1
|
Wu Q, Li X, Ma J, Shi Y, Lv J, Yang D. Arylcyanation of Styrenes by Photoactive Electron Donor-Acceptor Complexes/Copper Catalysis. Org Lett 2024; 26:7949-7955. [PMID: 39259680 DOI: 10.1021/acs.orglett.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A novel electron donor-acceptor (EDA) complex/copper catalysis model has been proposed for the construction of 2,3-diarylpropionitriles under visible light conditions. The developed protocol proceeds via intermolecular charge transfer between the photoactive EDA complex of dibutamine (DBA), aryl thianthrenium salts, and trimethylsilyl cyanide (TMSCN), followed by a copper catalytic cycle. UV-vis absorption measurements confirm the participation of EDA complexes as reactive intermediates. This three-component process proceeds smoothly in the presence of pharmaceutically relevant core structures and sensitive functional groups, which offers the possibility of the precise editing of drug molecules with important scaffolds.
Collapse
Affiliation(s)
- Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, P. R. China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
2
|
Gan Z, Liu S, Chen J, Chen Z, Zhang Y, Wang L, Wang H, Li Y, Jin Y. A Modular Three-Component Approach for Site-selective Tandem Arene Thiophosphorylation. Org Lett 2024; 26:7155-7160. [PMID: 39167484 DOI: 10.1021/acs.orglett.4c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Thiophosphates serve as pivotal reagents within the realms of both organic and inorganic synthesis, with their most notable applications observed in agricultural chemistry. This manuscript delineates a modular three-component synthetic strategy for site-selective arene C-H thiophosphorylation with thianthrenium salt, 1,4-diazabicyclo[2.2.2]octane-sulfur dioxide (DABSO), and diarylphosphine oxides as substrates. This approach facilitates the metal-free and green synthesis of a diverse spectrum of S-aryl phosphorothioates through C-H functionalization and late-stage modification showcasing practicality and broad applicability.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yihao Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Zhong LJ, Chen H, Shang X, Fan JH, Tang KW, Liu Y, Li JH. Photoredox Ring Opening 1,2-Alkylarylation of Alkenes with Sulfonium Salts Toward Thioether-Substituted Oxindoles. J Org Chem 2024; 89:8721-8733. [PMID: 38832808 DOI: 10.1021/acs.joc.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A novel strategy for the difunctionalization of electron-deficient alkenes with aryl sulfonium salts to access remote sulfur-containing oxindole derivatives by using in situ-formed copper(I)-based complexes as a photoredox catalyst is presented. This method enables the generation of the C(sp3)-centered radicals through site selective cleavage of the C-S bond of aryl sulfonium salts under mild conditions. Moreover, the oxidation reactions of desired products provide a new strategy for the preparation of sulfoxide or sulfone-containing compounds. Importantly, this approach can be easily applied to late-stage modification of pharmaceuticals molecules.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Xu H, Li X, Wang Y, Song X, Shi Y, Lv J, Yang D. Arylthianthrenium Salts as the Aryl Sources: Visible Light/Copper Catalysis-Enabled Intermolecular Azidosulfonylation of Alkenes. Org Lett 2024; 26:1845-1850. [PMID: 38408361 DOI: 10.1021/acs.orglett.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The difunctionalization of alkenes using aryl thianthrenium salts as the aryl sources has been reported sporadically. However, the four-component difunctionalization of alkenes on the basis of aryl thianthrenium salts has not been reported thus far and still remains a challenge. Herein, a visible light/copper catalysis-enabled four-component reaction of aryl thianthrenium salts, DABCO·(SO2)2, alkenes, and TMSN3 is presented, which affords a facile approach to β-azidosulfones in good yields with broad substrate scope and excellent functional group tolerance. This strategy indirectly realizes the method for the synthesis of β-azidosulfones through site-selective aryl C-H bond functionalization and alkene difunctionalization. This developed method is an important complement to thianthrenium salts chemistry.
Collapse
Affiliation(s)
- Hao Xu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, China
| | - Yifei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuyan Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
7
|
Hu GQ, Zhang WY, Liu YX, Liu JH, Zhao B. Visible Light-Accelerated Palladium-Catalyzed Thiocarbonylation Using Oxalic Acid Monothioester with Aryl/Alkenyl Sulfonium Salts. J Org Chem 2023; 88:14351-14356. [PMID: 37802501 DOI: 10.1021/acs.joc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.
Collapse
Affiliation(s)
- Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Wang S, Xu H, Zhang R, Zhang S, Chai Y, Yang B, Zhao J, Xu Y, Li P. Regioselective Synthesis of N-Vinyl Pyrazoles from Vinyl Sulfonium Salts with Diazo Compounds. Org Lett 2023; 25:6746-6750. [PMID: 37669415 DOI: 10.1021/acs.orglett.3c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Herein, we develop a base-promoted regioselective synthesis of N-vinyl pyrazoles from vinyl sulfonium salts with diazo compounds. This metal-free synthetic protocol provides an efficient and practical approach to diverse N-vinyl pyrazoles in good to excellent yields under mild conditions. The reaction appears to experience a [3 + 2] annulation of vinyl sulfonium salts and diazo anions rather than diazo compounds, followed by N-vinylation.
Collapse
Affiliation(s)
- Shichong Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Huayan Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ruoyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Siyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yun Chai
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Bingchuan Yang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yuanqing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
9
|
Ghosh S, Majumder S, Ghosh D, Hajra A. Redox-neutral carbon-heteroatom bond formation under photoredox catalysis. Chem Commun (Camb) 2023. [PMID: 37171250 DOI: 10.1039/d3cc01873c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, visible-light-mediated photoredox catalysis has been emerging as one of the fastest growing fields in organic chemistry because of its low cost, easy availability and environmental benignness. In the past five years, a new yet challenging trend, visible-light-induced redox-neutral carbon-heteroatom bond formation reaction involving presumed radical intermediates, has been flourishing rapidly. Although mostly transition metal-based photoredox catalysts were reported, a few organophotoredox catalysts have also shown efficacy towards carbon-heteroatom bond formation reactions. This review intends to summarize the recent research progress in redox-neutral carbon-heteroatom bond formations based on active intermediate(s) involved under photoredox catalysis.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's University, Bangalore 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
10
|
Xu H, Li X, Ma J, Zuo J, Song X, Lv J, Yang D. An electron donor–acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
11
|
Luo L, Tang S, Wu J, Jin S, Zhang H. Transition Metal-Free Aromatic C-H, C-N, C-S and C-O Borylation. CHEM REC 2023; 23:e202300023. [PMID: 36850026 DOI: 10.1002/tcr.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C-H and C-Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C-H and C-Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C-H, C-N, C-S, and C-O borylation transformations and provides insights to where further developments are required.
Collapse
Affiliation(s)
- Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiangyue Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
12
|
Lu C, Chen R, Wang R, Jing D, Zheng K. Synthesis of Sulfur-Containing Oxindoles by Photoinduced Alkene Difunctionalization via Sulfur 1,2-Relocation. Org Lett 2023; 25:750-755. [PMID: 36722744 DOI: 10.1021/acs.orglett.2c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organosulfur compounds are prevalent in various natural products, which have been widely applied in agrochemicals and pharmaceuticals. Herein, a new approach for the efficient construction of sulfur-containing oxindoles by photoinduced alkene difunctionalization via sulfur 1,2-relocation is developed. The method exhibited a high functional group tolerance and broad substrate compatibility. A library of sulfur-containing oxindole derivatives were synthesized under mild conditions (metal-, photocatalyst-, and additive-free). Mechanistic investigations revealed this photochemical process was triggered by the formation of an EDA complex of oxindole enolates with a redox-active ester, and the in situ generation of alkenes from the C-S bond cleavage of β-sulfanyl radicals was a key step in this transformation.
Collapse
Affiliation(s)
- Cong Lu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Rui Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Rui Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dong Jing
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
13
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gao P, Zhang Q, Chen F. Base-Promoted Synthesis of Vinyl Sulfides from Sulfonium Triflates. Org Lett 2022; 24:7769-7773. [PMID: 36260131 DOI: 10.1021/acs.orglett.2c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new protocol has been developed for vinyl sulfide synthesis promoted by an alkoxy base under metal-free conditions. In this reaction, aryl and alkenyl sulfonium triflates with diverse functionalities are converted into vinyl sulfides with excellent reactivity. This transformation features mild and safe reaction conditions that avoid catalyst, transition metal, high-pressure gas, and high reaction temperature without compromising efficiency.
Collapse
Affiliation(s)
- Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qingzheng Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
15
|
Wang C, Liu B, Shao Z, Zhou J, Shao A, Zou LH, Wen J. Synthesis of 1,2-Diamines from Vinyl Sulfonium Salts and Arylamines. Org Lett 2022; 24:6455-6459. [PMID: 36037330 DOI: 10.1021/acs.orglett.2c02604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A procedure for the synthesis of 1,2-diamines from vinyl sulfonium salts and arylamines under mild conditions was developed. This present synthetic protocol not only obviates the need for a transition-metal catalyst and an oxidizing reagent but also features a broad substrates scope. The practicability of this protocol is demonstrated by the one-pot synthesis, a scale-up reaction, and transformations of the products to diverse N-heterocyclic compounds. Mechanistic studies indicate that the formation of aziridine plays a key role during this diamination process.
Collapse
Affiliation(s)
- Cheng Wang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Biao Liu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zeyu Shao
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Junqi Zhou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Andong Shao
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liang-Hua Zou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jian Wen
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
16
|
Xu G, Han Z, Guo L, Lu H, Gao H. Transition-Metal-Free Cascade Approach for the Synthesis of Functionalized Biaryls by S NAr of Arylhydroxylamines with Arylsulfonium Salts. J Org Chem 2022; 87:10449-10453. [PMID: 35831025 DOI: 10.1021/acs.joc.2c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a transition-metal-free protocol for the synthesis of functionalized biaryls through nucleophilic aromatic substitution (SNAr) of arylhydroxylamines to arylsulfonium salts. With this protocol, structurally diverse functionalized biaryls were obtained smoothly in moderate to good yields. Merits of this transformation include mild reaction conditions, broad substrate scope, great functional group tolerance, feasibility of a one-pot procedure, and ease of handing and scale-up.
Collapse
Affiliation(s)
- Gaofei Xu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Zongtao Han
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 262737, China
| | - Lirong Guo
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Haifeng Lu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| |
Collapse
|
17
|
Wang Q, Hao X, Jin K, Zhang R, Duan C, Li Y. Visible-light-catalyzed C-H arylation of (hetero)arenes via arylselenonium salts. Org Biomol Chem 2022; 20:4427-4430. [PMID: 35587033 DOI: 10.1039/d2ob00507g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photo-induced C-H arylation of (hetero)arenes has been developed. Aryl selenonium salts as an aryl source led to the arylation of aromatic (hetero)cyclic compounds via C-Se bond activation under blue LED irradiation. The method simply utilizes the safe and clean energy source and yields a range of site-selective biphenyl or bi-heterocyclic products in medium to good yields. Furthermore, the borylation and Sonogashira coupling of aryl selenonium salts proceed in good yields as well. From the results, it is shown that selenonium salts are more reactive than sulfonium salts.
Collapse
Affiliation(s)
- Qiyue Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Kun Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Yaming Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| |
Collapse
|
18
|
Li R, Barel N, Subramaniyan V, Cohen O, Tibika F, Tulchinsky Y. Sulfonium cations as versatile strongly π-acidic ligands. Chem Sci 2022; 13:4770-4778. [PMID: 35655889 PMCID: PMC9067576 DOI: 10.1039/d2sc00588c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 01/31/2023] Open
Abstract
More than a century old, sulfonium cations are still intriguing species in the landscape of organic chemistry. On one hand they have found broad applications in organic synthesis and materials science, but on the other hand, while isoelectronic to the ubiquitous tertiary phosphine ligands, their own coordination chemistry has been neglected for the last three decades. Here we report the synthesis and full characterization of the first Rh(i) and Pt(ii) complexes of sulfonium. Moreover, for the first time, coordination of an aromatic sulfonium has been established. A thorough computational analysis of the exceptionally short S-Rh bonds obtained attests to the strongly π-accepting nature of sulfonium cations and places them among the best π-acceptor ligands available today. Our calculations also show that embedding within a pincer framework enhances their π-acidity even further. Therefore, in addition to the stability and modularity that these frameworks offer, our pincer complexes might open the way for sulfonium cations to become powerful tools in π-acid catalysis.
Collapse
Affiliation(s)
- Ruiping Li
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Nitsan Barel
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | | | - Orit Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
19
|
Yan DM, Xu SH, Qian H, Gao PP, Bi MH, Xiao WJ, Chen JR. Photoredox-Catalyzed and Copper(II) Salt-Assisted Radical Addition/Hydroxylation Reaction of Alkenes, Sulfur Ylides, and Water. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Shuang-Hua Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Pan-Pan Gao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ming-Hang Bi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
20
|
Abstract
The direct C–S borylation of aryl sulfides with B2pin2 has been achieved via a transition-metal-free photochemical process. With blue LED irradiation, aryl sulfides with various functional groups were converted to...
Collapse
|
21
|
Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01548f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a new copper-based photocatalyst, [(binap)(tpy)Cu]Cl, and applied it in the visible-light promoted Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
22
|
Xu H, Zhang J, Zuo J, Wang F, Lü J, Hun X, Yang D. Recent Advances in Visible-Light-Catalyzed C—C Bonds and C—Heteroatom Bonds Formation Using Sulfonium Salts. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Zhu X, Jiang M, Li X, Zhu E, Deng Q, Song X, Lv J, Yang D. Alkylsulfonium salts for the photochemical desulphurizative functionalization of heteroarenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01570b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A metal-free organic photoredox-catalyzed alkylation of heteroarenes using alkylsulfonium salts as alkylation reagents has been developed.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Enjie Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
24
|
Zhang YL, Wang GH, Wu Y, Zhu CY, Wang P. Construction of α-Amino Azines via Thianthrenation-Enabled Photocatalyzed Hydroarylation of Azine-Substituted Enamides with Arenes. Org Lett 2021; 23:8522-8526. [PMID: 34662135 DOI: 10.1021/acs.orglett.1c03229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Amino azines are widely found in pharmaceuticals and ligands. Herein, we report a practical method for accessing this class of compounds via photocatalyzed hydroarylation of azine-substituted enamides with the in situ-generated aryl thianthrenium salts as the radical precursor. This reaction features a broad substrate scope, good functional group tolerance, and mild conditions and is suitable for the late-stage installation of α-amino azines in complex structures.
Collapse
Affiliation(s)
- Yu-Lan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Gang-Hu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Chun-Yin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
25
|
Chen C, Wang M, Lu H, Zhao B, Shi Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross‐Coupling Reactions by Copper Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Binlin Zhao
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
26
|
Chen C, Wang M, Lu H, Zhao B, Shi Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross-Coupling Reactions by Copper Catalysis. Angew Chem Int Ed Engl 2021; 60:21756-21760. [PMID: 34378844 DOI: 10.1002/anie.202109723] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Alkyl groups are one of the most widely used groups in organic synthesis. Here, a a series of thianthrenium salts have been synthesized that act as reliable alkylation reagents and readily engage in copper-catalyzed Sonogashira reactions to build C(sp3 )-C(sp) bonds under mild photochemical conditions. Diverse alkyl thianthrenium salts, including methyl and disubstituted thianthrenium salts, are employed with great functional breadth, since sensitive Cl, Br, and I atoms, which are poorly tolerated in conventional approaches, are compatible. The generality of the developed alkyl reagents has also been demonstrated in copper-catalyzed Kumada reactions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
27
|
Chen C, Wang ZJ, Lu H, Zhao Y, Shi Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C-B and C-C bond formation. Nat Commun 2021; 12:4526. [PMID: 34312381 PMCID: PMC8313578 DOI: 10.1038/s41467-021-24716-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfonium salts bearing a positively charged sulfur atom with three organic substituents have intrigued chemists for more than a century for their unusual structures and high chemical reactivity. These compounds are known to undergo facile single-electron reduction to emerge as a valuable and alternative source of aryl radicals for organic synthesis. However, the generation of non-stabilized alkyl radicals from sulfonium salts has been a challenge for several decades. Here we report the treatment of S-(alkyl) thianthrenium salts to generate non-stabilized alkyl radicals as key intermediates granting the controlled and selective outcome of the ensuing reactions under mild photoredox conditions. The value of these reagents has been demonstrated through the efficient construction of alkylboronates and other transformations, including heteroarylation, alkylation, alkenylation, and alkynylation. The developed method is practical, and provides the opportunity to convert C-OH bond to C-B and C-C bonds.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
28
|
Selmani A, Schoenebeck F. Transition-Metal-Free, Formal C–H Germylation of Arenes and Styrenes via Dibenzothiophenium Salts. Org Lett 2021; 23:4779-4784. [DOI: 10.1021/acs.orglett.1c01505] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
29
|
|
30
|
Huang M, Wu Z, Krebs J, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Ni-Catalyzed Borylation of Aryl Sulfoxides. Chemistry 2021; 27:8149-8158. [PMID: 33851475 PMCID: PMC8252015 DOI: 10.1002/chem.202100342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/21/2022]
Abstract
A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B2 (neop)2 (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)2 (4-CF3 -C6 H4 ){(SO)-4-MeO-C6 H4 }] 4. For complex 5, the isomer trans-[Ni(ICy)2 (C6 H5 )(OSC6 H5 )] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)2 (C6 H5 )(OSC6 H5 )] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)2 (C6 H5 )(SOC6 H5 )] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)2 (C6 H5 )(η2 -{SO}-C6 H5 )], which lies only 10.8 kcal/mol above 5.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
31
|
Mkrtchyan S, Jakubczyk M, Lanka S, Pittelkow M, Iaroshenko VO. Cu-Catalyzed Arylation of Bromo-Difluoro-Acetamides by Aryl Boronic Acids, Aryl Trialkoxysilanes and Dimethyl-Aryl-Sulfonium Salts: New Entries to Aromatic Amides. Molecules 2021; 26:2957. [PMID: 34065691 PMCID: PMC8156957 DOI: 10.3390/molecules26102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
We describe a mechanism-guided discovery of a synthetic methodology that enables the preparation of aromatic amides from 2-bromo-2,2-difluoroacetamides utilizing a copper-catalyzed direct arylation. Readily available and structurally simple aryl precursors such as aryl boronic acids, aryl trialkoxysilanes and dimethyl-aryl-sulfonium salts were used as the source for the aryl substituents. The scope of the reactions was tested, and the reactions were insensitive to the electronic nature of the aryl groups, as both electron-rich and electron-deficient aryls were successfully introduced. A wide range of 2-bromo-2,2-difluoroacetamides as either aliphatic or aromatic secondary or tertiary amides were also reactive under the developed conditions. The described synthetic protocols displayed excellent efficiency and were successfully utilized for the expeditious preparation of diverse aromatic amides in good-to-excellent yields. The reactions were scaled up to gram quantities.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
| | - Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Suneel Lanka
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Mkrtchyan S, Iaroshenko VO. Arylation of ortho-Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: An Access to Isoflavones. J Org Chem 2021; 86:4896-4916. [PMID: 33721488 DOI: 10.1021/acs.joc.0c02294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we disclose three new methods for the straightforward and efficient synthesis of 3-arylchromones following the arylation of ortho-hydroxyarylenaminones by vast diversities of bench-stable and easy-to-use sulfonium salts and arenesulfonyl chlorides. Both developed methods, namely the light-mediated photoredox and electrophilic arylation, showed good efficiency, and are feasible for the preparation of 3-arylchromones in good-to-excellent yields. This work showcases the first described attempt where the sulfonium salts and arenesulfonyl chlorides were successfully utilized for the construction of the chromone heterocycle system.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland
| | - Viktor O Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland.,Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
33
|
Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem Rev 2021; 121:3561-3597. [PMID: 33596057 DOI: 10.1021/acs.chemrev.0c01236] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organoboron compounds have important synthetic value and can be applied in numerous transformations. The development of practical and convenient ways to synthesize boronate esters has thus attracted significant interest. Photoinduced borylations originated from stoichiometric reactions of alkanes and arenes with well-defined metal-boryl complexes. Now, photoredox-initiated borylations, catalyzed by either transition metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this Focus Review, we summarize research on photoinduced borylations, especially emphasizing recent developments and trends. This includes the photoinduced borylation of arenes, alkanes, aryl/alkyl halides, activated carboxylic acids, amines, alcohols, and so on based on transition metal catalysis, metal-free organocatalysis, and direct photochemical activation. We focus on reaction mechanisms involving single-electron transfer, triplet-energy transfer, and other radical processes.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiao-Ning Guo
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
34
|
Guan YY, Wu XX, Liu YF, Chao JB, Wen ZK. Palladium catalyzed desulfurative coupling of allyl sulfides with organoboronic acids. Org Chem Front 2021. [DOI: 10.1039/d1qo01106e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A palladium catalyzed desulfurative coupling of allylthioethers with organoboronic acids under mild reaction conditions is described.
Collapse
Affiliation(s)
- Yan-Yan Guan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiao-Xue Wu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yu-Fang Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jian-Bin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Zhen-Kang Wen
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
35
|
Lai D, Ghosh S, Hajra A. Light-induced borylation: developments and mechanistic insights. Org Biomol Chem 2021; 19:4397-4428. [PMID: 33913460 DOI: 10.1039/d1ob00323b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organoboron compounds are very important derivatives because of their profound impacts on medicinal, biological as well as industrial applications. The development of several novel borylation methodologies has achieved momentous interest among synthetic chemists. In this scenario, eco-friendly light-induced borylation is progressively becoming one of the best synthetic tools in recent days to prepare organoboronic ester and acid derivatives based on green chemistry rules. In this article, we have discussed all the UV- and visible-light-induced borylation strategies developed in the last decade. Furthermore, special attention is given to the mechanisms of these borylation methodologies for better understanding of reaction insights.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
36
|
|
37
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
38
|
Fan R, Tan C, Liu Y, Wei Y, Zhao X, Liu X, Tan J, Yoshida H. A leap forward in sulfonium salt and sulfur ylide chemistry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Liu C, Song L, Peshkov VA, Van der Eycken EV. Facile construction of peptidomimetics by sequential C–S/C–N bond activation of Ugi-adducts. Org Chem Front 2021. [DOI: 10.1039/d1qo01438b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diverse peptidomimetics containing a primary amide are prepared via the integration of an Ugi-4CR and sequential C–S/C–N bond activation.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, P. R. China
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow, 117198, Russia
| |
Collapse
|
40
|
Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Bie F, Liu X, Shi Y, Cao H, Han Y, Szostak M, Liu C. Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides. J Org Chem 2020; 85:15676-15685. [PMID: 33124423 DOI: 10.1021/acs.joc.0c02157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the rhodium-catalyzed base-free decarbonylative borylation of twisted amides. The synthesis of versatile arylboronate esters from aryl twisted amides is achieved via decarbonylative rhodium(I) catalysis and highly selective N-C(O) insertion. The method is notable for a very practical, additive-free Rh(I) catalyst system. The method shows broad functional group tolerance and excellent substrate scope, including site-selective decarbonylative borylation/Heck cross-coupling via divergent N-C/C-Br cleavage and late-stage pharmaceutical borylation.
Collapse
Affiliation(s)
- Fusheng Bie
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Xuejing Liu
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Yijun Shi
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Han Cao
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Ying Han
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
42
|
Gao J, Feng J, Du D. Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis. Chem Asian J 2020; 15:3637-3659. [DOI: 10.1002/asia.202000905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Gao
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Jie Feng
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Ding Du
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| |
Collapse
|
43
|
Liang L, Niu HY, Li RL, Wang YF, Yan JK, Li CG, Guo HM. Photoinduced Copper-Catalyzed Site-Selective C(sp2)–C(sp) Cross-Coupling via Aryl Sulfonium Salts. Org Lett 2020; 22:6842-6846. [DOI: 10.1021/acs.orglett.0c02364] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ren-Long Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yao-Fei Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jin-Kai Yan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Chang-Gong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Hai-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
44
|
Abstract
This minireview aims to cover the developments over the past two decades in the chemistry of sulfonium salts. Specifically, insight is provided into the synthetic strategies available for the preparation of these compounds, the different reactivity patterns that are expected depending on their structural features or the reaction conditions applied, and the diversity of organic scaffolds that can thereby be synthesized. Additionally, the pros and cons derived from the use of sulfonium salts are presented and critically compared, when possible, in relation to reagents not based on sulfur but depicting similar reactivity.
Collapse
Affiliation(s)
- Sergei I. Kozhushkov
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
45
|
Péter Á, Perry GJP, Procter DJ. Radical C−C Bond Formation using Sulfonium Salts and Light. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Áron Péter
- Department of ChemistryUniversity of Manchester Oxford Rd Manchester M13 9PL U.K
| | - Gregory J. P. Perry
- Department of ChemistryUniversity of Manchester Oxford Rd Manchester M13 9PL U.K
| | - David J. Procter
- Department of ChemistryUniversity of Manchester Oxford Rd Manchester M13 9PL U.K
| |
Collapse
|
46
|
Varni AJ, Bautista MV, Noonan KJ. Chemoselective Rhodium-Catalyzed Borylation of Bromoiodoarenes Under Mild Conditions. J Org Chem 2020; 85:6770-6777. [DOI: 10.1021/acs.joc.0c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anthony J. Varni
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| | - Michael V. Bautista
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| | - Kevin J.T. Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| |
Collapse
|
47
|
Yuan XY, Zeng FL, Zhu HL, Liu Y, Lv QY, Chen XL, Peng L, Yu B. A metal-free visible-light-promoted phosphorylation/cyclization reaction in water towards 3-phosphorylated benzothiophenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00222d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A metal-free visible-light-induced phosphorylation/cyclization reaction was developed in water at room temperature for the synthesis of 3-phosphorylated benzothiophenes.
Collapse
Affiliation(s)
- Xiao-Ya Yuan
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Fan-Lin Zeng
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hu-Lin Zhu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan Liu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qi-Yan Lv
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|