC, Qu YL, Liu XH, Ma ZW, Yang B, Liu ZJ, Chen XP, Chen YJ. Synthesis of Five-Membered Cyclic Guanidines via Cascade [3 + 2] Cycloaddition of α-Haloamides with Organo-cyanamides. J Org Chem 2021; 86:3546-3554. [PMID: 33538590 DOI: 10.1021/acs.joc.0c02932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The convenient preparation of N2-unprotected five-membered cyclic guanidines was achieved through a cascade [3 + 2] cycloaddition between organo-cyanamides and α-haloamides under mild conditions in good to excellent yields (up to 99%). The corresponding cyclic guanidines could be easily transformed into hydantoins via hydrolysis.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China.,College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Ya-Li Qu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Xue-Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Zhi-Jing Liu
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Xiao-Pei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|
28
|
Gao C, Wang X, Liu J, Li X. Highly Diastereo- and Enantioselective Synthesis of Tetrahydrobenzo[b]azocines via Palladium-Catalyzed [4 + 4] Cycloaddition. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Can Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jitian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, no. 388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Chen J, Liang E, Shi J, Wu Y, Wen K, Yao X, Tang X. Metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates at room temperature. RSC Adv 2021; 11:4966-4970. [PMID: 35424458 PMCID: PMC8694548 DOI: 10.1039/d1ra00324k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we describe the novel reactivity of hexafluoroisopropyl 2-aminobenzoates. The metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature. These procedures feature good functional group tolerance, mild reaction conditions, and excellent yields. The newly formed products can readily be converted to other useful N-heterocycles. Moreover, the products and their derivatives showed potent anticancer activities in vitro by MTT assay. A metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature.![]()
Collapse
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
30
|
Sun J, Wang T, Zhu X, Xu W, Cheng B, Zhai H. Synthesis of thiazolidin-4-ones from α-enolic dithioesters and α-halohydroxamates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01970h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A facile access to thiazolidin-4-ones from α-enolic dithioesters and α-halohydroxamates in situ derived active 1,3-dipolar aza-oxyallyl cations was achieved under mild conditions.
Collapse
Affiliation(s)
- Jianguo Sun
- State Key Laboratory of Chemical Oncogenomics
- Shenzhen Engineering Laboratory of Nano Drug Slow-Release
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Taimin Wang
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Xuecheng Zhu
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Wei Xu
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Bin Cheng
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
- State Key Laboratory of Applied Organic Chemistry
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics
- Shenzhen Engineering Laboratory of Nano Drug Slow-Release
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| |
Collapse
|
31
|
Mukherjee A, Ansari AJ, Rajagopala Reddy S, Kanti Das G, Singh R. Mechanistic Investigations for the Formation of Active Hexafluoroisopropyl Benzoates Involving Aza‐Oxyallyl Cation and Anthranils. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anirban Mukherjee
- National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh 229010 India
| | - Arshad J. Ansari
- School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri, Kishangarh 305817, Rajasthan India
| | - S. Rajagopala Reddy
- School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri, Kishangarh 305817, Rajasthan India
| | - Gourab Kanti Das
- Department of Chemistry Institute of Science (Siksha Bhavana) Visva-Bharati, Santiniketan 731235, West Bengal India
| | - Ritesh Singh
- School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri, Kishangarh 305817, Rajasthan India
| |
Collapse
|
32
|
Luo Y, Chen CH, Zhu F, Mo DL. Synthesis of α-aminooxy amides through [3 + 3] cycloaddition and Sc(OTf) 3-catalyzed double C-N bond cleavage in a one-pot reaction. Org Biomol Chem 2020; 18:8209-8218. [PMID: 33043956 DOI: 10.1039/d0ob01788d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various α-aminooxy amides bearing a quaternary carbon at the α-position were prepared in good to excellent yields under mild reaction conditions from N-vinyl nitrones and α-bromohydroxamates. The N-vinyl nitrones tolerate a wide range of N-vinyl fluorenone nitrones and N-vinyl isatin nitrones. Mechanistic studies show that the reaction initially proceeds through [3 + 3] cycloaddition between N-vinyl nitrones and aza-oxyallyl cations generated from α-bromohydroxamates to afford six-membered N,O-heterocycles, followed by double C-N bond cleavage in the presence of the Sc(OTf)3 catalyst. A selective N-O bond cleavage of the obtained α-aminooxy amides is also realized under Fe/NH4Cl conditions. Furthermore, gram-scalable preparations of α-aminooxy amides are easily achieved.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Chun-Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Fan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
33
|
Wang C, Xu G, Shao Y, Tang S, Sun J. Gold-Catalyzed Intermolecular Formal [4 + 2 + 2]-Cycloaddition of Anthranils with Allenamides. Org Lett 2020; 22:5990-5994. [PMID: 32678606 DOI: 10.1021/acs.orglett.0c02083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of eight-membered rings is a challenging issue due to unfavorable transannular strain and entropic barriers. We report herein a gold-catalyzed formal [4 + 2 + 2] cycloaddition reaction of anthranils with allenamides to deliver oxa-bridged eight-membered heterocycles in accepted yields with unique E/Z configuration. Moreover, the asymmetric [4 + 2 + 2] cycloaddition by using chiral phosphoramidite gold catalyst has also been conducted.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
34
|
Jang HS, Kwon YI, Kim S. Facile Synthesis of Functionalized 1,4‐Benzodiazepine‐3‐One‐5‐Acetates via [4 + 3]‐Annulation of Azaoxyallyl Cations With 2‐Aminophenyl α,β‐Unsaturated Esters. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hyun Sun Jang
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| | - Yong Il Kwon
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| | - Sung‐Gon Kim
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| |
Collapse
|
35
|
Selvaraj K, Chauhan S, Sandeep K, Swamy KCK. Advances in [4+3]‐Annulation/Cycloaddition Reactions Leading to Homo‐ and Heterocycles with Seven‐Membered Rings. Chem Asian J 2020; 15:2380-2402. [DOI: 10.1002/asia.202000545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Karuppu Selvaraj
- School of ChemistryUniversity of Hyderabad Hyderabad-500046 Telangana India
| | - Sachin Chauhan
- School of ChemistryUniversity of Hyderabad Hyderabad-500046 Telangana India
| | - K. Sandeep
- School of ChemistryUniversity of Hyderabad Hyderabad-500046 Telangana India
| | - K. C. Kumara Swamy
- School of ChemistryUniversity of Hyderabad Hyderabad-500046 Telangana India
| |
Collapse
|
36
|
Liu Y, Wu Z, Wang Y, Zhang Y, Shao J, Lu T, Li W. Synthesis of Active Hexafluoroisopropyl Benzoates via a Multicomponent Reaction. J Org Chem 2020; 85:7840-7847. [PMID: 32469532 DOI: 10.1021/acs.joc.0c00476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe an efficient, practical free-metal rapid access to active hexafluoroisopropyl benzoates from anthranils, hexafluoroisopropanol, and N-alkoxy α-halogenoacetamides. Notably, this process includes anthranils that underwent a distinct pattern reaction. The protocol has good functional group tolerance and a broad substrate scope. Using a simple and general method, we accomplished potential synthetic application of active ester.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ziqiao Wu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yankai Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuheng Zhang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Shao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenhai Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
37
|
Kim E, Lee CY, Kim S. HFIP‐Mediated Decarboxylative [4+3]‐Annulation of Azaoxyallyl Cations with Isatoic Anhydride. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000439] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eunjin Kim
- Department of ChemistryKyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Chang Yoon Lee
- Department of ChemistryKyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| | - Sung‐Gon Kim
- Department of ChemistryKyonggi University 154-42, Gwanggyosan-ro, Yeongtong-gu Suwon 16227 Republic of Korea
| |
Collapse
|
38
|
Son EC, Lee J, Kim SG. Base-Promoted Cycloaddition of γ-Hydroxy- and δ-Hydroxy-α,β-Unsaturated Carbonyls with Azaoxyallyl Cations: Rapid Synthesis of N,O
-Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eun Chae Son
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| | - Jiseon Lee
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| |
Collapse
|
39
|
Ansari AJ, Yadav A, Mukherjee A, Sathish E, Nagesh K, Singh R. Metal free amination of congested and functionalized alkyl bromides at room temperature. Chem Commun (Camb) 2020; 56:4804-4807. [PMID: 32227034 DOI: 10.1039/d0cc00826e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a highly facile and unprecedented approach to synthesize congested N-(hetero)aryl amines en route to α-amino acid amides using α-bromoamides as alkylating agents under mild reaction conditions (room temperature). The involvement of aza-oxyallyl cations as alkylating agents is the hallmark of this reaction. The method was readily adapted for the rapid synthesis of coveted 1,4-benzodiazepine-3,5-diones.
Collapse
Affiliation(s)
- Arshad J Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | | | | | | | | | | |
Collapse
|
40
|
Chae Son E, Kim S. Metal‐free Nucleophilic Alkoxylation of in Situ‐Generated Azaoxyallyl Cations: Synthesis of Hindered Dialkyl Ether Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eun Chae Son
- Department of ChemistryKyonggi University 154-42 Gwanggyosan-ro, Yeongtong-gu Suwon 16227 (Republic of Korea
| | - Sung‐Gon Kim
- Department of ChemistryKyonggi University 154-42 Gwanggyosan-ro, Yeongtong-gu Suwon 16227 (Republic of Korea
| |
Collapse
|
41
|
Xie L, Guo SN, Wu P, Gao Z, Liu F, Yuan C. [3 + 3] Cycloaddition of aza-oxyallyl cations with 1,4-dithiane-2,5-diols for the construction of 3-thiomorpholinones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1740738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Xie
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Sheng-nan Guo
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Ping Wu
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Zhenzhen Gao
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Fang Liu
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Chunhao Yuan
- College of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P. R. China
| |
Collapse
|
42
|
Yuan C, Zhang H, Yuan M, Xie L, Cao X. Synthesis of 1,4-diazepinone derivatives via a domino aza-Michael/S N2 cyclization of 1-azadienes with α-halogenoacetamides. Org Biomol Chem 2020; 18:1082-1086. [PMID: 31971222 DOI: 10.1039/c9ob02626f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cyclization of α-halogenoacetamides with 1-azadienes has been developed for the efficient preparation of monocyclic 1,4-diazepinones in one step under transition metal-free conditions. Various α-halogenoacetamides and 1-azadienes are well tolerated and give the desired products in good to excellent yields. This cyclization also demonstrates potential synthetic utility on a gram-scale and further transformation.
Collapse
Affiliation(s)
- Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| | - Hui Zhang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| | - Mengna Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| | - Lei Xie
- School of Pharmacy, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China.
| |
Collapse
|
43
|
Rao Kovvuri VR, Xue H, Romo D. Generation and Reactivity of 2-Amido-1,3-diaminoallyl Cations: Cyclic Guanidine Annulations via Net (3 + 2) and (4 + 3) Cycloadditions. Org Lett 2020; 22:1407-1413. [PMID: 32009413 DOI: 10.1021/acs.orglett.0c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toward a method for direct conversion of alkenes to cyclic guanidines, we report that 1,3-dipolar cycloadditions of 2-amido-1,3-diamino allylic cations with alkenes provide a new method for direct cyclic guanidine annulation. Generated under oxidative conditions, the 2-amido-1,3-diaminoallyl cations react as 1,3-dipoles providing rapid access to 2-amino imidazolines through net (3 + 2) cycloadditions. The utility is demonstrated through a concise synthesis of the oroidin alkaloid, phakellin. The described 1,3-dipole also participates in net (4 + 3) cycloadditions with dienes.
Collapse
Affiliation(s)
- V Raghavendra Rao Kovvuri
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , Texas 76798 , United States
| | - Haoran Xue
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , Texas 76798 , United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , Texas 76798 , United States
| |
Collapse
|
44
|
Kwon Y, Choi S, Jang HS, Kim SG. Rapid Access to Hindered α-Amino Acid Derivatives and Benzodiazepin-3-ones from Aza-Oxyallyl Cations. Org Lett 2020; 22:1420-1425. [DOI: 10.1021/acs.orglett.0c00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- YongIl Kwon
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sunyoung Choi
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Hyun Sun Jang
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
45
|
Gao Y, Nie J, Huo Y, Hu XQ. Anthranils: versatile building blocks in the construction of C–N bonds and N-heterocycles. Org Chem Front 2020. [DOI: 10.1039/d0qo00163e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article provides an overview of the recent progress in the transformations of anthranils, which have emerged as versatile building blocks in the assembly of various C–N bonds and medicinally active heterocyclic systems.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
46
|
Roy T, Jacob A, Bhattacharjee S, Biju AT. [8+3]-Cycloaddition of Tropones with Azaoxyallyl Cations. Chem Asian J 2019; 14:4748-4753. [PMID: 31529771 DOI: 10.1002/asia.201901198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Indexed: 01/17/2023]
Abstract
Although azaoxyallyl cations are widely used as 1,3-dipoles for various cycloaddition reactions leading to nitrogen-containing heterocycles, their application in higher-order cycloaddition reaction remains scarce. Herein, we present the [8+3]-cycloaddition reaction of tropones with in situ generated azaoxyallyl cations allowing the one-step construction of cycloheptatriene-fused 1,4-oxazinones in moderate to good yields. This base-promoted new carbon-oxygen and carbon-nitrogen bond-forming reaction takes place under mild conditions in the absence of transition metal catalysts.
Collapse
Affiliation(s)
- Tony Roy
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Anu Jacob
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| |
Collapse
|
47
|
El Bouakher A, Martel A, Comesse S. α-Halogenoacetamides: versatile and efficient tools for the synthesis of complex aza-heterocycles. Org Biomol Chem 2019; 17:8467-8485. [DOI: 10.1039/c9ob01683j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the use of α-alkyl- and α-alkoxy-halogenoacetamides as powerful partners for domino and 1,3-dipolar cycloaddition reactions resulting in a ring closure.
Collapse
Affiliation(s)
| | - Arnaud Martel
- IMMM
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | | |
Collapse
|